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DUALIZING DIVISOES OF TWO-DLMENSIONAL SINGULARITIES

Lucian Badescu

Introduction

This paper is a continuation of our previous paper [}], from which we shall
borrow in general the terminologY.-We shall fix a normal nqn—regular two—dimen—
sional 1ocai ring R essentially of finite type over an algebraically closed field
k of arbitrary characteristic throughout, Let f:X ——>7Y = Speo(Y) be #he mi-
nimal desingularization of R, E the reduced exceptional fibre of f (i.e., the fi-

¥ = 2
re of £ over the closed point of Y), U= X-B and W = (2 Our aim is to

X x/k*

study the m-dualizing divisor of R, where m »1 is a fixed integer. This divisor,
denoted by Dm’ is by definition the smallest effective divisor A on X with
support in E such that for every ¢ € r(u,wi) one has (70) + A 2 o, where (70)

stands for the divisor on X associated to 79 o Of particular interest is the

divisor D = Qi, called ginply the dualizing divisor of R, which coincides with

the Gorenstein divisor of R if R is Gorenstein (see [3]), and with the minimally

elliptic cycle of E if the geometric genus of R is one (see [8] for the defini-
tion of the minimally elliptic cycle of R).

The paper has three sections; The first one contains a list of the known de—
finitions and results which will be used later. Section 2 deals with some gene-
- ral properties of the m-dualizing divisors of R,'the key result being theorem

2.7). In the last section we apply this theory to elliptic singularities,
y :



§1. Preliminaries

(1.1) Let f£:X——>Y = Spec(R) be an arbitrery desingulerization of R, whe-

'

re R is a8 in the introduction, Denote by E the reduced fibre of f over the

closed point y of Y, of irreducible components Ei""’En’ and by U= X-E=T Y - y.

By the theorem of connectedness of Zariski (see EGA III (4.3.1)) E is a comnec-
ted curve, and by a result proved in [10] the intersection matrix ”(Ei'Ej)”
is negative definite.

(1.2) The fundamental cycle of E (or of f) is the smallest divisor Z Do

with support in E such that (Z.Ei)§:o ¥iald,..oyn (ses [2]). Z can be calcu-

lated by the help of a computation sequence (see [7]), which is a sequence

(esr) B 05 G om B e E - omeZe e B .
o 51 3t + TS :
1 = J J+1

where Eii is arbitrary and (Zj'Eij 1)>o if 32‘1-; Because the matrix "(Ei'Ej)“
is negative definite. this sequence+must terminate, say at ZS, and then Z = Zs
is Jjust the fundamental cycle of E (see [7]).

(1.3) A desingulerization f:X— =Y = Spec(R) is said to Do Dintmel it

E does not contain any exceptional curve of the first kind as component, Such

a desingularization exists and is unique up to an isomorphism,

(1.4) The Grt b genus pa(R) of R is by definition (see [?1])
pa(a) = BUp {pa(A) / A>o and Supp(A)g_E} G

where p&(A) = 1/2.(A+k.A) +4 = 4-_/4%) is the arithmetic génus of A (x
being a cancnical divisor of X). One knows that pa(R) is independent of the
desingularization (mee [ii]), The geometric genus pg(R) of R is by definition
dim Hd(OX) and it is aléo independent of the desingularization, In general we

have the inequality pa(R)-Q'pg(R), Ve say with Artin [2] that R has a rational
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singularity if pg(R) = 0, The condition " pa(R) » 0 " also characterizes ra-
tional singularities (see [2]). We say with Wagreich fli] that R has an ellip-

tic singularity if p&(R) wd,

(1.5) Theorem, ([3]) Let £:X———>¥ be the minimal desingularization of

R. Then R is Gorenstein if and only if one of the following conditions holds:

i) R has a rational double sineularity.

ii) There exists & divisor D>o with Supp(D) = B whode dualizing sheaf

( [,’ 4 2 h' 0 )

Moreover, if ii) holds, the divisor D (refered in the secuel &s the Goren—

stein divisor of R) with the above property is uaique, D> 2 {(Z beinz the fun-

damental cycle of §), pg(R) = dim HO(OD) and. CUE'Z Ox(—D)._
If R has a rationasl double singularity then the Gorenstein divisor of R is

zero by convention,

(1.6) Thoorem..([3]) If £:X———>Y is an erbitrery desincularization of R,

then for every invertible Oxnmodule M there is é canonical exact sequence
y res ; 4, -1 : 4
(1.6.1) o—>[{X M) ———>[(UH)——> K (4 @@x) —> H (M),

where H'(.)' denotes the dusl of the k-vector space H'(,).

(1.7) Yanishing theorem of Laufer-Remanujan, (see [3]) If f:X———>Y is

desingularization of R and L an invertible 0 -module such that (L.Ei)za (o%k"Ei)

Vi = {,oao,n’ then Hd(IJ) = Qe
(1.8) Consider the numericel invariants of R (introduced in the complex-

analytic case by Kn®ller in [6]):

%)

the condition % Supp(D) = B " ié omited, The proof of the corrected version of

In [BJthe condition il) in theorem (4;2) is incorrectly stated because

theorem (4.2) is in fact exactly the proof given in [3 . 411 the other results

from [}J which are corollaries of theorem (4.2) remain unaffected,
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r (B) = din r<u,wj;)/r(x,w§), ¥Yn>d.

It turns out that r (R) is independent of the desingularization for every m21
m

(see [3_]), and by (1.6) r, (R) coincidea with the geometric genus of R. These ;{

numerical invariants can be computed vias

" (1.9) Proposition, ([3]) Let £:X——>Y be the minimal desingularization

m _ : e 1,, -0
of R, Then (wx“EiDQ Vi=4,0.04n, Hi(CUX) = 0 and r (R) = din B (wx )

for every m24.

(1.10) Definition., (Laufer [6]) & divisor E' >o with support in E is mini-

mally elliptic if /’n(om) = 0 and ]é(OA)> o for every /A such that o< AKE',

(In other words, pa(E') =0 and pa(A )< o for every A such that o<A<CE',)

(1.11) Theorem~definition, (Laufer [6]) R ‘has a minimally elliptic singula-

rity if the minimal desingularizetion f1X———>Y of R satisfies one of the

following equivalent conditions:

a) The fundamental cycle Z of f is a minimally elliptic divisor,

b) (ZeEi) 5 e (wX-Ei) -Vi = 4’eoo,no

‘c) ]ﬁ(QZ) = 0 and any proper subveriety of Z is the Aexceptional set for a

rational singularity.

(1.12) Pproposition, (Laufer fBJ) Adssume that R has an elliptic sing;ulaiity

and let f:X~———>7 be the minimal desingularization of R. Then there exists a

unique minimally elliptic divisor E' on X. B' is the smallest divisor F>o with

support in B such that j(_(OF) = 0, There exists a computation sequence (1,2,1)°

- for the fundamental cycle Z of E such that E' = Zt for a suitable 1Lt< s (ané.

in particuler, E'€ %), Finally, (E',Ei) - = (C/J’X.Ei) for every i such that
E, C Supp(E').
Although Lauvfer works in [8_] over the complex field ‘f«, his proofs of (1.11)

and (1.12) remain valid in arbitrary charscteristic.



§2. Dualizing divisors

(2.1) In the situation of (1,1) (with £:X————>Y an arbitrary desingula~
rization of Ri, let L be an arbitrary OX-module and /A an effective divisor on
X with supp_ort in BE. Then the map 8 ~—> s/u defines an isomorphism between
L®OX(A)/U end 1L/U, where séf(V,L@OX(A)) - (v<U) and uél—(X,Ox(A)) is a
_section of oX(A) such that the divisor of w, denoted by (u), coincides with Aa
Applying (1.6) to M = L®OX(A) aend taking int.o account of the above identifi-
cation we get the exact sequence: &

&, A
(2.1-.1) o-————->f()§,L®OX(A))»————'—~—> Fus) se—3a
S Bi(x,ox(—A)®L"4® wx)' —_— 34(x,ong)®L).

Note that

(2:952) Im(d’L,A) = {s er(u,L)-fof / (8) + A >» 'og U $o¢,
where as above (8) stands for the divisor of & over X, We are interested in
studying the divisors A > o with support in E such that the (injective) map
0(,L’A be an isomorphism. Denote by FL the set of all such divisors,

From the exact sequence (2.1.1) we see that A€ R, if H4(Ox(—A)® L-1® Cu—x) =
= 0, Theorem (1,7) says that one has this vanigshing if

f2sd.3) _ ~(A.Ei)>/ (L.Ei) ¥1i =4 yeeesne

pivisors [\ satisfying (2.1.3) do exist. In fact, denéte by d =
= det ![(El.Ea)” and choose n positive'integers dygeeerd such that. di> (L'Ei)
and d divides di Ma w4 ey s Thensby Craﬁer"s rule there is a unique A\ with .
supp(A)CE such thet - (A'Ei) = di > (L.Ei) Y¥i = 1,...4n. Since di> 0 Mi=
- 1y00.yn, an easy argunent of [2:( shows ’;hat A>o (and in fact Supp(A) = E).

In other words we have shown that FD is a non-void set for every desingulariza-~

tion £ and for every invertible Ox—module i



By (2.1.2) the surjectivity of the map OCL A is equiv&lerit with saying that

every s€ [ (U,L) {o} has & pole on E of order at most I' ,if A has the form

Z,rE

(2.‘2) Lemma, Thére exists a divisor DL such that for every other divisor

.A€FL we have DL< A ]

Proof. " It is sufficient to show thet if A, = 2; vy By de '1 y2, &Te two
divisors in P then, @enoting by A= Z mln(r,lj,rzj)- Ej’ for every non-zero
section séf(U,L.)k one has (s) + A > P o,Bufh this inequality is an obvious conse-
guence of the following ones: (s) + A1>,o and (s) + A > o. QeE.Ds

: (2.3) Definition, Let fiX=————>7Y be the minimal desingularization of
R. For every m'}'v'{ the divisor Dw"‘ s denoted simply Dm, is called the .m—duali—-

X
zing divisor of R, If m = 1 we shall write D instead of Dys and the divisor D

" will be refered as the dualizing divisor of R (instead of the 4-dualizing divi-

sor of R).

(2.4) Proposition, A4ssume that there exists & nowhere vanishino section

s€[(U,L). Then

- Lmln(order (s), 0)- E,.

t=1

- In particular, if R is Gorenstein and if f is minimal then D coincides with the

Gorenstein divisor of R (see (1.5)).

Proof, The hyvpothesvis implies that L/U % OX/U. Therefore [ (U,L) = f(U,Ox) =
Y R (R is normal) and & is a besis of i) as'.R-module. Hence for every
8'€ F(U,L)-{o} there is a function &€ R-{o} such that 8' = ol-s, Whence

(1) = () + (8) 7 () 4 @mi‘m(omc«mE (s), o)E, ,

s ‘ t=q i j
or else, DL'\< - Z min(ordE (8), o)'Ei. The opposite inequality is obvious
i=4 i

because Supp((z))CE.
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If R is Gorenstein and £ is minimal there is & nowhere vanishing 2-form
we F(u,afx), and by (1,9) we have ((UJ').Ei) = (%.Ei)yo Mmoo aan T
R has not a rational singulerity -.(w)g Z, where Z is the fundamental cycle
of B, and in particular, ordEi(aJ)<:o for every i ; { yessntie By the firat part

of the proposition D = —((J), and thus D is the Gorenstein divisor of R by (1.5).

QsEe Do

(2.5) Proposition, Assume that (L.Ei);? «k{x.Ei) for every i = 4y,4440,

-1
Then D=0 if and only if H‘(L ®wx) = 0, In particular, D = o if and only

if R has a rational singularity.

Proof. The hypothesis and (1.7) imply that Ei(L) = 0, and therefore the
exact sequence (2.1.1) (with A = o) becomes:
res L Ao
o —>» [ (X,L) ———[(U,L) ——> H (X,L @WX)' ——> 0,
o
Therefore DL = 0 is equivalent to Hi(L ®Cu“x) = 0, The last part of the
proposition follows taking L = W_.. Q.E.D.

X

(2.6) Proposition, A4ssume that R has not & rational singularity. Then

: : 1
= d .
pg(R) im B (0,)
Proof. The exact sequence
0 Q%i-~——~%-CUEQDOX(D)—--———%P 605-—~—$»o
yields the exact sequence of cohomology
o.-—-ﬂ'(x,wi)——-—>-l'(x,aJi®oX(D))—-——>r(D,w;))——-———>ﬂ (a&) = o (by (1.7)).
Hence applying duality on D we get:
din Hi(o ) = din [(®, W) = dim [(X, 0. ®0_(D))/T(X,0.),
D D X% X X
and récalling that D is the dualizing divisor, I'(.x,(,u;{®ox(1)))=r(v,wx) (via
the mep daﬁ:,[))’ and thgrefore we get: ' .
din rﬂ(oD) = din [(U, W)/ (x, W ).

The last dimension is precisely pg(R) by (1.8). Q. B D.



v

 (2,3) Theorem, = Let w > d be a positive int@geé. If £ =~———>7Y is the

minimal desingularization of R and_Dh is the m-—dualizing divisor of R,-thah

(1) (@ B) +nWB )P o Mi=d,...en.

Yoreover the inequalities (2.7.1) become .all egualities if end only if

OX(_D )'%(27;, and in this case we have either D = o and R has a rational
n A

m

~double singulerity, or elsesnmzyz, with Z the fundemental cycle of f, In parti-
cular

SR

(2.7.2) it (Dob ) 'i' \w L //\3 Vi 3'1 ,.,.,ng

- wWith equalities everywhere if and only if R-is Qorenstein, If R has not a ratio--

 nal singularity then pa(D)}zi,»and pa(B) =4 and Supp(d) = E if and only if R

.18 Gorenstein.

Proof, ¥Write D =';;~r 15 In order to prove . (2 7.1) one di»tinduishes
= By i
two casess
a) T, = o Then (J R, )7;0, and by (1.9) ( v.E )>o as well, Bence
‘(Dm'Ei)‘* m(CL&?LE):;>o _because my4,

) ri§>o‘” By the.defindition of D. there:isa.section sié§r(U,0f§) such

that
was
(s,) ‘,’ Z,:; T3yt By
{2, 7 309 7 Va =4dsecesn @nd T o=,

[Si effective divisor not containing any E, a@s component.
i

PThen we have

(0,08,) = =, () + > 7 (5,.5),
S

m(a};{'Ei) i ((si)'Ei) @« -rii(Ei) %I‘hl ‘EJ) 3+ (\'AN’?E_}))

and using relations (2.7.3) one sets:

- i e ﬁi(ﬁé 159 BgBg) P

T
It remains to see what heppens if all (2.7.1) become equalities, We distin.



guish algo two cases:

&') There is an index i such that r =0 Crdering the components of B
convenably, we may assume that rl = o if and only if i(t, where t is such that -
4y\<t\<n, Then Dm j%ir E;; with r > o for 1 2ts 4., For i<t we have gseen from
case &) that (Dm.Ei) - (OJX.Ei) = o, We claim that t = n, i,e, ‘D = o in this

" case, In fact if t< n then one component of Ei"'"’E s 88y Ei,' nust intersect

1
Supp(]) ) s E U ...UE (otherwise B should be not connected), and then (D i )>
>0, which is absurd, Hence % = n and thus (603(°E1) = o (t.e, pa(Ei) = 0 and
(Ei) » ~2) for every i = {444.90. In other words, if there is an index i such
that z &0 and one has equalities in all (2.7.41) then‘Dm = 0 and R has a\i;at'ib»\

nal double singularity (and hence R is Gorenstein),

b') 'ri> o forevery i » 4, ,,.51, Then for every i we can choose a section

siér(U, Cu‘i) satisfying (2.7.3). From (2.7.4) we see thét one has only equali-
ties i;z (2op.d)- 4L and only if rj @ rij for every j ¢ i such that Ein E,j #;6 aend
(Ai.Ei) = 0. In particular we can take Sj u‘ si for every Jj ¢ i such that
-EinEj #$ . since B is comnected it follows that 8, = 8 for every i and j.
Hence there is & section sér(U,w?;) such that
(s) = =D+ A

where.E[\Supp(A) = ;ﬁ. Since f is a proper morphism and R is a local ring we
infer thét N = o, Thus we get wz = OX(«Dm), and since (Dm‘Ei) = —m(%'”Ei)\(O
for every i (by (1.9)), we have also Dm.>/ 2

i‘f m =4 and R has not & rational singulerity (i.e. D>o by (2.5)) we haves:

p, (D). = 1/2. (%) +4/2. (@ D) +4 = 1/22 BB ) | 445 4

If moreover Supp(D) mBold e, p ;> o for every i w -y huegtt) then b (D) = 4 if

and only if one has only equalities in (2.7.1); that is if and only if R i=

Gorenstein by theorem (1.5) end the first part of this theorem. Q.E.D.
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(2.8) Corollary, Let f:X ———>Y he the minimal desincularization of R

and D the dualizine divisor of R, Assume that Do (i.e. R has not & rational

" asingulerity). Then 'p&(D) e« if and only if % 1 Oy and the number of con-

nected components of D does not excced the geometric genus of R if pa(I)) =

Proof, By the definition of a)i) it is clear that if 'ag’; OD then pa(D) =

| o o
= 4 (because ],(OD) = dim HO(OB) - dim Hi(oD) = dim H (oD) = di@ H (%) = 0),
According to the proof of theorem (2.7), the condition " pa(D) = 4 " means
that
(D"Ei) 5 (C()’X;,Ei) = 0 for every i such that Eig Supp (D).

Then f:c}u/(é:'[.}) and (2.7.4) we infer that rj = rij for every j # i such that
/

—

s Ejg_ Supp (D) and E.N Ej $¢, and that (Ai.Ei) = o, In particular, for
every connected component D' of D (such that ord.E (D') = ord, (p) ir Ei§

By i
Csupp(D')) we can take g, 8' for every i and j such that E, and E,j are

contained in the support of D', Thus we get
(8') = =D' + A" , with supp(A') A supp(d') = & .
> P { r— . ]
Therefore W, = (Cui{@OX(D'))@OD' e OX(A )®OD' = 0, since supp (A')
and Supp(D') have no common points, Since D' wag an arbitrary connected compo-

@

nent of D then we get LU]‘)?:’ OD
Assune now that pa(D) =4 3 we have seen that this means that CU’D?:’ OD.-, By
proposition (2.6) and d,;zalii;y on D we have p(f(R) = dim HO(C()‘D) = dim HO(OD). 1
&
t is 'thé nunber of connected components of D we have obviously 4 &£ dim HO(OD).
Q.E.D.
(2.9) By a characterization of the rational double singularities due to
Kn8ller [6] if k = C (and also [3] if k is erbitrary), R has a rational double
singularity if and only if rm(R) = o for every nmy{. This last condition may be

obviously expressed by saying thet Dm = 0 for every m»{, Therefore if R has

T T T TS PR R
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not & rational double singularity then Dm>>o for some m 2,

(2.10) Proposition. Assume that on the minimal desingularization £sX —>Y

.of R we ‘have wi = OX(-Dm) and Dm) o for aomra m>4, Then
r,(®) = 2 (R) = (0): (u-1)/2.

Proposition (2.1l0) is an extension ‘of corollery (4.7) of [3:(, where one as-—
gumgs m(;reover‘ that R is QGorenstein and hag8 not a rational sinéularity. Because
the proof of (2.lo) is an easy extension of the proof of this corollary, we shall
not give it, If k‘ = this formula results also from [5].

(evaa) Remarks, 1) Besides the situation where R is Qorenstein and has
not a rational singularity, the hypotheses of proposit‘ion (2.10) are also ful-

filled in the following two important cases:

1) R hes e rationel singularity of multiplicity >2. Indeed, if O is the

punctured spectrun of the completion of R with respect to its maximal ideal, then
A ; A
by [ 9] Pic(U) is & finite group and the canonical homomorphism Pic(U)—s Pic (D)
is injective. Thus Pic(U) is also finite and therefore CU’X/U haes a finite order
m (necessarily »{ because R is not Gorenstein by (1.5)). Hence there is a no-
where vanishing section séF(U,(,O;). By propositien (_2.4)-1}m = ~(s) (since f
1s miniual, ((s).E,) = m(wX.Ei)zo Vi =4,...5n and by [2[we can deduce that
-(8)2 z, with % the fundamental cycle of E), and hence OX(——Dm) ’é’w;,

lb) 'R does not have a rational double sincularity but k is the algebraic

closure of a finite field. Indeed, by [’IJ Pic(U) is then a torsion group, and
hence CU;{/U hag again a finite order in Pic(U).
. -
2) iz m and t two positive integers and write D = Z B end DY m
m =4 1 i mt

n
= 2  r'E.. If ©.> 0 there is & section sé['(U,(,U‘B) such thet
P et 1 X i

(8) = I‘lEl - %rSEJ 4+ A )

where r'!é e, fiord 4 1 and A>/o does not contain any component of E. Then we
J



< dpi,

get

(st) - -tr B, - > .tr"“ PN
g

and therefore (recalling the definition of Dmt) r;'z,tri. In perticular,
D ,
qntz; Dm

(2.12) Proposition, Assume that R is Gorenstein and has not a rational

sihgularity. Then for every m > 1 the homomorphism Pic(Dm+1)-———-9'Pic(Dm) in-

duced by the inclusion D C Dm 1 of subschemes of X, is an isomorphism, and the
m s 253

map Pic(X) ——>Pic(D) induced by the inclusion D X is injective.

Proof, The hypothesis implies that D> o, Supp(D) = E and Dm'n md (by (2.5)

and (2.4)). The stendard exact sequence

: wu 3% .¥—
o - > O =
o——-——>ox( mD)@OD oD 5 4
n44 m

(in which u is the map & nar—> {+a) yields the exact sequence of cohomologys

Hi(D,Ox(~mD)® oD)—-——> Pic(Dm+1)——-—>Pic(Dm)———-—-r Hz(D,OX(-mD)®OD) = 0,
_ Bow by (1.7) 50, (-uD)) = o because (-uD.5,) = u(Cy.8,) 2 (Wh.B) ¥i (the
first equality comes from theorem (2.7) and the‘inequality from'the fact that
f is minimal), From this we infer that Hi(D,OX(~mD)G§OD) = 0 because the natu-
ral homomorphism H4(OX(—mD))~—~*~“?-Hi(D,OX(~mD)QQOD) is surjective, Thus we
have proved the first part of the pfoposition,

Let L be an invertible qunodule sucﬁ that LD = LQ@OD is isomorphic to OD.
Then (L°Ei) = éeg(LD/Ei) = deg(OEi) = o for every i =9 ,.009n., The exact sequence

' 0—~—+2L6§Qx(~D)-———>'L ~—**%>LD'37OD-~—%>O
yields the exact.sequence of cohomology
F(x,1) 58 W) sy Hi(LQOO (-D)).

But (always via (1.7)) the last group is zero because (Lébo (aD) E, ) =

= (L.Li) - (D.B ) = ~(D.E ) = (CLr.g ) for every i =4 44040090, We get that the
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mep f(X,L)—v-———--?f'(D,OD) is surjective, and therefore there is a section
s€(X,1) whose restriction to D is 1. Consequently s(x) # o for every x €D,
and since Supp(D) = E, 8(x) # o for every x€X (f is a proper morphism and R a

»>Pic(D) is injective,

local ring), i.e. L & 0,. Therefore “the map Pic(X)
QeEo Do
(2.13) We now define a sequence {pm(R)} s of numerical invariants of
R by
. n m
p () = din [(U, W )/M(X,w, B0, (D)), ¥nrd
where we pub D0 = 0, and where f$X—>Y is the minimal desingularization of
R. For every m> 1 we have the inclusions
T, C M, Wi @, (0 NS (u,w)
e e o e »x
and thus

(2ad.1) pm(R) < rm(R) for every m»i.

Moreover pi(R) - ri(R) = p?’('ﬁ).

(2.14) Proposition, If fiX————> Y is8 the minimal desingulérization of
B then
a) p (R) = din Hi(x,u}"méoo @epis Bnpoay m >
m X X' "m-4 s

b) If R is Gorenstein then for every m>»4 pm(R) - pg(R)°

¢) R hes a rationel double singularity if and only if pm(R) = 0 for every

m>4.

proof. &) If in (2.1,1) we take L mw’; and  A=D_ we get the
exact sequence X
oe2=salix 00 O ))Hr(n,wm)’«——s’#(x wi™® o (-p
O X X X e
“1))”

1
We clain that H (x,ar‘;@ox(nm ,)) = 0. To prove this it will be sufficient

p—

1
4 n
== <x,w:®ox(nm
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by (1.7) to see that
m
wc i= eee »
(w, @0, (2 ).B) 7 (WyeB ) ¥i=dyeeyn

But this follows from theorem (2,7), and thus the above exact sequence proves

the assertion a),
b)) If R is Gorentein, by (1.,5) we have two possibilitiess

"~ R has & rationel double singularity, Then D*z = 0 for every m24, and hence
it

pm(R) - :r."m(R)~ ‘= o for every m>{; on the other hand pg(R) is aleo zero,

- R has not a rationsl singularity. Then by (2.4) and (2.5) D>o and

D = mD. Therefore for every m >4 'v»i'e have w; & OX(-mD), In this case b)
follows by applying the formula of a).
| ¢) We have élre&dy seen that 'pm(R) = 0 for every m>>4 if R has a ratio-
nal double singularity. Conversely, assume that pizz(R) = o for every m%»4, Since
pi(R) = pg(R) = 0, R has a rational singulerity. By remark 2wl 1) Pic(U)
is then finite and hence there is a positive integer s>4 such that w;/U = OU’
or else, (,L;r; 5 OX(—DS). By proposition (2.4) we get that D, = tD_ for everj
t 4.

Now, pm(R) = o for every m%»4{ means that the injective map

T (X090, (0, )) ——(v,w;)

2D

is an isomorphism, and recalling the definition of Dm, we get that =

M= 4

for every mzzi « Therefore Dpj} Dm for every p and m such that 1£P & me JIn

particular D8>/ DZa = 2})3, and since Ds>/o, we get _DS = 0, This means that‘

]

W

X 4 OX’ which implies that (afy.Ei) = 0 for every i = ’.I,...,n, or else,
£

. 2
pa(Ei) = 0 and (El) = -2 for every i = 4,...sn. In other words, R has a ra-

tional double singularity. QeLie D

i R T T
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§3. Applications to elliptic and minimally elliptic singularities

(3.1) Theorem, Assume thet R hes an elliptic singulerity, and let fiX— sV

be the minimal desincularization of R and D the dualizing divisor of R, Then

o & 0. Morcover, R is Gorenstein if and only if guop(D) = R,

Proof, Since R is elliptic (and hence not rational) D>o (by (2.5)), and
thus p&(]))éf{,’ By theorem (2,7) we have also p&(D)Z 4. The first part of the
theorem follows from corolla.rs" (2.8), and the second from the last part of °
Sheeicn e SGnn

" (3.2) Proposition. In the notations of (1.1) let ZO, ZyreresZ =L De &

6omputation sequence for the fundamental cycle Z of the desingularization

f1X———>Y of R (where R is es in the introduction). For a fixed index % such

that 4t s denote by Z2' = Zt’ and let I be an invertible Oz'mmodule such that

(L) 4 o and degE (LE) = 0 for every i such that Eig Supp(Z'), where we set
i 3 :

LA - L@OA for every A such that o{ AL 2!, Then L & OZ"
Proof, The exact sequence (4£j<t)

- - —_—

o ——>L &[0, ( 7/ zj+1)]-———> b L, ——> o
J+4 J

yields the exact sequence

(3.2.1) o -———é—{‘(L®[oX(~zj)/ox(-sz)]) Py el )

_ J+4 3
On the other hand, ox(-z 3)/Ox("zj+1) is an invertible oEi -module of de-
. Jq
gree —-(Ei .ZJ,), and aince deg(LE ) = 0o we get
4 i
o : s
.= a7 e oo .2 S
deg(LB[0, ( 2)/0,( 3+4)1) (8, .2)<0

J+d _
Hence [‘(L®[OX(~ZJ)/OX(-ZJ+4):() = o, and the exact sequence (3,2.1) becomes:

(3.2.2) S R o dorermmhdly il G3<H
J+4 )
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If a€[ (L) is a non-zero global section of L one deduces that the restric-
tion &, = a/z, ig again non-zero for every 4<Jj<t. In particular, a4 # o and
J g

since Z = E, is an integral curve and deg(LZ ) = 0, a{x) = ai(x) ¢ o for every

3 E e
xézi ii |
g3 @ 4+ E and (E. ,E, )> o we have §{ B and e 2)E *
Since Z2 Eii + i ( 1, 3,2) i # # sy $ 7

Taking into account that a(x) = ai(x) # o for every x& B, end t%at the set
{xgz_Z / az(x) & o} is cpen in Z,, it follows that a(x) = &a(x) ¢ o for every
xész Repeating this procedure we see by induction that a(x) # o for every
xéw,im.LQOW. ‘m&m

(3.3) Remark, If in the exact sequence (3.2,2) we teke L = OZ' one sees
by induction that HO(OZ|) = k, and in particular, HO(OZ) = k., If moreover R has
an elliptic singularity and E' is the minimally elliptic divisor on X (with
f:X——>Y the minimal desingularization of R), then by (1.12) there is a com-
putation sequence (1.2.1) such that E' = Zt for 2 suitable 1< t< s, ¥e deduce

“that .HQ(OE') = k, and since ]G(OE') = 0, we have also dim Hi(OE,) =4,

(3.4) Corollary, Assume that R has an elliptic singularity and let E' be

the minimally elliptic divisor on the minimal desinsularization X of R. Then

e L ,
Proof, By (1.12) (E’,Ei) + (CAJ}’(GEi) = o for every i such that B, C Supp(E' )
and Ef = Zt'for a suitable computation sequence (1,2..1). Since CU:E’ -
= Q)%@QX(E')Q 0, We get
‘5“”%_((%'@013.) = 0 for every i such that B C Supp(E').
i i :
By duality on BE' and the above remark we have dinm l—((/\)ﬁ') = dim Hi(OE,) =4

Now the conclusion follows applying proposition (3.2). Qe Be Do

(3,&3) Proposition, Assume that R has an elliptic singularity and let D

énd E' be the dualizing end minimally elliptic divisor of R respectively (on the




L7

minimal d.@sina:ularizatiori X of R), Then D>EB' and D hes e connected support,

Moreover the followine conditions are equivalent:
a) D= B',

b) Supp(D) = Supp(BE').

c) pg(R)m:'..'l..-

Proof, By theorem (3.1) p&(])) w4, or equivalently ]L(%) = 0, Therefore

applying (1.12) we get DY E'. Let now D™,..., D®

be the connected components
of D (such thaet for every i » 4,,..,t and E'gsuﬁp(b“") ord (D(L)) = ord_ (D)).
4 Gl i

Then wD(L)': 0 ¢y and hence jC(ODm) = o, Again by (1.12) we get that for every 2,

b
D(L)>/ E', end hence necessarily t = {,
By theorem (2.7), theorem (3.1) and proposition (1.12) we have:

(D'Ei) ® (E'.Ei) - -'(wx'Ei)' for every i guch that T C supp(E’

i@ ).

Taking into account- that ”(E1°Ej>H is negative definite we deduce that

a) &> b).

&) ——>c¢). By remark (3.3) dim Hi(OE,) = 4, Since D = E' this implica-

tion follows froa proposition (2.6).

¢) =—=—> &). The exact sequence
0—> Ox(-oE' J— - Ve e
yields the exact sequence of cohomology
“EO(OX),/—?#——»EQ(OE, ) 31(0}((«@' )) ——> Hl(ox)'-—'-—-s,»ﬁi(om, y——> 0.

Since HO(OE,) = k (cf, the proof of (3.4) and remark (3.3)) the map u is
surjective, and since we have also diz'n Hi(o#‘) = din HA(OE') =4, we‘get
Hi(OX(--E')) = 0, Then the exact sequence (2.1.1) (with L = Wy, end A= B')
shows that the n@tural nmap f—(}l,a&@o}{(ﬁ'))———‘“"r(m%) is an iﬁzomérphissm.
In o%:her tvoﬁr:da E'€F,, , and récalling the definition of D we get that E' 2D,

X
and finelly D = E' by the firat part of the proposition, Qo Ea Do

Medt 63D
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(3.6) Corollery., Let £f:X———>Y ba the mininel desinzilarization of R,

and Z the fundamental cycle of R, The following cconditions are egquivalents

&) R has 8 minimally elliptic singularity,

b) R is Qorenstein and its Gorenstein divisor coincides to Z,.

©) R is Gorenstein and pg(R) -,

Proof, a)=->>b), This iﬁplication follows from (3.4), the fact that
E' = % end theoren (1.5),

b) =—=>c¢). By theoren (1.5) snd remark (3.3) pg(R) s HO(OZ) =g

.o)::::::§>&). Let D be the Gorenstein divisor of R. By proposition (2.4)
D coincides to the dualizing divisor of R, end D > 2, Since pg(R) =4{, propo-
sition (3.5) shows that D = E', But B'< 2 by proposition (1.12); Thus E' = 2,
that is R has a minimally elliptic singulerity (see (1.11))., Q.E.D.

(3.7) HMote. The equivalence between cémditions a) and ¢) of corollary
(3.6) is & result due to Leufer if k = C (see [8]). Laufer's proof makes use

of some enalytic arguments at some points,
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