ISSN 0250-3638

THE HAHN-BANACH EXTENSION THEOREM FOR MODULES OVER ORDERED RINGS

by Dan VUZA

PREPRINT SERIES IN MATHEMATICS
No.11/1980

Med 16628

THE HAHN-BANACH EXTENSION THEOREM FOR MODULES OVER ORDERED RINGS

by
Dan VUZA*)

March 1980

Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Pacii 220, 77538 Bucharest, Romania.

by

DAN VUZA

In our paper [4] we studied a class of ordered rings and gave a theorem of Hahn-Banach type for modules over Such rings. We intend now to complete the formulation by discussing the case of maps invariant with respect to the action of a semigroup.

If G is a lattice - ordered group we shall use the stan-

$$G^{+} = \{g \in G \mid g \geqslant 0\}$$

 $g^{+} = \sup (g, 0)$
 $g^{-} = \sup (-g, 0)$
 $|g| = \sup (g, -g)$.

Definition 1 ([4]).A G-ring is a ring A with an unit e and an ordering \leq satisfying the axioms:

- i) A is a boundedly complete lattice-ordered group.
- ii) for every $a \in A^+$ and $b \in A$ we have

$$(ab)^+ = ab^+,$$

$$(ba)^{+} = b^{+}a$$

iii) 2e is invertible.

Using a theorem of Birkhoff and Pearce one can show that a G-ring is associative and commutative.

The class of G-rings contains rings such as $L^{\infty}([0,1])$ or the space of equivalence classes of measurable functions on [0,1].

If we require that every non-divisor of O is invertible we find the class of F-rings which was studied by A.Ghika ($\{1\}$).

From[4]we quote the following results on G-rings:

On every G-ring A can be given a unique structure of vector lattice over \mathbb{R} .

If a,b \in A, 0 \leqslant a \leqslant b and a is invertible then b is invertible and 0 \leqslant b $^{-1}$.

For every a A there is a veA such that

$$v = v^2$$

$$a^{+} = av$$

$$a = a(v-e)$$
.

Definition 2. Let A be a G-ring. An ordered A-module is an A-module H such that H is an ordered group and for every $a \in A^+$ and $h \in H^+$ we have $ah \in H^+$.

Every ordered A-module H can be turned into an ordered vector space putting

Definition 3. Let A be a G-ring, E an A-module, H an ordered A-module. A map $p:E \longrightarrow H$ is A-sublinear iff

- i) $p(x+y) \leq p(x) + p(y)$, $x,y \in E$
- ii) p(ax) = ap(x), $a \in A_+$, $x \in E$.

For reader's convenience we reproduce from [4] the following results with proofs:

Proposition 1. Let A be a G-ring, E an A-module, H an ordered A-module, $p:E\longrightarrow H$ a map such that

 $p(x+y) \leq p(x) + p(y)$, $x,y \in E$ $p(ax) \leq ap(x)$, $a \in A^+$, $x \in E$.

Then p is A-sublinear.

Proof. If acA is invertible then

 $p(ax) \leq ap(x) = ap(a^{-1}(ax)) \leq aa^{-1}p(ax) = p(ax)$.

If a cA then a to is invertible. We have

ap(x) > p(ax) = p((a+e)x-x) > p((a+e)x) - p(x) == (a+e)p(x) - p(x) = ap(x).

Theorem 1. Let A be a G-ring, E an A-module, H an boundedly complete lattice - ordered A-module, F a submodule of E, $f:F \longrightarrow H$ an A-linear map, $p:E \longrightarrow H$ an A-sublinear map such that

 $f(x) \leq p(x)$, xeF.

Then there exists an A-linear map $g:E\longrightarrow H$ such that g F=f and

 $g(x) \le p(x)$, $x \in E$.

Proof: By Zorn's lemma it is sufficient to consider

the case E = F + Ay with yeF. For $x_1, x \notin F$ we have

$$f(x_1 - x_2) \leq p(x_1 - x_2) \leq p(x_1 + y) + p(-y - x_2)$$

so there is a kéH such that

$$f(x)+k \leq p(y+x)$$
, $x \in F$ (1)

$$f(-x)-k \leq p(-y-x)$$
, $x \in F$ (2)

Let a \in A. There is a v \in A⁺ such that a⁺=av, a=a(v-e). ne is invertible, so a⁺+(ne)⁻¹ and a⁻+(ne)⁻¹ are invertible. Let

$$b_n = (a^+ + (ne)^{-1}) v,$$
 $c_n = (a^- + (ne)^{-1}) (e^-v),$
 $a_n = b_n - c_n$

We have

$$a_n[(a^++(ne)^{-1})^{-1}v-(a^-+(ne)^{-1})^{-1}(e-v)] = e,$$
 $b_n=a_nv,$
 $c_n=a_n(v-e).$

In particular, a_n is invertible. For $z \in E$ we have

$$vp(a_nz)=p(a_nvz)=p(b_nz)=b_np(z),$$

 $(e-v)p(a_nz)=p(a_n(e-v)z)=p(-c_nz)=c_np(-z)$

$$p(a_n z) = b_n p(z) + c_n p(-z)$$
 (3)

From (1) and (2)

$$f(b_n x) + b_n k \langle b_n p(y+x),$$

 $f(-c_n x) - c_n k \langle c_n p(-(y+x)),$

Using (3) it results

$$f(a_n x) + a_n k \langle p(a_n y + a_n x).$$

Replacing x by $a_n^{-1}x$ we get

$$f(x) + a_n k \langle p(a_n y + x), x \in F.$$
 (4)

We have

$$p(a_ny+x)=p(ay+x+(ne)^{-1}(2v-e)y) \le p(ay+x)+(ne)^{-1}(2v-e)p(y)$$
.

According to (4) we get

$$f(x) + ak (p(ay+x) + (ne)^{-1}(2v-e) (p(y)-k)^{+}$$
.

As H is Archimedian it results

$$f(x)+ak\langle p(ay+x), a \in A, x \in F$$
 (5).

From (5) we have that the map $g:E \longrightarrow H$ given by

$$g(x+ay) = f(x) + ak$$

is well-defined and satisfyies the requirements of the theorem.

<u>Definition 4</u>. Let E be an A-module and K a semigroup An A-linear action of K on E is a representation of K into the semi-group of the A-linear endomorphisms of E.

Definition 5. Let E,F be A-modules and K a semi-group acting A-linearly on E. A map $f:E\longrightarrow F$ is K invariant iff

f(kx)=f(x), kek, xeE.

Definition 6. Let E be an A-module, H an ordered A-module and K a semi-group acting A-linearly on E. A map $p:E \longrightarrow H$ is A-decreasing iff

 $p(kx) \le p(x)$, kek, xee.

For a semi-group K and an ordered A-module H, let \mathcal{B}_A (K,H) be the set of maps t:K \to H such that t(K) is order-bounded. \mathcal{B}_A (K,H) is an ordered A-module by defining

$$(t_1+t_2)(k) = t_1(k)+t_2(k),$$

 $(at_1)(k) = at_1(k),$
 $t>0 \iff t(k)>0 \forall k \in K.$

If $h \in H$ we denote by t_h the map given by

 $t_h(k)=h$. Let \widetilde{K} be the semigroup given by

$$\widetilde{K} = K \times K,$$
 $(k_1, l_1) (k_2, l_2) = (k_1 k_2, l_2 l_1)$

We have a linear action of \widetilde{K} on $\mathcal{B}_{A}(K,H)$ given by

$$(ktl)(m) = t(lmk).$$

Definition 7. An invariant mean on the semi-group K is a positive linear K-invariant map $\lambda:\mathcal{B}(\mathsf{K},\mathbb{R})\longrightarrow\mathbb{R}$ such that

$$\lambda(t_1)=1$$
.

Theorem 2. Let A be a G-ring, H boundedly complete lattice-ordered A-module and let K be a semigroup which admits an invariant mean. Then there is a K-invariant A-linear map $\mu: \mathcal{B}_{A}(K,H) \to H$ such that

$$\mathcal{M}(t_h) = h$$
, heH,
 $\mathcal{M}(t) \geqslant 0$ if $t \geqslant 0$.

Proof. Let

$$E = \mathcal{B}_{A}(K,H)$$

$$V = \left\{ \sum_{i=1}^{n} (k_{i}t_{i}l_{i}-t_{i}) \middle| n\in \mathbb{N}, t_{i}\in E, k_{i}, l_{i}\in K, l\leq i\leq n \right\}$$

$$F = \left\{ t_{h} + v \middle| h\in H, v\in V \right\}.$$

Define p:E -> H by

$$p(t) = \sup_{k \in K} t(k)$$
.

By proposition 1, p is an A-sublinear map. We want to prove that

$$h \leq p(t_h + v)$$
, $h \in H$, $v \in V$ (6)

Suppose that

$$v = \sum_{i=1}^{n} (k_i t_i l_i - t_i).$$

Put

$$z_i = \sup_{k \in K} |t_i(k)|.$$

Let zEH be such that

 $h + v(k) \le z$, kek.

Consider the order ideal I of H spanned by h,z and z_i, lii(n. Let λ be an invariant mean on K and let $\varphi: I \longrightarrow \mathbb{R}$ a positive linear map . If $u: K \longrightarrow \mathbb{R}$ is given by $\mathcal{U}(k) = \varphi(v(k))$ then $u \in \mathbb{R}$ (K,R) and $\lambda(u) = 0$. It follows that $\psi(k) \leq \psi(z)$. By Kakutani's representation theorem we have that h(z.

(6) shows that the map $f:F \longrightarrow H$ given by

$$f(t_h+v)=h$$
, heH, veV

is well-defined and satisfyies

 $f(x) \leq p(x)$, $x \in F$.

Applying theorem 1 we can extend fto μ : $E\longrightarrow H$ such that

µ(t)≤p(t), t€E.

It follows that t>0 implies $\mu(t)>0$. As $\mu(v)=0$ for $v \in V$, μ is K-invariant.

Theorem 3. Let A be a G-ring, E an A-module, H a bounded-ly complete lattice - ordered A-module, K a semi-group acting A-linearly on E and admitting an invariant mean, F a submodule of E such that $kx \in F$ if $k \in K$ and $x \in F$, $p:E \longrightarrow H$ a K-decreasing A-sublinear map, $f:F \longrightarrow H$ a K-invariant A-linear map such that

 $f(x) \le p(x)$, $x \in F$.

Then there exists a K-invariant A - linear map $g:E \to H$ such that $g \mid F = f$ and

 $g \leq (x) \leq p(x)$, $x \in E$.

<u>Proof.</u> By theorem 1 there exists an A-linear map $g_1: E \longrightarrow H$ such that $g_1 \not F = f$ and $g_1(x) \not \in p(x)$, $x \not \in F$. Define $T: E \longrightarrow \mathcal{B}_A$ (K, H) by

 $T(x)(k)=g_1(kx), x \in E, k \in K.$

Let $\mu:\mathcal{B}_{\mathbf{A}}(K,H)\longrightarrow H$ be the map given by theorem 2. The map g:F \longrightarrow H given by

 $g(x) = \mathcal{M}(T(x))$

satisfyies the requirements of the theorem.

If we put $A = \mathbb{R}$ in theorem 3 we obtain a result of Silverman ([2],[3]).

As an application, let A be the G-ring of classes of measurable real-valued functions on [0,1]. A sequence $(f_n)_{n\in\mathbb{N}}$ of elements of A is said to be convergent to f A iff for a choice of representants $\phi_n \in f_n$, $\psi \in f$ we have $\lim_{n\to\infty} \psi_n(t) = \psi(t)$ for almost every $t\in [0,1]$. Let E be the set of order-bounded sequences of elements of A. E is an A-module by defining

$$(f_n)_{n \in \mathbb{N}}^+ (g_n)_{n \in \mathbb{N}} = (f_n + g_n)_{n \in \mathbb{N}}^*$$

$$f(f_n)_{n \in \mathbb{N}}^- (ff_n)_{n \in \mathbb{N}}^*$$

The semigroup N acts on E by

$$k(f_n)_{n \in \mathbb{N}} = (f_{n+k})_{n \in \mathbb{N}}$$

Let F be the submodule of order-bounded convergent sequences of elements of A and l:F \longrightarrow A the map which associates to every convergent sequence its limit. Define p:E \longrightarrow A by

$$p((f_n)_{n \in \mathbb{N}}) = \inf_{m \in \mathbb{N}} \sup_{m \geqslant n} f_m$$

p is A-sublinear and \mathbb{N} - decreasing, 1 is \mathbb{N} - invariant and we have $1(x) \angle p(x)$, xeF.

By theorem 3 we obtain an invariant positive A-linear map L:E \longrightarrow A such that L \mid F = 1, that is an invariant A-valued limit of Banach type. This limit cannot be obtained "pointwise ", i.e. by applying a limit of Banach type for scalar sequences to the sequence $\psi_n(t)$ ($\psi_n \in f_n$) because we do not know if the limit function is measurable.

References

- 1 A.GHIKA
- "Prelungirea funcționalelor generale liniare în module seminormate ". St.cercet.matem., 1950, 1,2,251-269.
- 2 R.J.SILVERMAN
- " Means on semi-groupsand the Hahn-Banach extension property ".

 Trans.Amer.Math.Soc., 83, 222-237 (1956).
- 3 "Invariant means and cones with vector interiors ".

Trans.Amer.Math.Soc., 88, 75-79 and 327-330 (1958).

4 D.VUZA

"O generalizare a inelelor Ghika ".

St.cercet.matem., 1979, 31, 2, 251-274.