INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

CONDITIONS DE FINITUDE POUR

LES MODULES II

par

Constantin NASTASESCU

PREPRINT SERIES IN MATHEMATICS
No. 63/1979

Med 26340

BUCURESTI

NSTITUTUL PATIONAL PENTRU CERATIE STINUTIFICA SUTERNICA AUTOTOY SEE 30 - ADSTAURT AW

RUOT EQUITIVIE EG SMOTTIONOS LES MODRICES II

UDERZÄTZÄM NEDERMSO

PREPART SEKLES IN MATHEMATICS. No. 63/1979

ITES PLONE

SYT W LOD

CONDITIONS DE FINITUDE POUR LES MODULES II

par .
Constantin NASTASESCU*)

Novembre 1979

CONDITIONS DE FINITUDE POUR LES MODULES II

par Constantin NĀSTĀSESCU*)

Novembre 1979

CONDITIONS DE FINITUDE POUR LES

MODULES II on lead I Leavent so and

Constantin Nastasescu

INTRODUCTION

Dans le travail [6] C.Faith fait l'étude des modules $\sum (\Delta)$ -injectifs utilisant le treillis d'annulateurs associé à un module injectif. Dans ce travail, utilisant la notion de topologie additive (le filtre topologisant et idempotent d'après Gabriel) sur un anneau unitaire et les résultats de [10] et [11], on fait l'étude de modules qui sont noethériens (artiniens) relatifs à une topologie additive et puis on applique cette théorie à l'étude des modules $\sum (\Delta)$ -injectifs et des modules $\sum (\Delta^*)$ -projectifs.

En particulier nous obtenons des résultats qui complètent ceux de Faith [6] (voir §2). Je citerai parmis ceux-ci les théorèmes 2.4,2.5, la proposition 2.9, les corollaires 2.11 et 2.12. Le corollaire 2.11 est plus fort que le résultat obtenu par Faith dans la proposition 6.3 [6].Le théorème 2.13 constitue une réponse affirmative au problème 4 posé par Faith en [6].

Ensuite on applique le théorème 2.13 pour l'étude des modules injectifs qui sont Π -projectifs.

Dans le dernier paragraphe on fait l'étude des modules $\sum (\Delta)$ -injectifs, en utilisant les idéaux premiers associés. Les principaux résultats de ce paragraphe sont les théorèmes 4.3 et 4.8 .

§ 1. MODULES F-NOETHERIENS . MODULES F-ARTINIENS

Dans ce travail R désignera toujours un anneau unitaire et Mod R la catégorie des R-modules à droite unitaires.

Soit F une topologie additive sur R (ou filtre topologie and et idémpotent dans la terminologie de [7]), c'est-a-dire un ensemble non vide d'idéaux à droite de R vérifiant les conditions suivantes:

 (T_1) Si $\underline{a} \in F$ et $x \in R$, alors $(\underline{a}:x) \in F$

(T₂) Si <u>a</u> et <u>b</u> sont deux idéaux à droite de R, tela que $\underline{b} \in F$ et (<u>a</u>:x) $\in F$ pour tout $x \in \underline{b}$, alors $\underline{a} \in F$.

Soit $(\mathcal{T}_F,\mathcal{F}_F)$ la théorie de torsion héréditaire pour Mod R associée à F, c'est-a-dire:

$$\mathcal{T}_{F} = \{ M \in Mod \ R / Ann_{R}(x) \in F \text{ pour tout } x \in M \}$$

$$\mathcal{F}_{F} = \{ M \in Mod \ R / x \in M \text{ et } Ann_{R}(x) \in F \implies x = 0 \}$$

 $\mathcal{T}_{ extbf{F}}$ est une sous-catégorie localisante de Mod R[7].

Si $M \in \mathcal{T}_F$ nous dirons que M est F-de torsion; si $M \in \mathcal{F}_F$ nous dirons que M est F-sans torsion. Comme \mathcal{T}_F est une sous-catégorie localisante de M od R on peut considérer la catégorie quotient M od R/\mathcal{T}_F ([7],ch.3).

Nous désignerons par T_F : Mod $R \longrightarrow Mod R/\mathcal{T}_F$ le foncteur canonique et par S_F : Mod $R/\mathcal{T}_F \longrightarrow Mod R$ le foncteur adjoint à droite de T_F ([7],ch.3,pag.369).

Si M est un R-module, par M_F on dénote le module de quotients de M par rapport à F [15], c'est-a-dire

$$M_F = (S_F \circ T_F)(M)$$

Si M = R_R ,on obtient un anneau R_F ,appelé l'anneau de quotients de R par rapport à F. On peut munir canoniquement M_F d'une structure de R_F -module.

Soit L = M un sous-module de M et x M, alors nous notons:

$$(L:x) = \{ \lambda \in \mathbb{R} / x \lambda \in L \} \text{ et}$$

$$L^{\sim} = \{ x \in \mathbb{M} / (L:x) \in F \}$$

Désignons par C_F(M) l'ensemble :

$$C_F(M) = \{L \subseteq M / L = L\}$$
 of is [21] elements of elements

Il est clair que L = L si et seulement si M/L est un module F-sans torsion. $C_F(M)$ est un treillis modulaire complet pour la relation d'ordre d'inclusion [1], [10].

Pour M = R_R nous avons le treillis

thérien (artinien).

 $C_F(R) = \left\{ \underline{a} \ / \ \underline{a} \ \text{ideal a droite de } R \ \text{tel que } \ \underline{a}^- = \underline{a} \right\}.$ Nous dirons que M \in Mod R est F-noethérien (F-artinien) si $T_F(M) \ \text{est un objet noethérien (artinien) dans la catégorie}$ Mod R/\mathcal{T}_F . En tenant compte de prop.l.l [10] M est F-noethérien (F-artinien) si et seulement si $C_F(M)$ est un treillis noe-

Le module M s'appelle F-de type fini s'il existe un sous-module M' de M de type fini tel que M/M' est F-de torsion (voir [17,[10],[15]).

Un module $M \neq 0$ s'appelle F-critique si M est F-sans torsion et pour tout sous-module $N \subseteq M$, $N \neq 0$, M/N est F-de torsion. Il est facile de voir que M est F-critique $\longleftarrow T_F(M)$ est un objet simple de M od $R/\mathcal{T}_F \longleftarrow C_F(M)$ contient deux éléments (c'est-a-dire $C_F(M) = \{0,M\}$). On voit aussi que si M est F-critique, alors tout sous-module non-nul de M est F-critique.

Nous rappellons que une catégorie de Grothendieck

s'appelle semi-artinienne si tout objet non-nul de & contient un sous-objet simple. Quand & = Mod R est une catégorie semi-artinienne alors l'anneau R on dit semi-artinien (à droite).

L'étude des anneaux semi-artiniens est fait dans [12].

On sait que tout anneau parfait à gauche est un anneau semi-artinien à droite.

Aussi nous rappellons que une catégorie de Grothendieck Cs'appelle spectrale [15] si tout objet de Cest injectif (projectif).

Proposition 1.1. Soient F₁,F₂,...,F_n des topologies additives sur R. Si Me Mod R est Fi-noethérien (Fi-artinien) pour tout $1 \le i \le n$, alors M est $F_1 \cap F_2 \cap ... \cap F_n$ -noethérien (artinien). S sup 1st 9 ob elfoub & 18301 0 \ A = (A) 5

<u>Démonstration</u>. Notons $F = F_1 \cap F_2 \cap ... \cap F_n$. Soit N∈C_F(M); nous noterons per

 $\tilde{N}^{i} = \{x \in M / (N:x) \in F_{i} \}$ pour tout $1 \le i \le n$. Il est clair que

$$\tilde{N}^{i} \in C_{F_{i}}(M)$$
 et $N = \bigcap_{i=1}^{n} \tilde{N}^{i}$

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_p \subseteq \cdots$$

est une chaîne ascendante d'éléments, de CF (M), alors

$$\widetilde{N}_{1}^{i} \subset \widetilde{N}_{2}^{i} \subset \ldots \subset \widetilde{N}_{p}^{i} \ldots (1 \leq i \leq n)$$
.

Comme $C_{F_i}(M)$ est un treillis noethérien $(1 \le i \le n)$ il existe un k tel que $\widetilde{N}_{p}^{i} = \widetilde{N}_{p+1}^{i} = \dots$ pour tout $p \ge k$ et $1 \le i \le n$.

Donc $N_p = N_{p+1} = \cdots$

Quand nous avons une famille arbitraire de topologies additives on a le résultat:

Proposition 1.2. Soient (Fi) ieI une famille de topologies additives sur R et Me Mod R tel que M est

 F_i -noethérien pour tout $i \in I$. Supposons que pour tout $x \in M$, $x \neq 0$, M/xR est F_i -de torsion pour tout $i \in I$ seuf un nombre fini d'indexes. Alors M est $\bigcap_{i \in I} F_i$ -noethérien

Démonstration. Soient $F = \bigcap_{i \in I} F_i$ et $N \in C_F(M)$, $N \neq 0$. Pour tout $i \in I$, nous notons

$$\tilde{N}^{i} = \{x \in M / (N:x) \in F_{i}\}$$

Il est clair que $N = \bigcap_{i \in I} \widetilde{N}^i$. Si nous notons par $X_N = \{i \in I / \widetilde{N}^i \neq M\}$

alors d'après l'hypothèses XN est un ensemble fini.

Donc
$$N = \bigcap_{i \in X_N} \widetilde{N}^i$$
. Soit

une chaîne ascendante d'éléments de $C_F(M)$. On peut supposer que $N_1 \neq 0$. Alors nous obtenons la chaîne descendante d'ensembles finis:

$$X_{N_1} \supset X_{N_2} \supset \dots \supset X_{N_p} \supset \dots$$

Il existe le nombre naturel k tel que $X_{N_k} = X_{N_k+1} = \cdots$ d'où on déduit que $N_k = N_{k+1} = \cdots$

Remarque. Soit R un anneau régulier au sens de von

Neumann non-noethérien. Donc le spectre premier Spec R est

un ensemble infini. Pour tout p Spec R nous considérons la

topologie additive

$$F_{\mathbf{p}} = \left\{ \underline{\mathbf{a}} \subset \mathbb{R} / \underline{\mathbf{a}} \neq \underline{\mathbf{p}} \right\} = \left\{ \underline{\mathbf{a}} \subset \mathbb{R} / (\mathbb{R}/\underline{\mathbf{a}})_{\mathbf{p}} = 0 \right\}$$

Comme $R_{\mathbf{p}}$ est un corps alors R est $F_{\mathbf{p}}$ -noethériem. D'autre part

$$F = \bigcap_{p \in \text{Spec } R} F_p = \{ \underline{a} \neq p \mid \forall p \in \text{Spec } R \} = \{ R \}$$

et donc $C_F(R)$ = le treillis d'idéaux de R . Par suite R n'est pas F-noethérien.

Il est bien connu le résultat suivant [6],[11],[16]:

Si R est F-artinien alors R est F-noethérien.

Réciproquement nous avons le résultat suivant:

Proposition 1.3. Supposons que R est F-noethérien.

Alors R est F-artinien si l'une des conditions suivantes
est satisfaite:

- a) R est un anneau semi-artinien (en particulier pour un anneau parfait).
 - b) R est un anneau régulier au sens de von Neumann
- c) Tout module injectif F-sans torsion a le radical singulier zéro.

<u>Démonstration</u>. a) Comme Mod R est une catégorie semi-artinienne alors Mod R/ \mathcal{T}_{F} est une catégorie semi-artinienne.

D'autre part $T_F(R_R)$ étant un objet noethérien dans $Mod\ R/\mathcal{T}_F$ alors $T_F(R_R)$ est un objet de longueur finie [12] et donc R est F-artinien.

b) Soit maintenant I \subset R un idéal à droite. Comme R est F-noethérien alors d'après la proposition l.l [10] il existe un idéal à droite J \subset I, J de type fini,tel que I/J est F-de torsion. Donc $T_F(I) = T_F(J)$. Comme J est de type fini alors J est un facteur direct de R_R . Donc $T_F(I)$ est un facteur direct de $T_F(R_R)$. Comme tout sous-objet de $T_R(R_R)$ est de forme $T_F(I)$ où I est un idéal à droite, alors tout sous-objet de $T_F(R_R)$ est un facteur direct.

D'autre part $T_F(R_R)$ étant un objet noethérien dans $\operatorname{Mod} R/\mathcal{T}_F$, alors $T_F(R_R)$ est une extension essentielle d'une somme directe finie $\bigoplus_{i=1}^n X_i$ de sous-objets co-irréductibles. Mais X_i est de forme $T_F(\underline{a_i})$ où $\underline{a_i}$ est un idéal à droite de R. D'ici on déduit que X_i est un objet simple dans $\operatorname{Mod} R/\mathcal{T}_F$. Donc $T_F(R_R)$ est un objet semi-simple de longueur finie. Donc R est F-artinien.

c) Soit \mathcal{G} la théorie de torsion de Goldie [15]. D'après lès hypothèses \mathcal{G}_{\subset} \mathcal{T}_F et donc Mod R/\mathcal{T}_F est une catégorie de quotients de Mod R/\mathcal{G} . Comme Mod R/\mathcal{G} est une catégorie spectrale alors Mod R/\mathcal{T}_F est une catégorie spectrale. Comme $\mathbf{T}_F(R)$ est un objet noethérien dans Mod R/\mathcal{T}_F alors il est semi-simple de longueur finie, Donc R est F-artinien.

<u>Proposition 1.4.</u> Soient F une topologie additive sur R et Q un R-module quasi-injectif, F-sans torsion.

Si Q est F-noethérien (resp. F-artinien) alors l'anneau $A = \operatorname{End}_{\mathbf{R}}(\mathbb{Q})$ est semi-primaire (resp. noethérien à gauche).

Démonstration. Si a est un idéal à gauche de A, de type fini, alors d'après le théorème de Harada - Ishii [8]

 $\underline{a} = \left\{ \text{f} \in A \ / \ \text{Ker } f \supseteq \mathbb{Q}_{\underline{a}} \right\} \quad \text{où } \mathbb{Q}_{\underline{a}} = \bigcap_{f \in \underline{a}} \text{Ker } f \text{. Comme}$ Q est F-sans torsion alors $\mathbb{Q}_{\underline{a}} \in \mathbb{C}_F(\mathbb{Q})$. Comme $\mathbb{C}_F(\mathbb{Q})$ est un treillis noethérien (artinien), alors A satisfait la condition descendante (ascendante) de chaînes d'idéaux à gauche de type fini, donc A est parfait à droite (resp. noethérien à gauche).

Supposons maintenant que Q est F-noethérien. Si J est le radical de Jacobson de A,alors $Q_J^n = C_F(Q)$ et donc il existe un nombre naturel n tel que $Q_J^n = Q_{J^{n+1}} = \cdots$

Ensuite la démonstration on fait comme dans la proposition 6.3 [6].

<u>Proposition 1.5.</u> Supposons que R est F-artinien. Si Q est un R-module quasi-injectif, F-sans torsion et dF-de type fini, alors l'anneau $A = \operatorname{End}_{R}(\mathbb{Q})$ est artinien à gauche.

<u>Démonstration</u>. Comme R est F-artinien alors R est F-noethérien et donc R est F-de longueur finie. Par suite Q est F-de longueur finie . Alors pour Q il existe une suite finie: $0 = \mathbb{Q}_n \subset \mathbb{Q}_{n-1} \subset \mathbb{Q}_{n-2} \subset \ldots \subset \mathbb{Q}_0 = \mathbb{Q}$ tel que $\mathbb{Q}_i/\mathbb{Q}_{i-1}$

est F-critique pour tout 0 ≤ i < n-1. Si nous notons

$$\underline{a_i} = \left\{ f \in A / \text{Ker } f \supseteq Q_i \right\} \quad (0 \le i \le n-1),$$

alors a; sont des idéaux à gauche dans A et

$$(*) \quad 0 = \underline{a}_0 \subset \underline{a}_1 \subset \underline{a}_2 \subset \cdots \subset \underline{a}_n = A$$

De plus on voit que $\underline{a_i} \cong \operatorname{Hom}_R(\mathbb{Q}/\mathbb{Q}_i,\mathbb{Q})$ et $\underline{a_i}/\underline{a_{i-1}}$ est isomorphe avec un A-sous-module de $\operatorname{Hom}_{\mathbb{R}}(\mathbb{Q}_{i}/\mathbb{Q}_{i-1},\mathbb{M})$ ($1 \leq i \leq n$).

Utilisant le lemme suivant (lemme 1.6) on déduit que la suite (*) est une suite de Jordan-Hölder pour A et donc A est artinien à gauche.

Lemme 1.6. Si M est F-critique alors Hom, (M,Q) est un A-module à gauche simple.

Démonstration. En effet si f \(\) Hom_R(M,Q), f \(\neq 0 \), alors Ker f = 0 (dans le cas contraire Ker f ≠ 0 => Im f ~ Q/Ker f est F-de torsion et comme Q est F-sans torsion alors Im f = 0 et donc f = 0).

Si geHom(M,Q) alors du diagramme :

descendents (secondants)
$$Q \leftarrow \frac{\mathbf{f}}{\mathbf{g}} M \leftarrow \mathbf{0}$$
 general de type fint, donc A set perfett à droite \mathbf{g} en noethérien à gauche).

il existe h ∈ End(Q) tel que g = h o f (Q est quasi-injectif). D'ici on déduit que Hom(M,Q) est A-module simple.

Proposition 1.7. Supposons que R est F-artinien. Si Q est R-module injectif, F-sans torsion et de dimension de Goldie finie alors l'anneau A = End_R(Q) est semi-primaire.

Démonstration. L'objet Tp(Q) est injectif et de dimension de Goldie finie. Comme R est F-artinien alors TF(R) est un objet de longueur finie dans la catégorie Mod R/ \mathcal{T}_{F} . Exactement comme dans la proposition 5.4 [12], l'anneau End Mod R/7 (TF(Q)) est semi-primaire. Q étant F-sans torsion et injectif (donc F-fermé ([77, ch.3)) alors

$$A = \operatorname{End}_{R}(Q) \simeq \operatorname{End}_{\operatorname{Mod} R/\mathscr{T}_{F}}(T_{F}(Q))$$
.

Donc A est semi-primaire.

§2. MODULES ∑(△)- INJECTIFS

Soit Q un R-module à droite injectif. L'ensemble

 $F_Q = \Big\{ I \subseteq R \ / \ I \ \text{id\'eal a droite tel que Hom}(R/I,Q) = 0 \Big\}$ est une topologie additive sur R.La théorie de torsion associée est

 $\mathcal{T}_{Q} = \{ M \in Mod R / Hom(M,Q) = 0 \}$ et

 $\mathcal{F}_{Q} = \{ M \in Mod R / il \text{ existe l'ensemble I tel que } M \subseteq Q^{I} \}$

Le treillis $C_{F_O}(R)$ est noté plus simple $C_{C_O}(R)$.

D'après [10] et [15],

 $C_Q(R) = \{I \subset R \mid \exists X \subseteq Q, X \neq 0, \text{tel que } I = Ann_R(X)\}.$

Nous dirons que Q est \geq (Δ)-injectif \geq > $C_Q(R)$ est un treillis noethérien (artinien).

Par suite Q est $\sum (\Delta)$ -injectif $\Longrightarrow R_R$ est F_Q -noethérien (F_Q -artinien).

Il est bien connu que Q est \sum -injectif \iff pour tout ensemble I, Q^(I) est injectif. (voir [5],[6],[15])

Théorème 2.1. [6], [11], [16]. Si Q est △ -injectif alors

Q est ∑ -injectif.

La démonstration plus simple de ce théorème est donnée dans [11] (corollaire 1.3).

Si $\operatorname{End}_R(Q)$ est l'anneau d'endomorphismes de Q alors Q est $\operatorname{End}_R(Q)$ -module à gauche.

Le module $\operatorname{End}(Q)^Q$ s'appelle le <u>contre-module</u> de Q.

L'anneau Biend(Q) = $\operatorname{End}_{\operatorname{End}(Q)}(Q)$ s'appèlle l'anneau de biendomorphismes de Q .

Proposition 2.2. [6] Q est △-injectif ⇐>le contre-module de Q est noethérien.

Théorème 2.3. [6] Si Q est injectif et le contre-module de Q est noethérien alors le contre-module de Q est artinien.

Démonstration. Si le contre-module de Q est noethérien alors d'après la proposition 2.2 et le théorème 2.1, Q est \(\subsectif. D'après le théorème de Johnson-Wong [9], on déduit que le contre-module de Q est artinien.

Remarques. 1) Une démonstration compliquée du théorème 2.3 est donnée dans [6].

2) Le théorème 2.3 est vrai quand nous supposons que Q est quasi-injectif. En effet si le contre-module de Q est noethérien alors Q est R/Ann Q -module injectif.

Théorème 2.4. Q_i (léién) sont $\sum (\Delta)$ -injectifs $\rightleftharpoons > 0$ i=1Théorème 2.4. Q_i (léién) sont $\sum (\Delta)$ -injectifs $\rightleftharpoons > 0$ i=1

Remarque. Q est $\sum (\Delta)$ -injectif \iff Q^(I) est $\sum (\Delta)$ -injectif \iff Q^I est $\sum (\Delta)$ -injectif (I est un ensemble arbitraire). En effet $F_Q = F_{Q}(I) = F_{Q}I$.

Théorème 2.5. Soit Q_i (i \in I) une famille de modules \geq -injectifs. Supposons que la famille Q_i (i \in I) a la propriété suivante:

(*) pour tout $a \in \mathbb{R}$, $a \neq 0$ et pour tout $i \in I$ (sauf un nombre fini d'indexes) nous avons $ax \neq 0$, $\forall x \in \mathbb{Q}_i$, $x \neq 0$.

Dans ces conditions $\bigoplus_{i \in I} \mathbb{Q}_i$ est $\sum_{i \in I} -i$ njectif.

Démonstration. La famille de topologies additives F_{Q_i} (iel) a la propriété que pour tout $a \in R, a \neq 0$, $Hom_R(R/aR, Q_i) = 0$ pour tout iel sauf un nombre fini d'indexes. Donc d'après la proposition 1.2, R est $\bigcap_{i \in I} F_{Q_i}$ -noethérien. Comme pour tout $i \in I$,

 Q_i est $\bigcap_{i \in I} F_{Q_i}$ -sans torsion alors d'après le théorème 1.6 [10] $\bigoplus_{i \in I} Q_i$ est $\sum_{i \in I} -i$ injectif.

Pour la topologie F_Q l'anneau de quotients R_{F_Q} est noté plus simple R_Q . Comme Q est F_Q -sans torsion et injectif, alors Q est F_Q -fermé ([7], ch.3) et donc Q est R_Q -module.

Proposition 2.6. Q_R est $\sum (\Delta)$ -injectif $\Longleftrightarrow Q_{R_Q}$ est $\sum (\Delta)$ -injectif (dans la catégorie Mod R_Q).

Démonstration. Si R $\xrightarrow{\varphi}$ RQ est le morphisme canonique alors d'après corollaire 0.4 [1] l'ensemble $\varphi(F_Q) = \{ \underline{b} \ / \ \underline{b} \ \text{idéal à droite de RQ tel que } \varphi^{-1}(\underline{b}) \in F_Q \} = \\ = \{ \underline{b} \ / \ \underline{b} \ \text{idéal à droite tel que RQ/b} \ \text{est FQ-de torsion} \}$ est une topologie additive sur l'anneau RQ et de plus $\varphi(F_Q) = F_{Q_F} \quad \text{. Comme QFQ Q , alors d'après la proposition }$ 0.7 [1], nous avons que $C_Q(R) \simeq C_Q(R_Q)$, d'où nous obtenons l'affirmation.

Lemme 2.7. Si Q est \triangle -injectif alors $R_Q \simeq \text{Biend}(Q)$.

Démonstration. Nous avons Ann $Q = \bigcap_{\mathbf{x} \in Q} \text{Ann } \mathbf{x}$. Comme $C_Q(R)$ est un treillis artinien, il existe $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in Q$ tel que Ann $Q = \text{Ann } \mathbf{x}_1 \cap \text{Ann } \mathbf{x}_2 \cap \dots \cap \text{Ann } \mathbf{x}_n$. D'ici on déduit que Q^n est "countercyclic" et par suite $R_Q \simeq \text{Biend}(Q^n)$ ([15], théorème 3.3,pag.206). D'autre part $\text{Biend}(Q^n) \simeq \text{Biend}(Q)$ et donc $R_Q \simeq \text{Biend}(Q)$.

Corollaire 2.8. Si Q est \triangle -injectif alors l'anneau R_Q est semi-primaire, avec le socle (à droite) de type fini.

Démonstration. En effet le contre-module de Q est de longueur finie (théorème 2.3) et par suite l'anneau Biend(Q) est semi-primaire. Donc RQ est semi-primaire.

Proposition 2.9. Soit Q_R un module \sum -injectif. Alors Q est \triangle -injectif si l'une des conditions suivantes est satisfaite:

- a) R est un anneau semi-artinien
- b) R est un anneau régulier au sens de von Neumann
- c) Le radical singulier de Q est zéro (Z(Q) = 0)

 Démonstration. On applique la proposition 1.3.

Corollaire 2.10. Soit Q un R-module injectif. Les affirmations suivantes sont équivalentes:

- 1) Q est △-injectif
- 2) R_C est semi-primaire et Q est R_C -module \geq -injectif
- 3) Biend(Q) est semi-primaire et Q est Biend(Q)-module
 5 -injectif.

<u>Démonstration</u>. On applique la proposition 2.6, lemme 2.7, corollaire 2.8 et proposition 2.9.

Corollaire 2.11. Si Q est ∑-injectif et de type fini alors l'anneau A = End_R(Q) est semi-primaire,

Pour la démonstration s'applique la proposition 1.4.

Corollaire 2.12. Si Q est ___injectif et de type fini

(resp. de dimension finie au sens de Goldie) alors l'anneau

A = Endp(Q) est atinien à gauche (resp. semi-primaire).

Démonstration. On applique la proposition 1.5 et 1.7.

Théorème 2.13. Soit Q_R un module \triangle -injectif. Si Q_R est noethérien, alors :

- 1) L'anneau R/AnnpQ est artinien à droite de la la la sont
- 2) Q est un R-module artinien
- 3) L'anneau Biend_R(Q) est artinien à droite
- 4) L'anneau A = End_R(Q) est artinien à gauche.

Dénonstration. 1) Comme Q est Δ -injectif alors Q est Δ -injectif sur les anneaux $R = R/Ann_RQ$ et $S = Biend_R(Q)$ [6]. Alors il existe un monomorphisme $O \rightarrow S \rightarrow Q^n$ et donc S est un anneau noethérien à droite. D'autre part S étant semi-primaire, alors S est artinien à droite (donc l'affirmation S).

Comme $R \subset S \subset \mathbb{Q}^n$, alors S est un \overline{R} -module à droite noethérien et \overline{R} est un anneau noethérien à droite. D'après le théorème 3.11 [3], on déduit que \overline{R} est artinien à droite.

L'affirmation 2) en résulte de 1).

Pour l'affirmation 4) voir le corollaire 2.12.

Corollaire 2.14. Soit Q_R un module \triangle -injectif noethérien. Si l'anneau R a la propriété qu'il existe un seul type de module simple (par exemple quand l'anneau R est local) alors R est artinien à droite.

Démonstration. D'après le théorème 2.13 et les hypothèses on déduit que Q est un cogénérateur. Comme Q est Δ -injectif, l'anneau R est artinien à droite.

Corollaire 2.15. Soit R un anneau avec la propriété que tout idéal à droite est bilatère. Si \mathbb{Q}_R est un module injectif et noethérien, alors :

- 1) R/Ann_QQ est un anneau artinien à droite
- 2) Q est un module artinien.

Démonstration. Parce que tout idéal à droite est bilatère et Q est noethérien, alors Q est Δ -injectif. Ensuite on applique le théorème 2.13.

Remarques. 1) Tout anneau commutatif et tout anneau fortement régulier (c'est-a-dire $\forall a \in R, \exists x \in R$ tel que $a = a^2x$) vérifient les conditions du corollaire 2.15. Le théorème 2.13 et le corollaire 2.14 généralisent le théorème 4.2 et le corollaire 4.3 du [11].

2) Pour tout anneau fortement régulier R, nous avons un résultat plus géneral: tout R-module noethérien est semi-simple. En effet, si M_R est un R-module noethérien, alors M est engendré par les éléments x_1, x_2, \ldots, x_n . Parce que tout idéal à droite est bilatère, alors Ann M = Ann $x_1 \cap \ldots \cap$ Ann x_n et donc il existe un

monomorphisme 0 -> R/Ann M -> Mⁿ . Donc R/Ann M est un anneau noethérien à droite et comme R/Ann M est un anneau régulier, alors R/Ann M est semi-simple. Donc M est un R-module semi-simple.

- 3) Si R est un anneau arbitraire et \mathbb{Q}_R est un module \triangle -injectif et artinien, alors il est très facile de voir que les affirmations suivantes sont vraies :
 - a) R/Ann_RG est un anneau artinien à droite
 - b) Q est un R-module noethérien
 - c) L'anneau Biend(Q) est artinien à droite
 - d) L'anneau $\Lambda = \text{End}_{R}(Q)$ est artinien à gauche.

Un module projectif P_R s'appelle T-projectif si pour tout ensemble Λ ,le module P^{Λ} est aussi projectif.

Il est bien connu (voir par exemple [5]) que sur un anneau artinien R tout module projectif est -projectif.

Corollaire 2.16. Soit Q_R un module injectif et projectif. Si Q_R est T-projectif, alors Q_R est Δ -injectif.

<u>Démonstration.</u> Si I est un injectif F_Q -sans torsion, alors il existe un ensemble \bigwedge tel que I est isomorphe à un sous-module de Q^{Λ} . Comme Q^{Λ} est projectif alors I est projectif. Donc I est isomorphe avec un sous-module d'un module libre et par suite tout module F_Q -sans torsion est contenu dans une somme directe de modules de type fini. D'après le théorème 2.4 [13] nous obtenons que Q_R est un module Λ -injectif.

Pour démontrer le résultat suivant, nous utiliserons le lemme:

Lemme 2.17. Soit Q_R un module \triangle -injectif. Alors il existe un module Q_o , \triangle -injectif, qu'il est une somme directe finie d'injectifs indécomposables tels que

$$F_Q = F_{Q_Q}$$

Démonstration. Comme Q_R est \sum -injectif, alors d'après le théorème 1.6 [10], $Q_R = \bigoplus_{i \in I} Q_i$ où Q_i sont des injectifs

indécomposables. Soit $T_Q: \operatorname{Mod} R \longrightarrow \operatorname{Mod} R / \mathcal{T}_Q$ le foncteur canonique. Alors $T_Q(Q) \cong \bigoplus_{i \in I} T_Q(Q_i)$ et les objets $T_Q(Q_i)$ sont des injectifs indécomposables. Comme l'objet $T_Q(R_R)$ est un générateur de longueur finie, alors dans la catégorie $\operatorname{Mod} R / \mathcal{T}_Q$ il existe un nombre fini d'objets simples non-isomorphes. Donc la famille $\left\{T_Q(Q_i)\right\}_{i \in I}$ contient un nombre fini d'objets non-isomorphes; soit $T_Q(Q_{i_1}), \dots, T_Q(Q_{i_n})$ ces objets. Il est clair que pour tout $i \in I$ Q_i est isomorphe à un objet de la famille $\left\{Q_{i_k}\right\}_{k=1,\dots,n}$. Si nous notons $Q_0 = \bigoplus_{k=1}^n Q_i$, alors Q_0 est —injectif et $F_Q = F_Q$.

Corollaire 2.18. Supposons que l'anneau R est noethérien à droite. Soit ${\bf Q}_{\bf R}$ un module injectif et projectif. Si ${\bf Q}_{\bf R}$ est T-projectif, alors

- 1) R/Ann Q et Biend Q sont Q.F.3 -anneaux artiniens à droite (un anneau R est Q.F.3 si l'enveloppe injective $E(R_R)$ est un module projectif).
- 2) Q_R est une somme directe de modules de longueur finie.

 Démonstration. D'après le corollaire 2.16, Q_R est

 \triangle -injectif. D'après le lemme 2.17 il existe un module Q_0 , \triangle -injectif, qu'il est une somme finie d'injectifs indécomposables, tels que $F_Q = F_Q$. Donc Q_0 est un module noethérien projectif.

Nous avons

Ann Q = Ann Q_o et Biend(Q) \simeq R_{FQ} = R_{FQo} = Biend(Q_o) Ensuite on applique le théorème 2.13.

§3. MODULES ∑*(△*)-PRCJECTIFS

Soit P_R un R-module à droite projectif. L'ensemble $F_P = \left\{ T \ / \ I \ \text{idéal à droite tel que Hom}(P,R/I) = 0 \right\}$ est une topologie additive sur R.

Si $G(P) = \sum_{f \in P} Im f$, où $P = Hom_R(P,R)$, est la "trace idéale de P" alors

 $F_{p} = \{I \subseteq R / I \text{ idéal à droite tel que } G(P) \subseteq I \} \text{(voir[11])}.$ L'aathéorie de torsion associée à F_{p} est la suivante:

 $\mathcal{T}_{P} = \left\{ M \in Mod \ R \ / \ Hom_{R}(P, M) = 0 \right\} = \left\{ M \in Mod \ R \ / \ M \mathcal{T}(P) = 0 \right\}$

et $\mathcal{F}_{p} = \{ M \in M \text{ od } R / x \in M \text{ et } x \mathcal{T}(P) = 0 \implies x = 0 \}$. Le treillis $C_{p}(R)$, noté plus simple $C_{p}(R)$, est le suivant:

 $C_{p}(R) = \{I \subseteq R / R / I \text{ est } F_{p}\text{-sans torsion}\} = \{I \subseteq R / \forall a \in R \text{ tel que a } \mathbb{Z}(P) \subseteq I \text{ alors } a \in I\} \text{ (voir [11]).}$ Nous dirons que $P \text{ est } \mathbb{Z}^{*}(\Delta^{*})\text{-projectif}$ si le treillis

C_p(R) est noethérien (artinien).

Théorème 3.1. Si P est △*-projectif alors P est ≦*-projectif.

Démonstration. Voir le corollaire 1.3 [11].

Lemme 3.2. Si P est $\sum^*(\triangle^*)$ -projectif elors l'idéal bilatére $\mathcal{T}(P)$ est de type fini (à droite).

Démonstration. En effet $\mathbb{C}(P)$ est R-module à droite \mathbb{F}_P -de type fini, donc il existe un idéal à droite $\mathbb{I} \subset \mathbb{C}(P)$, de type fini tel que $\mathbb{C}(P)/\mathbb{I} \in \mathbb{F}_P$. Par suite $\mathbb{C}(P)^2 \subset \mathbb{I}$ et comme $\mathbb{C}(P) = \mathbb{C}(P)^2$ alors $\mathbb{C}(P) = \mathbb{I}$. Denc $\mathbb{C}(P)$ est de type fini.

Un module M_R s'appelle G(P)-noethérien (resp. G(P)-artinien) si et seulement si M satisfait la condition pour les chaînes ascendantes (resp. descendantes) des sous-modules G(P)-accesibles [11].

Corollaire 3.3. Supposons que P_R est de type fini. Alors P est $\mathbb{Z}^{(A)}$ -projectif P est $\mathbb{Z}^{(B)}$ -noethérien (artinien) et $\mathbb{Z}^{(B)}$ est un idéal à droite de type fini.

Démonstration. Voir la proposition 2.10 [11].

Théorème 3.4. P_i ($1 \le i \le n$) sont $\sum^* (\Delta^*)$ -projectifs $\stackrel{n}{\leftarrow}$ P_i est $\sum^* (\Delta^*)$ -projectif.

Remarque. Si P est $\mathbb{Z}^*(\Delta^*)$ -projectif alors $\mathbb{P}^{(I)}$ est $\mathbb{Z}^*(\Delta^*)$ -projectif pour tout ensemble I.

En effet $F_P = F_{p(I)}$

Théorème 3.5. Supposons que P_R est de type fini. Alors $P = \mathbb{Z}^*(\Delta^*)$ -projectif \iff le contre-module associé à P^* (le dual de P) est noethérien (artinien).

Démonstration. D'après les propositions 2.5 et 2.5' [11] P = End(P,R) est un $\text{End}_R(P)$ -module noethérien (artinien). Comme $\text{End}(P) \cong \text{End}(P^*)^0$ alors on déduit l'affirmation.

D'après [15] (proposition 8.5, pag. 241) si P_R est de type fini alors l'anneau de quotients $R_{F_R} \simeq \text{Biend}(P^*)$.

Corollaire 3.6 Si P est \triangle^* -projectif et de type fini alors R_{F_D} = Biend(P*) est un anneau semi-primaire.

Démonstration. En effet, d'après les théorèmes 3.1 et 3.5, p*est un module de longueur finie sur l'anneau End(p*); donc Biend(p*) est semi-primaire.

§4 IDEAUX PREMIERS ASSOCIES À MODULES Z (△) -INJECTIFS

Soit F une topologie additive sur l'anneau R. Nous noterons par :

> Spec $R = \{p \mid p \text{ idéal premier bilatère de } R\}$ $Spec_F R = C_F R \cap Spec R =$

> > = $\{ p \in Spec R / R/p \text{ est un } F\text{-module sans torsion} \}$

Spec(Mod R/ \mathcal{T}_F) = l'ensemble des types d'injectifs indécomposables de la catégorie Mod R/ \mathcal{T}_F .

Il est bien connu que Spec(Nod R/ \mathcal{T}_{F}) s'idetifie avec.

Mand 16340

l'ensemble des types d'injectifs indécomposables de la catégorie Mod R qui sont F-sans torsion.

Si Me Mod R, M \neq O, alors un idéal pe Spec R est associé à M s'il existe un sous-module N \subseteq M, N \neq O, tel que p = Ann N = Ann N', pour tout sous-module N' \subseteq N, N' \neq O.

Nous noterons par Ass M l'ensemble d'idéaux premiers associés à M.

Lemme 4.1. Si R est un anneau F-noethérien (à droite) alors les affirmations suivantes sont vraies :

- 1) Si M ≠ O est F-sens torsion, alors Ass M ≠ Ø

 Si de plus M est de type fini alors Ass M est fini.
- 2) Si a ∈ C_FR est un idéal bilatère semi-premier, alors R/a est un anneau de Goldie (à droite).

En particulier si $p \in Spec_FR$ alors R/p est un anneau premier de Goldie et l'enveloppe injective $E(R/p) \simeq I_p^n$ où I_p est un injectif indécomposable.

3) On peut construire les applications :

4) Si $\underline{a} \in C_F(R)$ est un idéal bilatère tel que R/\underline{a} est un anneausemi-premier, alors $\underline{a} = \bigcap_{p \in Ass} R/\underline{a}$ p. En particulier l'ensemble des idéaux premiers minimaux de $Spec_FR$ est fini.

 R est un anneau semi-premier et R_R est F-sans torsion. Comme R_R a la dimension de Goldie finie alors il existe les idéaux à droite $\left\{\begin{array}{c} a_i \\ i=1,2,\ldots,n \end{array}\right\}$ co-irréductibles tel que R_R est une extension essentielle de $\left(\begin{array}{c} a_i \\ \vdots \\ i=1 \end{array}\right)$. Donc

Ass
$$(\bigoplus_{i=1}^{n} \underline{a}_{i}) = \text{Ass } R_{R}$$
 (voir [16]).

Mais Ass $(\stackrel{n}{\bigoplus} a_i) = \stackrel{n}{\bigcup} Ass(\underline{a}_i)$.

Si Ass $\underline{a}_i = \left\{p_i\right\}$ alors Ass $R_R = \left\{p_1, p_2, \ldots, p_n\right\}$. Comme Ass $\underline{a}_i = \left\{p_i\right\}$ il existe un idéal à droite $\underline{a}_i \subset \underline{a}_i$, $\underline{a}_i \neq 0$ tel que $p_i = \text{Ann}(a_i)$. Si on note $I = \bigcap_{i=1}^m p_i$ on a $\underline{a}_i I = 0$ et par suite ($\sum_{i=1}^n a_i^*$)I = 0. Comme $\underline{a}_i = \sum_{i=1}^n \underline{a}_i^*$ est un idéal à droite essentiel dans R alors \underline{a}_i contient un élément régulier $s \in \underline{a}_i$ (l'anneau R est de Goldie à droite). Donc sI = 0 et par suite I = 0.

Si maintenant $Min_F(R)$ est l'ensemble de tous les idéaux minimaux de $Spec_F(R)$ alors $\underline{a} = \bigcap_{p \in Min_F(R)} p \in C_F(R)$ et R/\underline{a} est semi-premier. Donc $\underline{a} = \bigcap_{q \in Ass} \frac{q}{R/\underline{a}}$.

Nous notons Ass $R/\underline{a} = \{p_1, p_2, \dots, p_n\}$; Si $p \in Min_F(R)$ alors $p_1 p_2 \dots p_n \subset \underline{a} \subset p$ et par suite il existe un nombre naturel $1 \leq i \leq n$ tel que $p_i = p$ et donc $Min_F(R) \subseteq \{p_1, p_2, \dots, p_n\}$

Lemme 4.2. Soit F une Copologie additive à droite sur R. Si p \in Spec R est un idéal tel que R/p est un anneau de Goldie (à droite) alors p \in F ou p \in Spec $_F$ R.

<u>Démonstration</u>. Supposons que $p \notin Spec_F R$. Alors $t_F(R/p) = \underline{b}/p$ où \underline{b} est un idéal bilatère. Comme R/p est un anneau premier alors \underline{b}/p est un idéal essentiel et donc \underline{b}/p contient un élément régulier x dans l'anneau R/p. Donc Ann $x \in F$. D'autre part Ann x = p (x étant régulier) et par suite $p \in F$.

Théorème 4.3. Soit $p \in Spec R$ un idéal premier minimal. Si E(R/p) est $\sum -injectif$ alors E(R/p) est $\triangle -injectif$.

Démonstration. Soit $(\mathcal{T}_p,\mathcal{F}_p)$ la théorie de torsion co-engendrée de E(R/p) et F_p est la topologie additive associé à \mathcal{T}_p . Si I est un idéal bilatère tel que $I \in C_F$ (R), alors $I \subseteq p$. En effet il existe un morphisme non-nul $f: R/I \longrightarrow E(R/p)$; donc $Im\ f \cap R/p \subseteq R/p$ et $Im\ f \cap R/p \neq 0$. Si $I \not= p$, alors l'idéal bilatère $I+p/p \neq 0$ de R/p annule $Im\ f \cap R/p$, contradiction. D'ici on déduit que $Spec_F$ (R) = $\{p\}$

Soit $\mathcal{G}: \mathbb{R} \longrightarrow \mathbb{R}/p = \overline{\mathbb{R}}$ le morphisme canonique. L'ensemble $\mathcal{G}(\mathbb{F}_p) = \left\{ \mathbb{I}/p \ / \ \mathbb{I} \supseteq p, \mathbb{I} \in \mathbb{F}_p \right\}$ est une topologie additive sur l'anneau $\overline{\mathbb{R}}$. Soit $\mathbb{E}_{\overline{\mathbb{R}}}(\overline{\mathbb{R}})$ l'enveloppe injective de $\overline{\mathbb{R}}$ (dans la catégorie Mod $\overline{\mathbb{R}}$); alors $\mathbb{E}_{\overline{\mathbb{R}}}(\overline{\mathbb{R}}) = \left\{ x \in \mathbb{E}_{\mathbb{R}}(\mathbb{R}/p) \ / \ \underline{p}x = 0 \right\}$.

Si \overline{F}_p est la topologie additeve associé à la théorie de torsion co-engendrée de $\overline{E}_R(\overline{R})$ (dans Mod \overline{R}), alors on voit que $\overline{F}_p = \mathcal{P}(F_p)$. L'anneau \overline{R} étant un anneau premier de Goldie (voir lemme 4.1) alors si \mathbb{Q}_p est l'anneau classique de fractions (à droite) de R/p, nous avons $\mathbb{Q}_p = \overline{E}_R(\overline{R})$. Donc \overline{R} est \overline{F}_p -artinien. Si $\mathbb{M} \neq 0$ est F_p -sans torsion, alors Ass $\mathbb{M} \neq \emptyset$ (lemme 4.1) et donc Ass $\mathbb{M} = \left\{p\right\}$. Alors il existe un sous module $\mathbb{M}' \subseteq \mathbb{M}$, $\mathbb{M}' \neq 0$ tel que $p = \operatorname{Ann}_R(\mathbb{M}')$. Donc \mathbb{M}' est un R/p-module et de plus \mathbb{M}' est $\mathcal{P}(F_p)$ -sans torsion. \overline{R} étant \overline{F}_p -artinien alors \mathbb{M}' contient un \overline{R} -sous module $\mathbb{M}'' \neq 0$, \overline{F}_p -critique. Mais il est très facile de voir que \mathbb{M}'' est F_p -critique. Ensuite, appliquant le lemme 1.2 [13] on déduit que \mathbb{R} est F_p -artinien et donc $\mathbb{E}(R/p)$ est \mathcal{A} -injectif.

Corollaire 4.4. Soit R un anneau noethérien à droite. Si p est un idéal premier minimal de R alors E(R/p) est module Δ -injectif.

Proposition 4.5. Soient F une topologie additive sur R, tel que R est F-artinien (à droite). Alors :

- 1) $Spec_FR$ est un ensemble fini
- 2) Tout idéal $p \in \operatorname{Spec}_F R$ est un élément minimal dans l'ensemble $\operatorname{Spec}_F R$. De plus si R a la proprieté que pour tout $p \in \operatorname{Spec}_F R$, R/p est un anneau de Goldie, alors tout idéal $p \in \operatorname{Spec}_F (R)$ est un idéal premier minimal dans R.
- 3) L'application $\alpha: \operatorname{Spec}_F(\mathbb{R}) \longrightarrow \operatorname{Spec}(\operatorname{Mod} \mathbb{R}/\mathscr{T}_F)$ (voir lemme 4.1) est bijective.

Démonstration. Soit p,q \in Spec_R tel que p \subseteq q. Alors E(R/q) est Δ -injectif. Comme R/p est un anneau de Goldie alors $p \in C_F$ (R) (lemme 4.2). Par suite il existe un nombre naturel n tel que $O \longrightarrow R/p \longrightarrow E(R/q)^n$ d'où $\{p\} = Ass R/p \subseteq Ass(E(R/q)^n) = \{q\}$ et donc p = q.

D'après les lemmes 4.1 et 4.2 nous avons les affirmations 1) et 2).

Soit Q un injectif indécomposable F-sans torsion. Nous avons que Ass Q = $\left\{p\right\}$. Comme Q est Δ -injectif alors il existe un nombre naturel k tel que $0 \longrightarrow \mathbb{R}/p \longrightarrow \mathbb{Q}^k$ et donc $\mathbb{E}(\mathbb{R}/p) \subseteq \mathbb{Q}^k$. D'autre part $\mathbb{E}(\mathbb{R}/p) \simeq \mathbb{I}_p^n$ où \mathbb{I}_p est un injectif indécomposable et donc $\mathbb{I}_p \simeq \mathbb{Q}$. Par suite l'application $\boldsymbol{\alpha}$ est aussi surjective.

Corollaire 4.6. Si R est un anneau noethérien à droite , alors il existe une correspondance bijective entre l'ensemble des idéaux premiers minimaux de R et l'ensemble de types de modules Δ -injectifs indécomposables.

Corollaire 4.7. Soit Q un module \triangle -injectif. Alors il existe un nombre fini d'idéaux premiers p_1, p_2, \dots, p_n avec les proprietées suivantes :

- a) Ass $Q = \{p_1, p_2, \dots, p_n\}$ et $E(R/p_i) \simeq I_{p_i}^{n_i}$ où I_{p_i} est un injectif indécomposable $(1 \le i \le n)$.
- b) $Q = \bigoplus_{\alpha \in \Lambda} I_{\alpha}$ et tout injectif I_{α} ($\alpha \in \Lambda$) est isomorphe à un injectif de la famille $\left\{I_{p_1}, I_{p_2}, \dots, I_{p_n}\right\}$.

Remarque. Le corollaire 4.7 est plus fort que le théorème 8.6 de [6].

Théorème 4.8. Soit Q un R-module injectif. Si Q = $\bigoplus_{i \in I} Q_i$ où Q_i est Δ -injectif pour tout $i \in I$, alors Q est Δ -injectif.

Démonstration. D'après la proposition 5 [4] Q est $\sum -\text{injectif et donc } R \text{ est } F_Q-\text{noethérien. Il est clair que}$ nous pouvons supposer que Q_i sont injectifs indécomposables . Soit Ass $Q_i = \left\{p_i\right\}$ (i \in I). Q_i étant Δ -injectif, alors p_i est un idéal minimal dans $\operatorname{Spec}_{F_Q}(R)$ et $\operatorname{E}(R/p_i) \cong Q_i^{i}$ (proposition 4.5). On voit très facilement que p_i est un idéal minimal dans $\operatorname{Spec}_{F}(R)$. D'après le lemme 4.1 l'ensemble $\left\{p_i\right\}_{i \in I}$ est fini et donc la famille $\left\{Q_i\right\}_{i \in I}$ a un nombre fini d'injectifs non-isomorphes. Ensuite on applique le théorème 2.4.

QUELQUES OBSERVATIONS SUR LES IDÉAUX PREMIERS ASSOCIÉS À UN MODULE A*-PROJECTIF

Soient P_R un module projectif arbitraire et F_P la topologie additive associé à la théorie de torsion $(\mathcal{T}_P,\mathcal{F}_P)$ (voir § 3). Alors :

1) Si $p \in Spec R$, $p \in F_p$ ou p $Spec_F (R)$. En particulier

 $Spec_{F_p}(R) = \{ p \in Spec R / G(P) \neq p \}$

En effet si p $\notin C_{F_p}(R)$, soit \underline{b}/p le plus grand sous-module de R/p qui appartient à \mathcal{T}_p . L'idéal \underline{b} est bilatère et $p \subseteq \underline{b}$. Comme $(b/p) \mathcal{T}(P) = 0$, alors $\underline{b} \mathcal{T}(P) \subseteq p$ et par

suite $G(P) \subseteq p$. Donc $p \in F_p$.

- 2) Si P_R est C(P)-artinien, alors pour tout module $M_R \neq 0$. F_P -sans torsion, le socle so(M) est essentiel dans M. En effet, tout module F_P -sans torsion contient un sous-module F_P -critique. D'après le lemme 3.2 [11], tout module F_P -critique contient un sous-module simple.
- 3) Si P_R est \triangle^* -projectif alors pour tout $p \in Spec_{F_P}(R)$, p est minimal dans $Spec\ R$ et R/p est un anneau artinien simple. En effet d'après l'assertion l) et la proposition 4.5 on déduit que p est minimal dans $Spec\ R$. D'autre part, $p \in Spec_{F_P}(R)$ implique que R/p est F_p -sans torsion et donc $so(R/p) \neq C$. Alors il existe un module simple S, F_p -sans torsion, tel que p = Ann S. Comme $C_{F_p}(R)$ est un treillis artinien il existe un nombre fini d'éléments $x_1, x_2, \ldots, x_n \in S$ tels qu'on ait p = Ann $x_1 \cap \ldots \cap Ann x_n$ et donc nous pouvons trouver un monomorphisme $C \longrightarrow R/p \longrightarrow S^n$. Donc R/p est un R-module semi-simple. Par suite R/p est un anneau simple.
- 4) Soit P_R un module \triangle^* -projectif. Nous notons par $I = \bigcap_{\substack{p \in \text{Spec}_{F_P}(R)}} p \text{ et } I^{\omega} = \bigcap_{\substack{n \geq 0}} I^n \text{ . Alors } I^{\omega} \in C_{F_P}(R) \text{ et }$

En effet R/I est un R-module à droite semi-simple et F_p -sans torsion. Nous considerons la chaîne décroissante

 $I \supset I^2 \supset ... \supset I^n \supset I^{n+1} \supset ...$

On voit que I^n/I^{n+1} est R/I-module, donc I^n/I^{n+1} est R-module semi-simple et F_p -sans torsion pour tout $n \ge 0$. Comme $C_{F_p}(R)$ est un treillis artinien alors il existe un nombre naturel k tel que $I^i/I^{i+1} \in \mathcal{T}_F$ pour tout $i \ge k$ (voit le lemme 1.2 [1]). Mais I^i/I^{i+1} étant F_p -sans torsion alors $I^i/I^{i+1} = 0$ pour tout $i \ge k$. Donc $I^k = I^{k+1} = \dots$ et par suite $I^{co} = I^k$. Comme I^i/I^{i+1} est F_p -sans torsion et semi-simple pour tout $i \ge 0$, alors nous I^i/I^{i+1}

avons aussi que R/I est F_p -sans torsion. Puisque R est F_p -artinien alors pour tout $i \ge 0$, I^i/I^{i+1} est un R-module F_p -artinien, d'où on déduit que I^i/I^{i+1} ($i \ge 0$) est un module semi-simple de longueur finie. Donc R/I est un anneau artinien à droite.

5) Soit P_R un module A*-projectif. Si R a un seul idéal premier minimal ou R a la propriété qu'il existe un seul type de module simple (par exepmle quand R est local) alors R est artinien à droite.

Si p est le seul idéal premier minimal alors $\operatorname{Spec}_{F_p}(R) = \{p\}$ et donc $p \subseteq J(R)$ où J(R) est le radical de Jacobson. Comme R/p est un anneau simple alors p = J(R). D'autre part $\mathcal{T}(P) \not= p$ et donc $p + \mathcal{T}(P) = J(R) + \mathcal{T}(P) = R$ d'où nous obtenons que $R = \mathcal{T}(P)$, c'est-à-dire P_R est un génerateur pour la catégorie Mod R. D'ici on déduit que $F_p = 0$ et donc tout idéal à droite est un élément du treillis $C_{F_p}(R)$. Donc R est artinien à droite. Dans le cas que R a un seul type de module simple S alors $\operatorname{Spec}_{F_p}(R) = \{p\}$ où $p = J(R) = \operatorname{Ann} S$. Ensuite nous trouvons que $\mathcal{T}(P) = R$ et donc R est un anneau artinien à droite.

Université de Bucarest

Faculté de Mathématique

est un treillis ertinien elors il existe un nombre neutrel k

BIBLIOGRAPHIE

- 1. T.ALBU and C.NASTASESCU, "Décompositions primaires dans les catégories de Grothendieck commutativesI", Journal für die Reine und Angew.Math.280(1976),172-194.
- 2, T.ALBU and C.NASTASESCU, "Décompositions primaires dans les catégories de Grothendieck commutatives II", Journal für die Reine und Angew.Math, 282(1976), 172-185.
- 3. J.E.BJORK, "Conditions which imply that subrings of semi-primary rings are semi-primary", J. of Algebra vol.19(1971) pag. 384-395.
- A.CAILLEAU, "Une caracterisation des modules ∑-injectifs",
 C.R.Acad.Sci.Paris,269(1969),997-999.
- 5. C.FAITH, "Algebra II Ring Theory", Springer Verlag, 1976.
- 6. C.FAITH, "Injective modules over Levitzki Rings", (a paraître Lecture Notes, Springer Verlag)
- 7. P.GABRIEL, "Des catégories abéliennes", Bull.Soc.Math.France, 90 (1962), 323-448.
- 8. M.HARADA and T.ISHII, "On endomorphism rings of Noetherien quasi-injective modules", Osaka J.Math.9(1972), 217-223.
- 9. R.E.JOHNSON and E.T.WONG, "Quasi-injective modules and irreducible rings", J.Lond.Math.Soc.36 (1971), 260-268.
- 10. C.NASTASESCU, "La structure des modules par rapport à une topologie additive", Tôhoku Math.J, 26(1974), 173-201.
- 11. C.NASTASESCU, "Conditions de finitude pour les modules", Rev. Roum. Math. Pures et Appl., tome XXIV, Nr.5(1979), 745-758.
- 12. C.NASTASESCU, and N.POPESCU, "Anneaux semi-artiniens", Bull.Soc.
 Math.France, 96 (1968), 357-368.
- 13. C.NASTASESCU, "Modules injectifs de type fini par rapport à une topologie additive" (à paraître).
- 14. C.NASTASESCU, "Décomposition tertiaire et primaire dans un anneau", Bull.Math.Soc.Sci.Roumanie, Tome 18(66), nr.3-4 (1974), 339-354.

15. BO STENSTROM, "Rings of Quotients", Springer Verlag (1975).

16. M.TEPLY and R.MILLER, "The descending chain condition relative to a torsion theory", (preprint).

2. T.ALBU and U.MASTASBSCU. "Decompositions primaires dans les catégories de Grotnendieck commutatives II", Journal

. The nette and sugar wath, 202(1976), 172-185.

(1701)01.10v erdegla 'o. L. "vramirq-imes ere sanir

66,384-395

J, "Une caracterisation des modules Z -injectifs",

Lecture Notes Spring and Jan Jan Persiste

e categories acellennes", Bull. soc. Matn. rrance, 9

atomit, "On engomorphism range of Woetharien

ALCTACTIONS OF DATE OF THE STATE OF THE STAT

and addition "Quasi-injective modules and

60-268.

suu á trocquar rac escubem esb crusourte al"

topologie additive", Tônoku Math.J, 26(1974), 173-201.

11. C.WASTASSSOU, "Conditions de finitude pour les modules", Rev.

(6/61)C. Infarty amontardia as agratemental

sav_rer (sac'i) ac ascart di

a lodden ded init edda en e mangeme dermon

"Decomposition tertisire et primaire dans un

noneaut, Bull. Math. Sec. Soi. Moumanie, Tome 18(6)

or.3-4 (1974),339-354.