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A GENERALISATION OF REGULA FALSI

by
Florian A.POTRA
and

Vlastimil PTEK

Summary. The method of nondiscrete mathematical induction
is applied to a multistep variant -of the secant method ...,
Optimal conditions for convergence as well as error esti-

mates, sharp in every step, are obtained.
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1. Introduction

Although less fast than the Newton method the secant
method is - in some cases =~ more convenient because it does not
involve the calculation of the derivative. Using the notion of

the divided difference of an operator (see definition (3.1)

below) A.Sergeev (11] and J.Schmidt [12] have extended the secant

method to the case of nonlinear equations in Banach spaces. Letafb
and % be two Banach épaces and let f be a (nonlinear) operator
with domain of definition in € and with values in &. If X énd
X_, are two given points in the domain of f; the generalized

secant method consists in the following algorithm

Bl . £ E,
BingsmaeR. o, w f] £(x)) » n=0,1,2,... (1)



where [Xn—l ¢ X i f] denotes a divided difference of the overator
f in the points X1 and X, In the papers mentioned abdve suffi-
cient conditions are given for the convergence of X to a root xX
of the equation f(x)=0. These results were improved by S.Ulm f15].
The conditions imposed by him to the initial data are in some
sense the best possible (see Proposition (3.6) below). However
his hypotheses imply the.symmetry of the divided-difference

e, [x,yif)=[y,x;f] for all x and v} . Ehis symmefry property,
which is rather restrictive, was also supposed by Sergeev but 1 o
does not follow frém the hypotheses of Schmidt (see also Helfrich

(1]1). In the above mentioned paper S.Ulm investigates also a pro-

cedure of the form
B e fie o BN T e P =12
n+tl “n [ -1 %oi J TR »n— o

which is slower than the preceding one but does not require the
inversion of a linear operator at each step.

A procedure intermediate between these two consists in
fixing a natural number m and keeping the same linear operator

for sections of the nrocess consisting of m steps each. It may

g 5 : . ) m - m=-
be described as follows: given two points X =X and i SR

J)

construct m sequences(xn St kggsm by the algorithm:
%2, =x
n+1
, : (3)
ol o =1 m, =1 gt e
e e [xn PR £] f(xn+l), g

s U T

J.W. Schmidt and H.Schwethick [l3] have shown that the order of

convergence of this procedure is eqﬁal to %(mf\/m2+4). In the



particular case m=2, P.Laasonen 13] was able to obtain a more
precise result concerning the sufficient conditions for conver-
gence. Optimal conditions for convergence as well as sharp error
bounds were given later in [6].

Iﬁ the present note we apply the method of nondiscrete
matematical iﬁduction to the study of the iterative procedure
(3) . In the particular case m=1 the present results contain those -

of {5] and for m=2 the results from [6].

2. The application of the method of nondiscrete induction to

the study of a class of iterative procedures

The method of nondiscrete mathematical inductive was
developped over:a number of years in a series: of papers; the
-.general principles of itspépplicationMare_expiained;in the .
Gathinburg Lecture (9] or in the survey ﬁO]. Approximaté sets
dependiﬁg on a two-dimensional parameter were first considered iﬁ
(5] . The corresponding rate of convergence was one of type (2.l)b 
The natural rate of convergence for [6] was of tvoe (2.2). In the
present paper we work with a rate of convergence of type (2,m) which
constitutes a generalisation of the notions mentioned above.

Let T be either the set of all positive real number§or
an open interval (O,so) for some 5070. Further lét'm be a fixed
positive integer and let w be'a mapping of T2 into Tm; its

components will be denoted by aﬁ,u&,.}.,oom so that
’ 2
W(s)=( (s), @, (s),..., 2 (s)) for each s=g,rrer

It will be convenient to introduce also the functions w_, and

W, by the formulae



w1 (8)=0) ()=, 3 ()= (s)=rs s=(@mer® (@)

Let us define the functions w]in) :Tz-—-?T by the reccursive

formula

o (e et ey, w0 ey Kelmi0 0 & (5]
k . k-1 ’ m 7 B AN A

=015 2 o

We<shall ‘attach to the mapping w:T2—~> T ' the mapping

(%) :Tz——s» T2 defined by

W (s)=(d _;(s), o (s)) (6)

(n)

If we denote by w the n’th iterate of « in the sense

of the usual composition of functions (i.e.UJO(s)=s,

CJ(n+1) (s)=5((7-7(n) (&)) ; n=0,1,2,+.s) then we have obviously

)(S), w(n) (s) ), for-all sge T2 ang =051, 2550

& ™ (5)=(®) 5

~ Considering now for each n=1,2,... the mapping w(n) :T2 -—-——)Tm with

components L.)l(n) : wz(n) e wn(]n) , it follows that

w(n+1) (s)=(™ (s)), for all e TC andi i, g o

In what follows we shall omit the brackets or the sign "o" for

indicating the composition of functions . For example we shall

(n)

simply write w&_)(n) (s) instead of w(&3 (n) (s)) or wow

(s).



(2.1). Definition. The function(ﬂzT%—e-Tm with the law
of iteration described above will be called a rate of convergence

of type (2,m) on T if the series

. oo mA (n) : .
Gilsll T w Y {e) ‘ - (9)
n=1 j=0 J ;
is.convergent for each ‘s 6T2.
Sincehuén+l)=tﬂén) for all n=0,1,..., the above expression

for ¢ may be replaced by the following one

o n g
Gls)=red 2 w W (s) , s=(avz)e€ T3
n=1 k=1
It will be convenient to intreoduce the functions Gb,@&,...,g&
by setting
¢ =G |
(10) -

GBSl sk, ) if Ifkem .

k=l
In the sequel we intend to show how the notion of a rate
of convergence of type (2,m) may be used in the study of a class
of iterativé procedures.
Let X be a complete metric space. If k is a natural
numbef, Xk will stand for the cartesian product of k copies
of X. In the whole paper m will be a fixed.positive integer;

the elements of Xm+l

will be finite sequences of the form
z=(zo,zl,..;,zm) with 2. €X.«For each j=0,1,. ..M we denote by

: ; +1 - . e
Pj the mapping which assingns to each iR its j=th coordinatey

thus



z=(Poz, Plz,...,sz)
4 Xm+1 2
We shall also use the mapping P from o oniko. X

defined by
Pz=(P__12/ P _z)

Let.$F,be & ohbet or X2 ARl et vbe w mapping cdf&F,into g
To simplify some of the formulae it will be convenient to use

the abbreviations

FI=PIF 7 j=0,l’lci,m

Let G be a mépping from ﬂ}F into X" and let F be the mapping
: + ; ;
from ﬂ)F into X™1 defined by setting F(y,x)=(x,G(y,x)). Then
-1 :
for every z€ P mF we have POFPz_sz.
For our purposes the following particular form of the

induction theorem is most -suitable:

(2.2) Lemma. Let F be a mapning fronlzkcxz‘into Xm+l
satisfying the condition
= : =1
POFPz sz ey for-ze D j)F_ (1-27)

Let Z be a mapping which assigns to each te=_'I‘2 a set 7 (t)c %F <



Let w be a rate of'converqenqence of ‘tyoe (2,m) on T
Let u e D_ and t_€ T be given.
o F o ;

If the following conditions are fulfilled:

U Zlt,) (13)
d(Fku, Fk+lu)§<pk(t) ‘ ‘ (14“)-

for all t:eiz,,t1ez(t) and k=-1,0,...,m-1, then:

1° the iterative procedure

xl=FuO
€15)
xn+l———,FPxn > g1 e e i
s Sl =1 i
yields a sequence (_xn)n;l of ‘peints of P ;)Fﬂ’
2° there exists a point x"€ X such that each of the m+l
. *
sequences (ijn)nal . B¥3<m; converges to x
30 the following relations hold for each n=1,2,3,...
" Py enT Bl g (16)
n o
a(p. x B g o Bl 0gkgm-1 (17)
Kens -l -kl Sntiaak o)t e
d(kan ; xv)z 6y & (to), Ofktm (18)

o :
4~ suppose that, for some natural number n, we. have

g B X )i d(me "

whgre d =(a(p ey

m-lxn—l



Then:
ae. x_, x)¢ 6.(d) Oelams (20)

Proof. Let n be given and suppose that the point X has
already been obtained via the iterative proceduré. Then (16)
implies x € P ch(n)(t ye P Eb so that we may apply (15) to

obtain a new point x which in its turn will belong to P %p

nt+1
Thus part 1° of the lemma is a consequence of (16) . In the
sequel we shall prove the relations (16)~-(18).

It follows from (14") that
le=PFuO€ PFZ(tO)C?ZLO(tO)

"so that (16) holds for n=1. Assuming (16) to be true for n, we

have

Do =PFPx_€PFZ & "(n) hoE )c;z""‘(n) (t ):Zaj'(n+1)
n+l o

(to)
(.7} 1is alse true for n=l1 because according to (14") and (15)
d(Pyxy o X, )=d(Fpu, o Frylg )€ wy (t)

k+l 1 o

If (17) holds for a certain nzl then, applying CI4")y  Eor u=Pxn

and t= & (n)(t ), we obtain
i o . )
d(Pk n+1l ’Pk+1xn+1)"d(FkPX ’Fk+1 ')g‘Jk“’ (to%JJk (t,)
To prove the estimates (18) we observe first that relation (12)
implies %nxn:PoXn+l for all -n. It follows that:
P =l p m-l +) ‘
Qb % pox o m<T odiD e sZanj Yo i
+p’ = ¢ =
m n m n+p S=1 k=0 ke nt k+1 n+j gy o



the rest follows if we allow p to tend to infinity.
In this manner the first three parts of the lemma are
established. In particular, for n=1, the estimate (18) assumes

the following form

- | i .
if uO€Z(tO) then d(PkFuO,x.)z 5%(to), for k—O,l,...,m

To prove 40 suppose n is a natural number for which (19) is
satisfied. Replacing in the implication abov,e'uo ’ tO respectively

by Pxn ’ dn we obtain (20). The proof is complete.

=1

In what follows we shall construct a rate of convergehce
of type (2,m) which will be then used in the study of the itera-
tive procedure (3).

There are some differéndes between the cases.m=1 and
m22 but we can study them together if we make the following
convention: if én algorithm requires, at a certain stage, the
cbmputation of a quantity Qk For k=0;l,...;p, and if p hanpens
to be pegative, ignofe this instruction and rass to the next one;
in the same sense the sum ao+a +...+ap will be taken equal to

I

zero if p is negative.

(2.3) Lemma. Let T denote the set of all positive real
numbers, let a be a nonnegative real number and let m be a positive

integer. For all q,r e T consider the functiens:

?(q,r)=r+'Vr(q+r)+a2 ety : (21)

SO lays) =gy w lg.eli=r ;. (22)

and define




B s

%)
wk'l’l— wk(w—l+jk+i(h)o+...+ k_l)) 7 k=0[11--.,m"2 (23) :
qeraie)r o o

_0ﬁh1(dtl+uﬁ—l+2(“%+'"+“ﬁ—2))

. 24
T ) TR N TN o

w

2
Then the function01=(wl,a7,...,wh) isYrate of convergence of type

(2,m) and the corresponding G-function is given by:

6(q,r)=r+ \/r(q+r)+a2—a (25)

Proof. Consider the real polynomial f(x)=x2fa2.
For any positive numbers g and r set:
m-1

m - :
XO=XQ=<F(C1, r) 7 YO=XO =T<qlr)+q

The iterative procedure (3) reduces in this particular case to

the scheme

x° =xT
Tl o LRGN
Rl
Jeileeele =2 n+1 & k=01520 s pm=dsam=0nd; 258,
el okl m-1
Xn +x

From the convexity of f it follows that

m m=1 1 G orm
Xn+l<xn+1<'"<Xn+1<xn+1_xn % (35)
By definition we have
xm_l-xm= =D b ar)
o} o q w-eilr

and by direct calculation we obtain



For k=0,1,...,m-1 set bv definition

k__k+1 f(xll{)
Gilia ey ST w o
X +X -
o o
and, finally, set
m
WO_ (g r)=x1—xm=~f£fll— : (38)
o ZreliE Sme=1 £
X1 +xl

Egqualities (37)- imply that for every k=l,2,,..;m the following

relation is satisfied:

x};??— (Wyte. ot ) '

According to our convention the above relation is also true for
: . : m
k=0, because in this. case it reduces to‘xi=xo=‘€. Thus we may

weite ‘for alli k=0;1,.s:.,m=1%

IR e R T 7
X )—f(xl ak)—(xl) 2xlu)k+cuk a =

£(x,

leie wn b ik 1Tt S (R
+f(Xl)~mk 2X1Q)k+wk(xo %Xo) "~

oA Shale

k &
-2x.W +uk(2((+ w_l)_uk (wk+w_l+2 (wo+. : .+wk_i)

=
1T

NN

Hence we get the formulae

; k+1 AP
S £(x] )_dkkdk+“11+2(wb°"+a%—l)) pak o
Kkl Eom=1 - m : il eegi=d
X oG 2%+<u :
o o =

v e e TR e sl



L0h e

(0 F v He
(ho= 1) __“Jm—l .(('Jm—-lJmJ—lJr2 (wo m—2)' )
m m, m-1 a

whiéh are exactly the formulae (23) and (24).

’ The fact that the function§0=(<ul,...,oJm)”defined as
above constitutes a rate of convergence of type (2,m) follows
from the monotone convergence of the éequences (x]r{l)m,1 (see . (35))

In fact we have

k. k+1
=X

Coén)(q’?)=xn n

for Al B0 0 oo rahd =1, 2 . and
G(q,r)=x1§-a= Plaq,r)-a R/

We shall use the above two lemmas in the proof of the

main theorem of the next section.

3. Convergence conditions and error estimates

The generalisation of the secant method for solving
nonlinear equations in Banach spaces is based on the notion of
divided difference of an operator, notion introduced by. J.Schroder

. A TE ?5and # are two Banach spaces we denote by L(¥,¥) the
space of all linear and bounded operators defined on.f’and with

; o~
values in

(3.1) Definition. Let f be a nonlinear operator defined

on a subset & of the Banach space ¥ and with values in the Banach
space # . If wand y are two destinct points of¢D we call a divided

difference of the operator f on the points x and y a bounded



- 13 -
linear operator [x, y; f] eL (€ %) which satisfies the condition
Ik, yif]}(x-y)=£(x)-£(y) (40)

Of course the above requirement does not determi‘ne the divided
difference uniquely, except in case € has dimension one.
In mény important particular cases, concrete methods for

constructing such divided differences are known (see [12] and (16])

(3.2) Theorem. Let & and # ve two Banach spaces and X
a given point of “cd Let M be a positive number and let U be. the-
_open ball U={xe2‘;’; il x—xo1[< (14} . Let f be _a maoping defined and’
continuous on the closure of U and with values in F . Suppose that.
for each pair of distinct .points x and y_in U,a divided difference
(x,y;if] is given. Furthermore suppose there exists a point e eU

such that the linear operator DO=‘[yO,xO;__f] is invertible and that
=1 Eioaf ’ 14 ’
I 85 Chiyatl=lx vy s EDoljen ( loe=x'f + gl ) . (42)

for all x,y, x',y'€ U with x#y and x'#y’.

If the following conditions are satisfied:

-1
legulled. » st L s =
hoqo+2 ‘/horo Sl (44)
1 2
Mz —éh—o(l—hoqo— \/(l—hoqo) ~Al ¥ )= G(c;orro) , (45)

then the iterative procedure (3) with starting peints



m-1_ m_ . : | 3] : :
B ML X=X yields m+l sequences (g )nbl ; (0gjgm) with the
following properties: there exists a point xer for which f(xx)=0,

each of these sequences converges to xx) and the following estimates

s T e O 6

e g Gp et S=0 U sl (47)

hold for-each j=0,1,...,n and n=1,2,3,4+., Where e> is the rate
of convergence defined in Lemma (2.3)(, the constant a being given

by i

ol % 2 : £
g 2h0 \/ (1 ho(;o) 4horo (23

Proof. Let us first remark that (42) implies that for

each x € U we have Tdme. ="y’ f_]=f’ (x) where f’(x) denotes the
X;y'—>x .

Fréchet derivative of f at the point x.- Thus, setting for each
X€TU [x,x;f]=f’ (x) we may assume that (42) holds for all :
X, VX Yy €.

If u=(y,x)e U2 set

F_(u)=x

2 - (49)

= ° _1 1= -—
Fj+l (u)—Fj(u)—[y,x,f] f(Fj(u)) for 920,11, .5 epm=1

Let us denote by 0[0 the set of those u for which the above

B

formulae make sense (i.e. [y,x;f] is invertible and Fj (u)e U for
=01 s 7symel) and let us -define a mapping F:‘J)F“75‘m+1 by setting

P(u)=(F_(u), F

o l(u)l"'lFm(u))

This function clearly satisfies the properties

= =F 0 AW, and ue
P_FPz=P z , P Fu=Fju for all zeP O?DF and u &)F



It will be convenient to introduce a mapping F_, as well, by
setting F—l (u)=y. '
The proof will be based on lemma (2.2). To this end we

assign to each t=(q,r) €T2 a subset of 52 defined as follows

2 :
zit)= | (yax)e &°: yeus Ty-xllgq, [y-y e Gt )-G(t)+q ~q, (50}

“X"XOHE/.-_ 5(to)-6(t) : D=[y,x;f] is invertible and HDulf(x) ”f__ rj
In the above definition of Z(t),t_ stands for the pair (qo.,ro),.»
Hence using (45) it follows that Z(t) CUZ. Consider now the rate
of convergence W described in lemma (2.3), the constant a being
given by (48). Our theorem will be proved-if-we show that
Z(t)ClﬁF and: that the conditions (13), . (14) and (19). from
lemma (2.2) are satisfied. Firs‘; of all, ‘if.uo stands for (yo,;xo)'

we clearly have uOE Z(to) . Let us prove now that ue€Z(t) implies
Fk(u) € U for -likgm ' &)

and

][Fk(u)—FkH(u)u;_ 2 (t) - For ~lgkgm—i. (51'%)

For k=-1 these relations reduce to y € U and y-x |l 2iig ;- fEk
y _l [

k=0 they follow from xe U and {{ly.x:f] “£(x) s =,

Consider now an i, 0gigm-1, and suppose that (51’) and (51")

hold for k=-1,0,...,i. We have then:

it

Ve ;e alh e B s ol x—xo\l;JE;O | Bypq -yl + faex, Il <

(653)

1h
= j};o W, (£)+ 6(t,) ~6(£) =6t ) =6,y (£)



sO thatE}+1hneU as well; this establishes (51'). Let us remark
that from (50) and (51') it follows that Z(t)CEDF. To simplify
the formulae let D=(y,x;f], Di+l=[Fi+1(u), Fi(u);fJ and ‘let fj

stand for the value fFj(u). The relation defining Fi+1(u) may

thus be rewritten in the form fi?D(Fi(u)-Fi+l(u)). Now
=4 ; -
T S e SR R e
(54)
N D () ST ()= (ID o (D SDY ) e D e i)
i+l i+l i & 0 o il T i

/ e s PR ' ; ;
provided ]IDO (DO—D)H <1. This is true, however, since - according

to (42) - we have

I D5 (0D fshy Uly-y fl+llx-xll) € B, (261t,)-261(t) +a,-q) =

=1-h0(2?(t)+q)<l.

This estimate and another application of (42) yield



Shrbe s i

. 1 —l 4
I Fi+1(u)-Fi+2 W [ < W HDO (Di+l—D) [ ”Fi+l () F, W <
1 : '
< hy CgTE ) ha tlF gty | 4 b, (ad=x ] ) (b
v
< m(wi(t)+q+2(wo(t)+...+°3i_1(t)))f~’i(t)=‘~)i+l(t)

In this manner we have established (14"); If we show that u€ Z(t)

implies

(F o)y, e (u)je g @i(e)

we shall have (147) as well. It will suffice to prove: the

following inequalities

I Fﬁ_l(u)me<u)|<=wm_l<£) - (58)
[Epay (W -y, N2 G(tO)—G"m(tho—wm_l.(t) (59)
. nleee, (€06 )6 () | (60)
“DI;l-fm lew (&) (61)

The first inequality is a consequence of (51") and so is (60)

which follows from (53) for i=m-1. To obtain (59) we write

F (u)=y

Ca Ehhl(u)—x ek ¥

(t)

st Tt )= (Bhtaras (k)= L a0

J=0

As in (54) we obtain

A {662y



. el o g -
U B T el D By DB, (SRR

(u))

provided HDgl(DO—Dm)ll<l. By (42), (59) and (60) we have
-1
ko (b D e h, GllEastuloy e B ud o VS

gho(26‘(Eo)—2G'm(t)+qo—wm_l(t))=1-—ho(2(f(t)—2(Cgo(t)f...+ur)n_2(t))-&1§l_l(t))
Hence
Io-ke 1€ (, Cp(0-20 B+ ko )= ()7 {00 0D oy, ()

Since

>Hb2

n (D—D” B (e (u)—y”+“F(u)—x|)<h 'Zw] +Zw (t))
=1 =0

=ho&0m_l(t)+q+2(h%(t)+---+hh_2(t)))
we have ﬂD%lfmllgcum(t)

Until now we have proved that conditions (13) and (14) of Lemma
(2.2) are satisfied. Our next task is to prove (19),; that is to

show that the inclusion

m-1

-1 1)
n-1"' Xn— 2-1-X§—1“ ] £ e H

(x n-1 "n

e z( | x (65)
holds for each n=1,2,... . But, according to (16) and (50) we

already know that



m-1 ™ (n-1)

i S T el (66)
T 1ﬂ‘ Sl (&) (67)
(o el e i o e ~ (68)

It is easy to see that the function G given by (25) is monotone
in thevsense that if q,£q, and r,;¢r, then Gqu,rl); 6%q2,r2).
Using this property from (66), (67) and (68) it follows that

”Xﬁ—l”xoug=6(to)_6(leﬁ:i“xg—l‘f' ‘\Xﬁ—l’xi’l)

<0 1 m—li m m 1 me= i
| xpo1=¥o (€ 6 )—GK”Xn—l_Xn—lu ¢ o= 1) +a- [ES Y
The above relations together with (66) imply (65).
Then Lemma 2.2 implies that there exists a point xre u
which is the common limit of the sequences (x j)

n’ n#l
that estimates (46) and (47) are satisfied. Thus the proof of our

(1£5¢m) and

 theorem will be complete if we demonstrate that xx is a root iob

the equation f(x)=0. To show this let us observe that (42) implies

“D;lf(x1 )—”D 16 Xn+l) _(xﬁ}—[xi_l; xi;f](xi+l—xg)” =
s 1 m-— 1 mf
—IID +1’ f] ['m i ])(Xn+lnxi)“ h llxn+l n ﬂl#ﬁﬁi_xn[/
AFrom the above inequality, using the continnity ‘of f on

S datice JEhat Eiad =0

If we compare the estimates (46) and (47) obtained in




the above theorem we see that the estimates (46) can be computed

before performing the iterative procedufe ( ) while the estimates

m-1 m

(47) can be computed only after obtaining the points x . , X _;

énd x; . That’s why we shall call estimates (46) apriori estimates
-and estimates (47) aposteriori estimates. The aposteriori
estimates are in general more accurate than the apriori ones.
In what follows we shall particularize the résult stated
‘in theorem (3.2) for the cases m=1 and m=2 bbtaining in'this way
some improvements of the results obtained respectively in [5] and
[6]. For m=1 from lemma (2.3) we obtain a rate of convergence

of type (2.1) given by

ri{gtr) : : :
E— . (70)
42 r{gqt2)+a '

The associate function EﬁTz-fv’Tz will be then defined by

w\(q,r)=ci>l (g,xr)=

&(qlr‘):(rl w(q,r)) (71)

With the above notation we can state the following corollary of

theorem (3.2).

(3.3) COROLLARY. If the hypotheses of Theorem (3.2) are
satisfied and if one takes e S then the iterative procedure

(1) will produce a sequence (xn) of points of U converging

nzl
to the root xX of the equation f(x)=0 and the following estimates

will be fulfilled:

[ % -xxl]g Gy e ) ‘ (73)



bz e 6 U s sk 35s pradiites

(74)
4% "xn—l_xn"

where the functions g,cﬂ, 63, are given respectively by (34),
(70), (71) the constant a being chosen as in (48) .
For m=2 we obtain a rate of converqénce <« of type (2;2)

defined as follows: for any g70, r>0 set t=(gq,r) and

r (g+r)

q+2r+&Vqu+r)+a2

q+2r+e (t) = o

0o, (€)= (£) - (76)
‘/ 2
: 20 (gl ta - aﬁ(t)

W (t)=(w) (£), W, (1)) - LB (77)

wl(t)= (75)

In this case we have of course(d(t)=akt). We shall also use the-

following three functions:

w(t)= \ r(gr2)+a® —a, Ble)=oi(t)+xr, V(£)=%(t)+q+r (78)

Now we can state another corollary of Theorem (3;2).

(3.4) COROLLARY. If the hypotheses of Theorem .(3.2) are
satisfied then the iterative procedure (3) produces two sequences ;

foe. ) of points of U such that

(yn)nzl LR n e,

19 e sequences (yn) (x) converge to the same

nyl. o n’'nyl

Limit point x* which.is a root of the equation f(x)=0.



2° The following estimates hold:

Iy~ < T (agx)) . (81)
Ix_—x* 1< plwd™ (ag.z)) ' (82)
I Yn—xx”i ot (i % gl e Xn—-l_yn. 1B ' (83)

I Xn'xx e ot gy =%aes Il ol 2denedille S St
(84)

”Xndf n” )

where the functionsw, w , &,, %, 3,7 are defined by (75)-(78)

with the constant a chosen as in (48).

In the following prOPOSition we show that estimates (46)
and (47) obtained in theorem (3.2) and, consequently, estimates
(63), (64), (81)-(84) from the above corollaries are in some sense

the best possible.

(3.5) PROPOSITION. For any triplet of positive numbers

ho g e Iy which verifies the inequality (44) there exists a

function f:R —? R and two points xo,yoé R which satisfy the
hypothesis of Theorem (3.2) and for which the estimates (46)

and(47) aresattained for all n=1,2,... -

Proof. The proof is a consequence of the proof of Lemma

(2.3) observing that the iterative procedure (3) @pplied to“the
1+h g
m-1 0"0

——-—I
e b
O

function x H—?h.(xz—a ) and initial p01nts X



l—thO

m_ s S ; : ;
Xq —Eﬁg—- produces the same sequencgs (xn)n.7,1 slgiiom asi 0k applled.

to the function Xt~?x2—a2 and initial points x2_1=(1+qo)/2,

Mt e S
XO——(l-—qo)/_‘Z 5 /

Analysing the hypotheses of the Theorem (3.2) we observe
that inequality (44) plays a key role. This inequality is satisfied
1:f 9, and r, are small enough. The number g can be chosen very. .
‘small from,thé very begining because having an initial approxima-
tion x_ we can choose the pdint'yo close enough to x_. In order
to have a small r, we must have a.good initial approximation.

This requirement is not so easy to be fulfilled in practical appli-
cations. However we can show that condition (44) imposed tovthe

initial data is in some sense the weakest possible.

(3.6) PROPOSITION. For any triplet of positive numbers

ho ,qo r Ty which do not satisfy (44) there exists a function

f:R— R and two points xo,yoe'R such that:

12 eonditions (42) and (43) of Theorem (32) are satisficd

~

(U can be taken the whole real axis);

2° the equation f(x)=0 has no solution.

Proof. Take

pEEL ) Hhogis S i o e ok oG
f(X):ho Zﬁg‘zho(QO+2ro) } Bdola B 2ho’ ¢ 2h

; 1
if qo+2ro-2\/r0(qo+ro)<'H;‘§q+2ro+&\/ro(qo+ro)

pielia s u
and f(X)—E;X +rO 7 XO—OI yO_q

if é”"<qo+2ro_2 \/ro(qo+ro)
() :



[1]

[2]

»[3]

[4]

(5]

[e]

LE

[8]

o]

i)

REFERENCES

HELFRICH, H.P. Ein modifiziertes Newtonsches Verfahren .

l"Funktionalanalytische Methoden d.numér.Math?, Internat
Schriftenr.z.num.Math.12, Basel 1969. Birkhauser Verlag,
61-70. »

HOFMANN, W., Konverqenzsétze flir Regula-Falsi-Verfahren,

fArchive for Ratiohal Mechanics and Analysis, 4 4eeedy (195:2)

296—30?.

LAASONEN, P., Ein Uberquadratisch konyergentér iterativer
Algoritmus, Annales Ac.Sci.Femicae, Series A, Mathematica
450°(196.99%," 1=10%

POTRA, F.-A., On a modified secant method, Preprint INCREST
no.8/1979.

POTRA, F.-A., An application of the Induction Method'of
V.Ptdk to the study of Regula Falsi, Preprint INCREST
no.11/1979. .

POTRA, F.-A. |  and PTAK, V., Nondiscrete induction
and Laasonen’s method, Preprint INCREST no.12/1979.

BETEK, V., Deux théoremes de faectorisation, €.R.Acad.Seci.Paris

278 (1974) ; 1091-1094.

PTEK, V., A theorem of the closed graph type, Manuscripta.

Math. 13- (1974), -108-130,

PTEK, V., Nondiscrete mathematiéal:induction and iterative
existence proofs, Linear algebra and its applications,
13 (1979); 223~236.

PTXK, V., Nondiscrete mathemétical”induction, in: General
TOpology and its Relations to Modern Analysis and Algebra
IV, pp.166-178, Lecture Notes in Mathematics 609, Springer

(1977 .

O A AR e S




[11] SERGEEV, A.é., 0 metode chord, Sibir Matem. 2.2 (1961),
282-289

[12] scHMIDT, J.W., Eine ibertragung der RegulavFalSi auf Glei-
chungen in Banachraum I, II, Z.Angew.Math.Mech.

QB] SCHMIDT, J.W. and SCHWETLICK, H., Able tungsfreie Verfahren
mit .Oherer Kdnverqenzgeschwihdigkeit, Computing 3
(1968) ; 215—226..

ﬂ4] SCHRODER, J., Nichtlineare Majoranten beim Verfahren der
schrittweisen Ndherung, Arch.Math. (Basel), 7 (1956),
471-484,

fls] uLM, S., Printzip majorant i metod chord. IAN ESSR, ser fiz-
matem i tehn.; 3 (1964), 217-227. '

ﬂ6] ULEM;#:807.0b obobsceﬁnych razdelennych raznostjach, I, II,

IAN ESSR, ser fiz-matem u tehn, 16 (1967), 13-26, 146-156.







