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The Addition of Local (perators on Product

Sgaces

by

L,Stoica

" The study of a product space is a classical theme in

‘potential theory. While the early papers [ 4], [8] studv functions
¢ |

on the product space which are relatéd to the.siructures'of the <
terms_of,the proeduck, thé present paper following the idea of thef
.prbbabilistic work [31 constructs‘é structure on the product spe-.e
.aﬁd studies this structure. Namely we construct local operators
. which fﬁlfil the requirements from [13] on a pfoduct space., This
subject is a particular aspect from the recent proéram‘of N.Boboc
.which asks for the construction of the notion of product inhéoten"
tial theery. ' ,
. In section 2 we ,consider two locél operators ﬁl, Lz on

locally compact spaces X ¥, which posses¢hases of regular sets,

et
1. .2 ; :
Then we construct the sum L +L” on X, x ¥, and prove that the
1 2
> : i s DL '
product of two regular sets is regular for L +L".
In section 3 we prove a similar result for the sum of a
series of local operators on the product of a sequence of compact
spaces.

Section 4 considers a local operator L and constructs the

operator L-d/dt. A similar -construction within a different frane

was:-made in: [113.



In secticn 5 we are interested in 'those local' operators
which yield Bauer spaces and in properties which imply that the
sum of two such local operators also/yields a Bauer space.

Section 6 shows that the sum of a series of local operators
preserves this properties under éuitable conditions. This result.
extends to compact spaces the resglt of C.Beryg, although more
precise, which constructsa Brelot space on the infinite dimensional
torus [1]. It should be also noted that hdrmonic spaces in the
sensé‘of Constantinescu and Cornea are constructed on product
spaces by E.Popa and V.Schirmeier,

All terminology and notation which is not specifically

.explained here will be that of [137.



l, A simnple lemma

Let X be a locally compact space with a countable base and
L a local operator on X. Suppose that L is locally dissipative and

" locally closed.

l.1. Lemma

Let U be a relatively compact open set Such«that o U#£D
and {

12 for any xe)U there exists a finite family
“{?1'°" V}JcI)CU,L) such that y .>0, L*&(fl,(i=l,...k and
im (inf f&(y))=0,
y-v-X i\< k
veU

: 2° there existsype D(U,L) such that LV<~1,y}.O and H%Hsiuoj

3° the spaces DO(U) and LDO(U) are dense in %;(U), where
(dad) DO(U)={f€§;(U)UD(U,L)/Lfe%;(U)}.
Then U is P-regular,

Proof.

First we are going to pruve the following property:

(f-2) if-{fn/neN} is a sequence in DO(U) such that Lfn-€>0

uniformly on each compact subset of U and sup iiLfr}meo, then
n

fn‘“-é*O uniformly.

Let ¢>0. We choose a finite family {?i""'Y}%C D(11,L) such
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that fi>o, LT3<-1' i=l,...,k and the set K=17~(?12€} is compacf.
ik

If f§Do(U)' \LEl € on K and RLENE 1, then from [13] 1.4 we-deduce

sup (f-&p)gmax (0,sup (£-£€¢)),

ﬁ 9K

because Lf-&Ly&O on K. Hence

sup f$emﬂ +max (0,sup ).
2 E

On the other hand L(f—Yi)>0 implies f@Yi, i=l,...,k, and hence

sup £¢é, which leads to Lol i _ |

UK
IEIL € (ll +1) .
(1.2} results from this inequality.
Let now fé%L(U). Condition 3% allowsus to choose a seguence
0 1 .
L {Yn[néN}CDO(U) such that sup || Ly |[<ee and Ly —> £ uniformly on

n
the conpact a_ Next we assert.that{?n\is a Cauchy'éequence in EO(U).
ubsets of U :
If it is not, we have a 4§ » 0 and a subsequence Ofn /keN} such
' k

Py f”k+1{/ - fry oy

uniformly ongcompact |and this contradicts  (1:2) . "Wesconclude: that

?n*—a u uniformly, ue%L(U)nD(U,L))and Lu=f. This proves the lemma.

V2 Corollarx

Let us suppose that the family of all P- and .D-regular

sets forms a-base of X. If U,V are two P-regular sets then UNV is

P-regular too,



Proof

Conditions 1° and 2° from the lemma are chvicusly

fulfilled. In order to check condition 3° one ﬁses Eraeeatn.

2, The sum of two local operators

Let X1 X2 be locally compact spaces with countable bases

and let L be)locally dissipative local operator on Y such that
(>3

the family of P~and D-regular sets is a base of Yl y i=1,2, We

denote by X= X XX if UeX and xeX,, yeX, then we put

24 1 2
Ux={zeX2/(x,z)€U}, Uy={zexl/(z,y)éU}, if £ is a function on U, then
fx=f(x,.) is defined on U, and similarly fy=f(.,y) is defined on Uy’
We define a local operator on Xy L=L(L1,L2), as follows: if T is '

an open set in X, then D(U,L) is the family of all functions £e€(v)

such that:

o
: f 7 5
17 for any. xéx }fTMIX,I

l 14 2)
(o]
2 for any yeX, o fy&D(Uy',Ll)
3° L£€¥(U) where Lf(x,y)=I;lfy(x)+L2fX(y), (x,v)e U.

L is cbvicusly locally dissipative.vlf Ui is an Opén sSet

in X and £6&D(U;,L), i=1,2, then £ @f €D(U, X MyeL) and

L(f.(D.t )= 1(:)£ +£ C)L2 o+ Thus one can prove the property

from [13] 1.6:

soun

(2:1) (¥) xe&X, (¥) V neighbourhood of %, (3) U open, x¢U, TcV;

(3) gef {(U)AD(U,L) such that g{x)) 0 and | Lgj«ee .



Then T the local closure of I exists, is locally dissipative

1+L2=f; Next we are going to prove

that'the family of P-and D-regular sets in a base of X .

and locally closed. We denote by L

2%1. Proposition

Let Ui be a P-regular set in Xi such that there exists
: Exics ; LY. i=1,2, 1=0 X1 =i i
‘?ieD(Ul’Ll)' Pi%ls Il‘fl\<0, 121,27 "THen “U rjlx Helsan egular (with

respect to L +L2).

1

Proof

il § . U
We are going to apply 1l.1l. Thus we remark that ?16:)6 ey
fulfils the requirements ofimlaly, 20. Coﬂdition sles 1o may be .
. u U ‘
1l

2

checked using the functions yl‘x Gl nand G usl XZTZ' In the reminder

proof we are going to check 1.1, 30. First we introduce some notations
. U = : y i
‘We dencte by Gi=le. The Hille-Yosida theorem applied on the space

f;(ui) gives us a Co-class semigroup {Pt/t}O} such that

» 3 w .: k3 . ’
G;f S exp(*lt)?%dt, o B0 {Pi/t)OH extends also as sub-Markov
> : ,

semigyroup of kernels on Ui' The  product semigroup'Pt=Pi(:)Pi is the

natural tensor product of kernels, i.e., if (x,y)eU, then

Pﬁxry)zpix{g)piy is a product measure on U,. {Pt/t)o} is also a

Co”class semigroup on the space‘_‘c?o(l.?):*??o(ﬂl)@ %’O(Uz) . Now we remark

that G, = exp(~At)Ptdt,K> 0 define a family of kernels on U and

o8

i i
G I 6 1 @ 1. If £.€¥ (Uy), i=1,2; then



o]
o9
But SPildt-———» 0 (s=—=w) uniformly because S PlldtﬁGlﬂéf(rT).
g . ! e (Sl ol

- 1 2 \ ¥
glnce OS PtE, @Ptfzdtéi?o(rj) we deduce Go(f_l®f2)e%?o(ﬂ) JSEurther

; i
the relation uGO“fQHGQQH shows that G_ is a linear operator on‘go(ﬂ).

l 5 2 &
Now we remark that Go(fo(Ul))C)(%ﬁgg(ﬂz))CDo(U). Name ly

. L g . 1 i
+f f € = ) ! { =
L Ey %’O(Ui), fi=1 27 the Gof1®Gofz"D("'L) and L(Gofl@qofz) :

1 2 ; -
=G, £, @£, + £, ®G.L,. This shows that D_(1)=f, (7). Further we

‘need the following equalities:

: 1 . vl 2
(2.2) G (GF) B Gofy) (x)0%,) =65 (G, (£ @ GLE,) (yx,)) (xy) =

e

2 1 : g : ol
=GO(GO(GO£1(:)f2)(Xl"))(XZ)' fié%%(ui)’ xieUilvl—lpzl

1 2r- =2 l . 2 ; o
(2,.3) Gf, @ G E,=G (G f, @ f+f, @ GIE,), fi.é‘eo(r*i), 1=1,2,

The first results by strightforward computations. The second
equality results from
e 2 T g 2
B = £ sl
OSo (Psfl)(Ptfz)dsdt § (OS (PuLl)_(Ptf2)C..udt+

7 § (g (P £ ) (PLE,)du)ds.

. 1: 2
From (2.2) and (2.3) we deduce L(GO(GoflC)C%fz))n

-

| 2 1 2 :
e v & \ ) { 'jr 1 v}
(;Ofl ® Gofz , and hence Go,%’o(t l)) ® Gc((‘f’o(Uz))‘:TDO(T ).

LDO(Uf=Eg(U). The operator L,+L., being an extention of L we.conclude-
: &

2
that 1.1, 3° is fulfilled and U is P-regular,



If the set U, satisfies ﬁfcvi for some P-regular set, V, ,-
V. .
then'Yi=uG 11 fulfils fi}l on Ui for suitable et . Then we  deduce

that the sets U=U1xU which fulfil the requirements from 1.2 form

2

a base of X. Hence L1+L2 has a base of P-regular sets o# (equiva-

lently on account of 1.8, 4% [13]) it has a base of P-and D-regular

sets.

Now let Xl,XZ,X3 be three locally compact spaces with

countable bases. Let Li be a locally dissipative local operator on
Xi such that the family of P-and D-regular sets is a base of Yi .

1=3.2,3.; On XlxXZXX3 we define a local operator, LO, as follows:

if U istan open set in X, X XZ X Y3 then D(U,Lo) is the family of

all functions fe%ﬁU) such that for each x=(x1.x2,x3)éu,

a) f(xilx_)éD(U » L) for ifjfk#d, i,j,ke{l,z,;},

3 (xi,xji

b) LOfGERU), where Lof(xl,xz,x3)=L )(X2

(x )+L_ £ .
3) 1 2 (xl,x

lf( piq
Xy % 3

+L3f(xl,xz)(x3).‘

L® is locally dissipative and fulfils (2.1). Hence its

~d
local closure L° exists. We also note that the proeiiof -2 .1 ‘may
: ~
be repeated here word ty word, and hence we deduce that Lo has a

base of P- and D-regular sets. On the other hand from L1+L2 and L3

; = i
we yget ancther local cperator IP xL(Ll+L2,L3) on (Xl X Yz)x X3

o Lo fo ~oo
gefined byl , 2 ; 3 . such that its local ‘closure, L  , 1is

e} e ors) :
easy to see that D(U,L”) D(u,L ") for each open

0

(L1+L2)+L3s e
e E o) o ~oo ~o :
set U and L extends L~ hence L extends Li .- If U s P~ regular
. :
or D-regular with respect to 1.° then it is alive with respect to
"~ ~

LOO and the kernels HU, GU associated to LO coincide with these



(>4

; co g 00, =
associated to L . If U is P- and D~regular amﬁVeFMV‘L Y, Uev

~oo0 : 15 o & a~ ~o. 00
L ?”<Nﬂ then G~ (~L_ )+ p=p. Hence?slﬁuulkg and Ly=L ¢.

Mo, MO0 . :
Further one:deduges L =L - . Thus we may put the notation

L= = ] i A > '-'!’ i :
L1+L2+L3 (L1+L2)+L3 Ll+(L2+13) and conclude that the addition of

local operators is well defined for each finite family,



3. The sum of a series of local operators

Let {Xi/iéN} be a sequence of compact spaces with countable
baseé and for each ieN let Li be a locally dissipative local operator
on Xi such that leD(Yi,Li), Lil=0 and the family of P- and D-regular
'sets on ¥, is a base. We know from [13] Corollary 3f3 that there |

exists a Markov semigroup of kernels {Pi/t)O& onlxi' which is also

'a.coéclass semigroup c¢f contractions on the Banach sﬁéce %NX&) whose
- infinitesimal generator has D(Xi,Ll) as domain and coincides with Lt
as linear operator on this last space. We denote by X=FT X,

; (6N 1 |
For J¢ N we put X(3)=.'I;T3 X5 If AcX, f£:A—>R and x¢ X(J) we put
t z : TN

A'X=’{ YEX(N\1)/(x,y)€Ay and £ :A —> R, £ (.)=f(x,.). If J is Fid be ]

s o - ( ) ieJ
We define a local operator L on X as f(_)]lOWS_: if 1 is an

open set UcX, then D(U,L) is the family of all s functions’ £ which

fulfil the following property:

: ' : ;
1  there exists .a finite set 9=9y(L)eN such that for each
pair (x,y)éU,'xéX(J), vEX(NNT), the function fy is constant on UX
and £ €D(U ,L(J)}). | ' |
y Ve 59
For a function £ and (x,y) as above we define
Lf(xly)=L(U)fy(X). L is locally dissdpetive and fulfils (2.1). Its
local closure L is locally dissipative and locally closed. We denote
e o : s ; ; 1 £
by = =L, The-next proposition implies that 2.1~ has a base of

teN 1€l
P- and D-regular sets.



el Proposdikion

Let J be a finite subset of N and U a P-regular set in
X(¥) (with respect to L(V)). Then UO=UxX(N\1) is P-regular {(with

-réspect toaeS iy
ieN

Proof

The proof is similar to that of 2.1, therefore we only
.sketch it. Let{ Pt/t)o} be the semigrbup_of kernels on U such that
_ f ; | v,
Gg g'exp(~zt)P*dt ,220. For a fixed finite set K¢N\T we define

pl= @(@p i G;{: { exp(-at)P{at, 230 and for iek put

/) ‘
o0 : : : 3 Sl i
Gi==5 exp(-)t)Pidt,))(L First we are going to prove that UK=UXX(K)

0t . | | ,/

» P

is ‘P-regular with respect to L(JUK). Since Gé=sup G; is not finito

A0 .

fdr iéK we have no equalities analogous to (2,2) and (2.3). There-
fore we éonsider A >0 and put« =%*/n where n is the nunber of elements
_ﬁrom K. Then for f*eZZ(U) and fiéf(xi), 1€EK we héVe.
*o @c; €D (U, L(JUK)) and L(IUK), 4=(5 T, o Zr,,( )qc%f’(
ieX 'seT A
Fof'IAIUK)A we have some,equalities similar to (2.2) and (2.3),

namely

(@wl) G (G ® 4‘6@?{% o1%’(:(("3')))63‘(1‘9&0(U) B e

»

i D¢l ik | i
_(Iz;’om) ®G¢,@If(X(K\{j})))GX(GO®If(yj) ®(® ciy,

téR

i



U i i U
€3, 2) .8 (@6, )=6 Ly i OEEIEPEEE @1, O
- - der™ " ATrIg 1€k gem s e

i
®(®G)).
ieK
173
G§g=—g and from 1.1 it resulEs'that U, is

)2 K

P-regulér;with respect to L(UUK)A, Just 1ike: in!the pEecE of 2:1.

One deduces L(JUK

vFurther one deduces that UR is P-regular with respect to L(JUK) by

using the result from [13].1.8, 2°.

Further one deduces that UO is P-regular relative to

S by‘applying 1,1 dgdin,.
ieN



= —————

4, The operator T-d/dt

Let X be a locally compact space with .a countable base
and L a locally dissipative, local operator such that the family
'of P- and D-regular sets with respect to L is a hase. In this sec~
tion we shall construct another local operator, l-=d/dt, on the
space X X R, which fulfils the same properties. It should be noted

that dn [T ch.IV a similar operator was constructed within a

different framework.

We denote by T=(0,11 the orus and consider 1t as a
dlfrerentlable manifold. On the space T x R we consider L., the
local closure of ) /ax ~d/dt. 1° is locally dissipative has a base

of P- and D-regular sets (see [ 13] section 6) -and is translation

invariant. The sum I+1° is alsc locally dissipative and has a hasef

of P- and D-regular sets. We shall use also the follow1ng properL/

1t U is an open set in X x T x R then
(4.1) fen(z U, L+L°) iff foz eD(U,1+L°) and

L+L°f=(L+LO(faKX))oz;x, for each xeT,

where 2 :X x T xeR=eX x T xR is defined by Z (z,; y,s)=(z Xty s )

4

Ve denotef} 2K Tix R-#X x R, the map defined by€¥(7 %, s)~(2,s)

Then a local operator dencted by L ‘is, oefwned on: XopiRy 4f UK xR
an open set, a function f belongs to D(U,L) i and cnly if
foGED(f;l(U)f, L+Lo) and if:g, where g'is the unique function in
%WU) such ‘thabs ,+Lo(fo&)=909— (the existence of g is a consequence

of,(4.i)).

i

is

c
o



4.1, Proposition

Let WeX be a P-regular set (with respect to L) and
heD(W,L) such that Lh=0, hyl on W and |lh|| <= , For'tOER we define

J ; ’
p:W x R — R, by p(x,t)=(t—to)G“l(z)—(t—to)zh(z), and put
U={(x,t) WxR/t>t_, p(x,t)>0}. Then U is P-regular with respect
i el ‘
ey
Proof

We have poefD(Egl(U),L+Loy\%;(€:l(U)) and L+Lo(p09)(z,x,t)=
g—G“l(Z)-(t—té)(1—2h(z))<0. Moreover for . each neighborhobd A of the

s compact set dWxTx{t } there exists a¢R,- & 0 such that BT (poek( a
on o Liuna. wow we may use 3.4, 2° [13] and get a kernel V on

i9~ (U) such that

erfo(ve-"l(u))/)D(énl(U),LJrLO); L+L0Vf=—f, 'for each

fégg(éfl(U)) provided supp £N(3W x T x{ t6§f$¢-

If fe%’ce- A0 nggl, ané supp f(](aw T {to})=¢ ,
‘then L+L Gfr—l< ~f=L+L VL and VE=0 on 39 Ll It follows
VE(z,x,5){Gl(2) for each (z,x,s)gQﬁl(U).

Further let'ﬁon/neN}C§;(W) be a éequence such that
O<? +I\ 1 and for any compaét set KCW there exists n¢N such that
p,=1 on K. If el " oy, 0¢£¢1, and myn, then.

ﬁV((fm o 5up{ v ( Tm E)(z,x,s)/(z,x,s)ég-l(n),‘?n(z)<l}'

¢ sup {6"1(2)/p ()1} —> 0 (n —>o00) .




1We deduce that V(fnf) —> VL uniformly and Vfégg(ézl(U)),,Hence

vofeo(eTl(U), 1+L°%) and I+LOVE=-f, Thus € " (U) is P-regular with
: 4-1(U) ;

respect to 1+L° and V=G » PurtheX . on: acecountief (4. 1),

straightforward computations show that U is P-regular with respect

e T s
to L and G~ satisfies
U
(4.2) (G £)oe=V(fo®) for each fe‘@b(u).

4.2, Corollarx

V : B
L has a base of P- and D-regular sets.
Proof s o 2 i

- Let xeX and -(Vn/neN} a sequence of D-regular neighbour—<

‘hoods which tends to {x}. The proof of 2,5 [ 13] shows that g

.V \%
H.nl(x)——yl. Thus: for:large n, H Py =h satisfies h)0 on a neigh-

bourhood of x. Then by 4.1 we can construct a base of sets similar
'éo ﬁ.

i Next we define ﬁ, anotﬁer local:operator on X x R: if U
is .an open set in X x R, then D(U,L) is the family of éll functions

£¢%(U) which fulfil

1° for each RE, gg@l(Ux)o

&9 .
2 for each s¢R, fseD(US,L7i

. N : | g ;
3O LEC¥(U) , whexe if(x,s)=LfS(x)—d/dtfx(s), Buis)e X% R,

Once again condition (2.1) is easy to check. We denote by IL-d/dt
" :
L

\ A v
the local closure of L. Obviously L extends L. Since L is locally



closed there results that it extends L-d/dt.

4,3. Proposition

v
L=L=d/dt
Proof

Let UcX be a P-regular set with respéct to L and let

[Pt/t>0} the semigroup of kernels on U such that
GA=§ exp(-kt)Ptdt, 2% 0. We define on U x R a semigroup

{Q£/t>0} by putting Qtf(x,s)=(Pt(f(f,s-t))(x), for each

fe%L(U %Ry HlJes Qt=Pt @)Pé , where {E%/t)O} is the left-trans-

o0 .
lation semigroup. Further G=S[ Qtdt g ta kexnel ¥fon 1} ‘xR and

el s V=G () s

Let fé&i(U) and ?eﬁl(R)O%;(R5. Then we'héve

G(GUE®Y ) (x,8)=6"(G(£ @p) (.,5)) (x) for (x,s)€U x R and

G(6"E @) (x,.)EQT(R), a/at 66" ©¢) (x,.)=6(G"E @ ") (x,.).
An equality analogous to (2.3) holds and it allows to deduce that

Glc e @¥ )eD(U x R,T) and LG(G'E @gp)=—GUf @y . On the other hand

. U
e
since [ %

1 —> 0 uniformlyiwhen t — o0 , one deduces that G(Guf'()w)
€ EO(U X R), Thus GfeD(U x R,L;-d/dt)ﬂ‘fo(ﬁ x R) and (L-d/dt)Gf=~£f

for each féﬁ;(U SR )
=R | uce . <
Let {aﬂn’} be a sequence in WO(U x R) such that O\<\fn\< YnJrl\ 1
and lim ’f =] on U x R, The relation Gl=1lim Gg implies that |
nses I 1 G p->c 0

G(l—?n)“"*'O uniformly on each compact subset of U x R, If



- 1'7 -

féE;(U X R) then G(f?n)~==%>' Gf uniformly on each compact subset

of U x R, which shows that GEeD(U x R, L-d/dt) and (L-d/dt)GE=—f,
: Next, for each open set V¢X x R we aenote by (V) =
={£eD(v,L)/¥£=0y. Then Corollary 4.2 and [13] 2.6 show that M=
=UK(V)/V open set} defines a quasiharmonic Space-on X xR, From

[12] 1.4 we deduce that Gf is a potential for each fe%;+(h % R,

wErem: Floliinie, 20 icufelieussthat Cla G(y_,,~P) is also a
_ neN n+l In

potential. Then [12] 2.8 shows that Gf=f-Gl for each féﬁ)(n R

‘ A4
. Finally we deduce that L=L-d/dt by using [1276.5,b).

(o 45T



5. Pauer Spaces and Strong Feller Semigroups

Let X be a locally compact space with a countable base
and L a local operator which is locally dissipativeband suppose
that the family of all P- and D-reguler sets is a base of X. We

denote by
W ={¥(v)={feD(U,L) /L £=0} /U open set}.

It is known [13] 2.6 that (X,¥) is a quasiharmonic space.

Now we recall that a kernel R on a locally compact space

T is said to be strong Feller if REEE(T) for each £eB(T).
: We say that L satisfies the property of "strong Feller
. resol§ents" if: (SFR) There exists a covering‘u. of P~regular’sets
'such that cY is strong Feller for each Ue¥. :
We say that L satisfies the property of "strong Feller
semigroups" if:
(SFS) There exists a covering WU of Pfregular.sets such -that if

vel and [Pi/f)O} is a semigroup of kernels on U which fulfils

oo
1 :
GE= S exp(—lt)Pgdt, for eacha 20, then each kernel P;, 0 is
0 .

strong Fellerx,
The following proposition is essentially known in a

stronger variant [6].

belie Broposition

The follcwing properties are equivalent:

1° 1 satisfies (SFR),

(o}

2 (X, W) is a Bauer space in the meaning of L5
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3° For each P-regular set, U, the kernels Gg,agolare

strong Feller,

- o

4~ The globhal resolvent {G,/2>0} constructed in fisleona

is strong Feller.

Proof

We prove only "1°=> 2°" pecause the reminder proof is
obvicus. The existence of a strong base of regular 'sets results
from 1.2. For each point x&X we have HUl(x)~**-1 Qhen U\ § X3, and
U is taken to be a D-regular neighbourhcod of x. This implies that
% is non-degenrate at x. Let now V be a P- and D-regular set such
that Vcu f&r some UEWU, Since GV=GU—HVGU ohe deduces that GV is '
strong Felier. Therefore each excessive function is lower semi-

continuous. One deduces the Eauer convergence property.

Next we are going to prove the main result of this section:

5.2. Theorem

The following properties are equivalent:

1° 1L satisfies (SFs) .
2° L-d/dt satisfies (SFR).
3O Tk de il locally compact space with a countable base

and L° is a locally dissipative local operator such that thé family
of all P- and D-regular sets is a base of ¥° and 1L° satisfies (SFR),
then L+LO satisfies (SFR) too.

42 1£ ¥%1 x R énd L° is the lccal closure of az/ax2“é/at
{as .in section 4), then L+LO satisfies (SFR),
50 If U is an open set, UcX, and {Pt/t)o} is a sub-

Markov semigroup of kernels which is also a (CO)—class semigroup
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of operators on a Banach space FC%;(U) whose infinitesimal generator,
A, has a domain, D(A), such that D(A)eD(U,L),A =L as linear opera-

tors on D(A), and €C#EUCD(A)=F, then P_ is strong Feller for each

t
£ 30,
In order to prove this theorem we need the following

lenmas.

5.3. Lemma

Let X be a locally compact space with a countahle bhase
and Vl' V2 two sub-Markov kernels on X which are strong Feller.

Then VlV? is a compact operator from i?h(x) into&f(x), i.e. the

family {Vlvzf/fe B(X), |£I€ 1} is equicontinuous.

Proof

As in [10] Lemma 9 we deduce that for each sequence
{fn/neNﬁc%i(X) with \fn\<l' neN, there'exists a subsequence

{ﬁn /keNYy  and féfBb(x) such that V

Iy =V
o k s '

ti{ %) for each xcX.,
k :

2 2

Let now gk:VZ(fnk—f)‘ Slnceé'igsggk/PeN}- is decreasing
7

to zero we have

Vl(sup gkY& O(f —= oo ) uniformly on each compact set.
kyp ’ ;

: j i o V. E
Analogous Vl(;?? gk)& 0(p s ), and hence V172“n,__ﬁ7 Vlvzf
4

uniformly on each compact set.



5.4. Lemma

Let Xl,X2 be two locally compact spaces with countable

bases and {Pt/t>- 0} a sub-Markov semigroup of kernels ‘on Xi such

that —9-Plf(x) is right continuous for each xexi, fe%i(xi).

t
(o )
Suppose that Gé= Y Ptdt, i=1,2 are (finite) kernels and
0

{Pi/t)O}, Gi are strong Feller.

oo

Then G= S Pi(:)Pidt is a: strong Feiler kernel on
0 : 1 .
N XX

Proof

From 5.3 there results that {Ptf/feB(Xl), \f\sl} is an

equicontinuous family for each t)0.
First we are going to prove that for a given fé%(xl.x Xz)

such that |f|{ 1 and a given compact set KcX., the family

2

»{Gf(.,yz)/Y2eK} . is equicontinuous.

_ Y i :
If yzexz, then/Ma 2 will @enote the measure on X2 x-R+ which

fulfils
v Q :
§ gty 108 25,000 = § Phigl a0 (yyrae, oed x, x vy,

¥ : .
Since M 2(1)=Gil(y2) we deduce that there exists a real

v

number c30 such that féﬁz(l)ﬁc for each y.¢K. Tet yzexl and £> 0.

t2€/4 beirg equicontinuous we can

, . S
The famlly { Ptfxz/xzexz,

Choose a neighbourhood W of y, such that



1 I
\Pth2<yl>—Ptfx2<yp\< €/2¢c

for ‘each yiew, X,€X, and t2 &€/4, This implies

22

| Gof (¥1r¥5) -G£ (v] iy )|S E/4+674+

; v '
+ S lpifx (yl)—Pi_fX (y5) | apm 2(x2,t) S¢
{42€/mYy 2 4 -

for each y]eéW and y. K, which provescur assertion.
Next we are going to prove that for fé@(yl X Xz), \fis 1y

and'ylE X1 the function Gof(yl,.) is continuous on X,. The properties
of the semigroup {iPi/t>0} and the result 10.VIITI from [ 9] allow

“usvto construct a finite measure,/é, on Xl and a function

geP ((0,2)x¥,) such that

P1Yi=g(t,.)-/,l, for“edch™ 50w

oo

y 2 ;
If we put h(x¥, y2)= § g;vfxl)Pth (yz)dt, X€X., y26X then .

’
1 I 2

(Bl GE(y by = {nix v apx)) .

Now we assert that h(x ) is continuous provided

| B
o9 _
Sg(t,xl)dt<°0. Let xle Xl and ¢£¢> 0. We choose pe‘éo((o,w)) such that
: , : .

o
§ | atex)-pee)] at < =o
0
and a finite number of constants “1 i °L2,...,czn20 v and

cl,cz....cn such that



v, "N-it
\’f(t)"%C_e \({ on R
Then
h S e I P
\ (Xl’y2 = Ci oLty yZ l\ S t Y2 i Z 1(Y2 ’

\T {
o) 0

oo ;
where q3=‘§ exp(—dt)Pidt,Oiz 0 are the kernels of the resolvent
o ' .

associated to {Pi/t)O}. Since G2=G2 is strong Feller one deduces
‘that for each ®> 0 the kernel Giiis strong Fellér. For a compact
setKCXZ, there exists a constant ¢ such that G21(y2)<q1.ve deduce

that h(x ) can be uniformly approximated on K by continuous

i’ S 2 - : = ]
functions of the form é 01%3 fx.. Hence h(xl..) is continuous
tegd R = | ; : = '
on Xz. : A . /
. . 17, s :
Since Pt dt is a finite measure on Xl we deduce
0

gg(t,.)dtesﬁlgm), and hence g g(t,.)<eoM~a,.e. Since

.!h(.,,y2 \{ S giltsdtiton each yjsx one deduces from (5,1) Lhat

Vivde

Gof(ﬁ’l’yz)—’s’Gof (yl'yz)' prOVided y2 -"‘?yZ ’ j.neo Gof(yl’.

continuous on XZ' - Further it is easy to deduce that Gof is

continuous.

Proof of Theorem 5.2

1°—> 3° The proof of 2.1 and Leima 5.4 show that the

kernel GU is. strong Feller 4f U=U1xU2, Ulc X is P-regular and the

: A ; : ; o

kernels of its associatéed semigroup are strong Feller, amd\UzC b
U

iz P-regular and G : is strongcFeller.

(0]

w

—> 4° It is obvious.

4° = 2° The kernel GV associated to the open set U from
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Proposition 4.1 is strong Feller. This results from relation (4 s2) .

: 2° = 5° Let fep(A) and define p :UXR, —>=R by
: o
(542) . xp(x,t) Pt (=)
Then
- (Bha) p e D(Ux(0,),I-¢/dt) and (L~a/dt)p=0,

Since ¥, (U)cD(A) and L-d/dt is locally closed one deduces that
(5.3) is still valid when W is defined by (5.2) with fé%Z(U).
Further a monotone class theorem together with Proposition 5.1, 2

shows that (5.3) is still valid when‘/% is defined hy (5.2) with

£e§ (). Particularly P £e¥(u) for each fe@b(tj) and ty0.,

5 =7 17 It'is obvious.

Examgle

Let X={(0,*®)x(~w,) and let L1 be the local operator

associated to'(9/3x1)2+xla/ax2, Then-Ll—d/dt satisfies (EFR) on

account of Proposition 5.1 and of Corollary from p.101 [ 2], and
hence Ll satisfies (SFS)., However ker L is not a Brelot space.
1f we denote by L2 the local operator associ‘ ted to (l/xl)(aﬁ)xl)2+

+9/3x2 wesee that L2 does not satisfies (SFS) while ker L1=ker Lz.

We do not know whether for a local operator L the property (SFS)

follows from the assumption that ker I, is a Brielot: space.
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6. (SFS) for the sum of a series of local operators

Let {Xi/ieN} be a sequence of compact spaces with coun-
table bases. Suppose that for each ieN,.Li is a loc§11y dissipative
locél Opergtor on Xi such that 1eD(Xi,Li), Li 1=0, there exists a
base of P- and D4reguldr.sets, and Li satisfies (SFS). In this

section we are going to prove that 2= Li_satisfies (SFS) under
ieN

suitable circumstances. We are going to use the notations from

section 3. For a kernel V defined'on a compéct spaée, T, we put
(6.1) - M(V)=sup { |VE(x)-VE(Y)| /x,geT, £e§ (T), |£l< 1}
-Obviocusly we have M(V)(2,.

6.1. Lemma

Suppose that P, is a sub-Markov kernel on X such that

Pnl)O and the family {Pnf/féﬁ(Xn)p | £ 1} is equicontinuous, for

each neN, If == M(P, )< , then P=@® B is a kernel on X such
< “neN néeN

that'{Pf/féﬁ(Xn)p lfISl} is equicontinuous.

Proof
Let x=(xo,xl,,..)éﬁ‘and £> 0. We choose naEN such that

E;ﬁ M(Pn)<E/2 and for each k(no we choose Vk'a neighbourhood of
70 .

‘%, Such that

k

By f | <E/2n s 18 vevy, £eBog), el

-



no~1{

Q|
We are going to prove that, for yeTT. Vk st Yi, fégyx), \flél,
k=0 i=ng
we have
(6.2)- | P£ (x)-PE (y){<E .

Let y=(y0:yl....)éX; with.ykevk for k<n,. We put. -

), for each keN. If fe‘g('ﬂ” X,), peN

zk?(xo,xl,,..,xk, Yiep1?Ypqot=ee iy

ig regarded as a function £€¥(X), then Pf=( @ P, f ®( @D P.1).
' & Ci=1 i=p+1

Then for k>p we have

(==}

Pf(z, —(®P VE (% eex)) TT el VL Pt )
f=p#i 2 i T =

On account of Lemma 6.2 (stated below) we deduce

lin P£(z, ) =PL (x) .
k = o0

.On the other hand, if |£|{ 1, one deduces

& E/2no, for k¢n -1,

JEf(z y=pE (2 )

|\p£ (2, )-Pf <M, for k)n ~1.

Clmialc e
Thus we get \Pf(y)—Pf(x)\<£. Further it is easy to deduce relation
(6;2) for each fég(x) such that ]fl( 1 and using a monotone class

theorem to deduce the relation for feﬁﬂx) such that }f!s‘l .

6.2, Lemma

-

~ e
Let 0<an, Dn61, néN, be such that neN\an bn\zha
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- > ]
Then “1im [ a 19w | b
ko n=k " k->ewn=k "

6.3. Theorem

I1f -the semigroup.(Pi/t)O}! ieN satisfy the condition

o M(pf__)@ for each t»>0, then 5= 1! satisfies (SFS).
i¢N | i€T -

Proof

Since the infinitesimal generator of {Pi/t)@} T

~considered as a linear operator on D(Xi,Ll)by Theorem 5,2, 5O
9k
. t .
Further Lemma 5.3 and Lenma 6.1 allow us to deduce that
u .
*

; U
o) ; 4 O_
S t>0 defined by Pt Pt

one deduces that P, is strong Feller,

the kernels P & (& Pi), where UO_and

ieN\YJ

Pi have the meaning from 3.1, are strong Feller. This implies (SES)

Bori = 1. 04
; i
ieN :
Next we are going to show that Theorem 6.3 applies for

a large class of examples.

Lemma 6.4

Let T be a compact space with a countable bhase and let

{Pt/t>O} be a Markov semigroup of kernels.
o
17" For any. s,t>0,

M(P ) (1/2)M(PS)M(Pt)<M(PS).

s+t

2° If the kernels Pt' t)>0 are strong Feller and there

exists a measure on T such that Pt —4?/“ (t—> o= )'for each xeT,

then 1lim M(P,()=0.
>0



Prooct

i 10 For fé@b(T), \ngl_we putet=(1/2) (sup Prf+inf ng) and

g=(2/M(PS))(P°f~¢). Since Ptf=fr we deduce

sup P_ f~ini PS £ ¢ (1/2)M(PS)(sup Ptgfinf Ptg)<

¢ (1/2)M(P_)M(P

o T e
2° From 5.3 we know that P_ is a compact cperator on ¥.(1).

1f féi&(T) and s»0 then {Ptf/t;s} is equicontinuous, and hence
Ptf —> (£) uniformly. On the other hand_K={Psf/f€3(T), \f\gl}
is+a compact'subset of €(T) and the family of operators {Pt/t;s}

is equicontinuous. Then P, —> 1 uniformly on K, where the
q S

t
cperator M @ 1 associates to each function £€¥(T) the constanf
function/k(f). This implies the assertion.

Let T be a compact space with a countahlé base, L a local
operator on T, and {Pt/t>0§ a semigroup>§n3§(T) whose infinitesimal
generator has D(T,L) as domain and céingides'with L as linear opera-
tor on this domain. ‘ ‘

We suppose that Xi=T and Li=aiL, aiéR;‘, for each iéN.

Then Pt=P for any t>0, iéN. We also suppose that there exists

A=t
3

a measure ﬂ.on T such that sz—e~ (t —> ) for each x¢T.

6.5. Proposition

If the sequence {ai/iGN'E satisiies

(6.3) 'E‘—e"’gai <*¢ for each 6> 0,
ieN |



then EELI& satisfies (SFS).
ieN

Proof

From Lenma 6.4, 1O we deduce

M(p, )2 (u(px) /2) L/

. £or each t,r>0, where [t/r]e N and satisfies 0(t-[f/£]r<r. Using
6.4; 2O we choose r such that M(Pr)<2 and denote by9~=~ln(M(Pr)/2).

Then we deduce

y < patm B E/r)n,

M(P e’ e

a.t
it

Hence = M(Pi)<b° and the proposition. results from Theorem 6.3,
’ - deN + ;



7. The sum of two local operators associated

to harmonic spaces

While the author was prepearing for publication the pre-
vious sections of the present paper.E.Popa‘and U.Schirmeier have
independently communicated to him a result very simillar to Theorem
5.2. Nanely they consicered harmonic spaces'in the sense of Constan-
tiﬁesCu and Cornea and used the Markov process associated to a strict
potential instead of the local operaﬁﬁr used in'Theorem 5. 2. "Next
we present the result for harmonic spaces in the sense of Constan-
tinescu and Cornea by using local operators associated to them in
the sense Of [13] section 4.

Let (k,%) be a harmonic sﬁace such that 16%(X)wand X has
a countable base and.let L be a local opefator associated tec UWU. The

property (SFR) is obviously satisfied by L. The property {sES) foxr L

is defined as in section 5. The sum of two local operators associa-

ted to harmonic spaces is defined as in section 2 and the operator

I~d/dt is defined as in section 4. Then we have a result parallel

‘to Theorem 5.2.

7.1. Theorem

The following properties are equivalent:

1° 1 satisfies (SFS).

22 L-d/dt is associated to a harmonic -space.

(o St Gibe . i : Oy 0

3t (X 01) isVharmonic space such that 1€ (X %

0 3 : 0 = 4 ; o)
X has a countable base,and L~ is a lccal operator associated toll j

: o . : : SAc
thenr I+1, 1is asscclated to a harmonic space on X x X .,



At XO=TxR, 1L.° is the local closure of 32/Ax2—3/3t,>

,andQLo is the hyperharmonic sheaf associated to 2, then TH+L° i
associated to a hrmonic space.

5O

If U is an open set, U¢X, and {Pt/£>Q} is a sub-Markov
semigroup of kernels which is also a(CO)-class.semigroup of opera-

_tors on a Banach space Fé&;(U) whose infinitesiﬁal generaﬁor,ﬂ y

: hés a domain, D), such that D(A)c.(U,L),A =L as linear Operatofs

St :
on D(A), and ¥ _(U)cD(A)=F, then P, is strong Feller for each t>0.
- o

t
The proof of this theorem is guite simillar to the proof

of Theorem 5.2 on account of [13] section 4 and especially Lemma 4,1.
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