INSTITUTUL | ' : INSTITUTUL NATIONAL
DE N PENTRU CREATIE
MATEMATICA . STIINTIFICA SI TEHNICA

ISSN 0250-3638

ALGEBRATIC MAPPING GERMS AND GENERIC
PROJECTIONS
by
Herbert KURKE and Bernd MARTIN
PREPRINT SERIES IN MATHEMATICS

No.13/1980

BUCURESTI



S AVDIT AW JUTUTITEN
e FITARAD {lﬁ"f?ﬁ%

E AT B ATIITRNTE

&

mmﬁ e Sk e

w s e S s A ¥l S A st

= | rTazAUoUe




ALGEBRAIC MAPPING GERMS AND. GENERIC
PROJECTIONS

by

=)

- ,
Herbert KURKE ‘and Bernd MARTIN. YL LT o

March 1980

*) yumboldt Univensitat zu Berlin,Sektion Mathemaiik,hnten den

‘Linden 6,108 Benlin,DDR






Proi. Lurke

Die VG R At

(Bereich

0)

+ Baxh 1)
§1

§2

§3
§4
§5
§6
§7
§8
§9

Algebra)

Al gebraic mapping. serws. and generic projections

Table of contents

Tntroduction and formulation of the main results

Napying germs and stability

Soine preliminaries

ffquivalence of mapping germs

#initely determined mapping germs

Unfoldings '

Deformations

Semiuniversality of deformations and unfoldings
3tability and universal stable unfoldings
Stable equivalence classes

Normal forms of stable mapping germs

Appendix; NMulti-germs and multi-jets

Papt 11)

§10

611
§12
g1
§14
§15%
§16

simple contact classes and normal crossing of branches

The nice range and the table of all stable equivalence

classes in the nice range

The'oodimension of nonstablé jets in a contact class
3imple contact classeé

Local algebras with dim(mz/mSj = 1

lon-simple contact classes of :Ik(n, p)e, e 2 4
on-simple contact classes of :fk(n, p)3

lion-simple contact classes of F . (n, B) e 2



§1°7
§18
§19
§20
§21
§22

fhe codimension of wk(n, p)

Stable equivalence classes in the nice fange

The jet bundle

Global description of everywhere stable morphisms
Normal crossing of the branches

Calculation of codim TTE(n, D)



Introduction and formulation of the mailn results

I+ is well-know that generic projections ol smooth algebraic
curves into the projective plane can have ohly nodesias. sin=-
gularities and that generic projections of smooth algebraié
surfaces into the s_dimensional space can, Uup to analytic
equivalence, have only .3 tyues of singularities, namely

(1) 2 smooth branches crossing normally, (Zjv 3 smooth bran-—
ches crossing normally or (3) a pinch point (or Whitney um-
brella) defined up to equivalence either by the eguation

xy© =2~ =0 or by the parameterigzation X = U y =V

e 5 ! o0 :
J. Vather, using the concept oi stability of € "~ mapping
germsS, Was able to determine all singularities which can
aprear as singularities under generic projections

T

e pY ——e P  for suitable dimensions D wand. N

(et% [15) ), working over the field € of complex numbers.

" Here we want to present a purely algebraic approach to these

results which inoldde varieties over arbitrary algebraically
closed ground fields. The basic idea is to use localizations
in the sense of the etal topology of schemes, which leads to
the notion of algebraic equivaienoe of schemes or morphisus
of schemes in’ a p@int, instead of analytic equivalence.

.Thus the notion of algebraic power‘series will play an Lupor=
tant role in our paper: algebraib power series OVer a field

K Tare those formal power series f(T1, ...,‘Tn) which are

alpebraic over the field K(T1; ce ey Tn) o



If the field K §s, Ty ewawiles the Picla 6 ior complex
numbers, these are exactly those power series which represent
branches of algebraié fupctidonss0f Clos ot e orl=lne

The set of all algebraic power series F(Ty, «eoy i) forms

a local ring which we will denote by H1<T1, ...; 5y
n

ér by 0(} and which 18 the Henselian closure of the local
ring 0&@50 or, what is the same, the limit of adldlsmeding’s

- @(u) , where U runs through the family of etal neighdour-
hoods of O in A" .

The basic material about Henselian rings and alvabraié Tower
'series can be found, for exar pplel,y in [11] or [12] .

Te Tormulate the main resylts of Cour tpaper swe have o e~
duce some definifionsf ‘

We consider smooth algebraic varieties X , Y over the
ground field K and a finite morphism ¢ : X-——#—.Y

and by X' we denote the image ¢ (x)e ¥ of ¥ and suppose
that ¥ induces a birational morphism X —- X' (in other
words, X 1is the normalization of the variety Kevl ).
Consider é point 'y € X'* Tnd =ff1(y) = {X1, Sy Xr}
ag a set. ‘

It is well-known that the points Xy eeey X, are in G
correspondence'with the branches of X' at ¥ £y (MOBE yPReT
PepS

— (U, = P.
(QK’X'j) J

A\
cisely, by X, e Ker((ﬂx.
and T’j e V('Pj. ) & Spec(@x, y) we get a 1,1-correspon-

J

,V
Al = 3 _1 . & s . n
dence of the set ¢ (y) with the set of irreducible com-
: - A |
ponents ol .Spec((9x, y) (™ denotes the completion of local
b

rings).
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It is also known that there exists an etal neighbourhood
e e X0t s o whideh exactly splits into T jrreducible

components Uj throurh the point 3’6 U corresponding to

y € X' suoh what /@\U ~ o 01( ,y , Lees we can already
find the analytic brdnghes of X' at y in an etal neigh=
bourhood o Y (cf. [11]), hence in " the Henselian
¢ lLosUre .

G0 = speel 0 ) =im U

( U etal neighbourhood of " ¥ tn - X'

Defdndt Lonide f The branghes, of . X! (or of ¥ ) at y &€ X°

are crossinz normally, if we can find a decomposition of

: : n n
cerms (Y,y)z(lAﬂx Rapo K IAI'XIA.TM, 0)
and closed subgerms (Z., BRI G i, 0) such that the germ

(X',y) 1is the union (in (Y,y)) of the "pranches"

NEet o nr+1’o>

- A Ni-1,
(J{i’y) _def-CA : oo.x/A Z XIA -aoxﬂ

(for 1 =1, =esy r) and such that 7 induces finite morphisms

fx, + (Xoxy )————'- (X§,5) e

Remark: If all branches (x',y) are smooth this-iS’nofﬁfﬁé

but the "normal crossing" in the wsual sense.

Definition 2 A mapping germ o o (X, x)-——a— (Y,y)

(3% ,x) and (Y,y) smooth germs of varieties) is called stable
if, for any germ 5,0 of an algebraic scheme, any rrolonga—

tion «# of ¢ to a germ of a (S,O)-morphism

(X8, =0) P (v x5, yri0d
U U
Gi - —‘L—m ¥)



is equ1Vu1ént to the trivial prolongation ( o = id.) ,
i.e. there exist prolonsations :

At (X x S,x x 0) == (X > 3,x % 0) of idy
and

ity <a8yy 0) =% (¥i< S,y x.0). of  id,
Slch that for sp e, 8§ & 5 %

P (& (py8), 80 = By (p), s) .

These two definitions are the basic concepts of our paver.
T.et Us c¢all a morphism ¢ : X —= Y of smooth varieties

X, Y a general morphism if it satisfles the following three

points: _
(1) The moryhism . 1is Finite and ¥ : X —=X' = ¥ (X)e ¥
is birational onto X'L.
(2) The branches of Y are crossing normally’ everywherel

%) The germs of & = (X,x)-—*-(Y}‘f(X> ) ame "stable

foir eodlsl 45X E: X e

Then we can state the main results as follows

) If Y : X —=Y is a general morphism, it holds that

e The germ (X',y) and the multi-germ
9 j

/

‘fy 0 (X,X1, ...,“Xr>———’(‘r’y>
-1 :

Gwhere s (y) = {X1, aharess Xr} )
are uniquely determined up to equivalence by the

_Artinien K-algebra

Qy( "f ) =def | ("lp« Ox)y / mY,yO’& (9 X>y

o

= fﬁﬁ Qx.l (‘f )

where

QX< ) “deg, @X9X / mY’;I"(X>

CDX,X
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€rel)

G
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Y = g0 ()
J

P—-n

Pl g ete

(11) atmu (# )= ddn

: i |
whepen(l ) = =S g(Qi) is a certain invariant
s T

of Artininan K-algebras ( g(Qi)?_ embedding di-
mension of Q, in the local case ) (cf. §9)

Blera ; sing ; 2 43 {5
Gina) im0 ) = diz ¥ - dim () codim(X') - g(Q)
ALE d): X x 3 —=Y 1is a morphism, where X, Y are
smooth varieties. and S 1is any algebraic scheme, the

( 2 . = . e
set S'c S of gli™ s " sicheithait (P aot A x {s} A
is zeneral, contains a Zariski open subset, i £+ 4k 1S

not emptys

1f aim(X) € 6 (p - dim(X)) + 8 or if
p - din(X) > 3 and dim(X) €6 (p - dim(X)) + 7, ‘and

47 4 2p o+ 1 (where p ‘and-d" are infegers) and

JeRE T g s projectﬁye variety with a very ample sheaf }
-, then there exists a non-empty Zariski-open subset
U € Grass(p, | L it ) of p-dimensional linear systém§
in 'dﬁgdl such that for. A& U the corresponding
projection,

,‘PA‘:X——’-IPP
iis genéral.
Under the same restrictions on dim(X) and
p = dim(Y) as in (III) for any general morphism
of X —= Y there are exactly 54 local Artinian alge-
bras which can appear as the algebras QX(‘f b1
The table of this algebras and their relevant invari-

ants is given in §10. Hence,by (I), for a given ample

(p, n) there are only finite many tyves of singularities

in - (X) .



Purt I of the paper i3 devoted to local considerations. The
fiain results are a characterization of stable mapping gérms
Cproposition 15 and 14, §7) and of the equivalence of stable
mapping perms (proposition 17 and 1ts corollary, §8) and |
the construction of "normal forms" of stable mapping germs
if , starting with the local Artinian algebra Q , sdch that
o) £ o (&9 theorem). Furthermore the relationship
between unfoldings and deformations s clarified.'

Part I1 is devoted t9 the‘determination of the simple contact
classes (represented by their locadl Axrtinian algebra) and of
their stable representations as well as to the global appli-
cation of the local results, based on an algebraic construc-
tion of the jet bundle.

A preliminary version of this paper appeared in thepreprint
series of the "Forschungsinstitute fiir Vathematik der ETH
7irich". The first author wants to thank the ETH Zirich for
the exellent working donditions during the fall term 1977,

where parts of the results were obtained.
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§1. Some preliminaries

'A.morphism of 1oca1Arings A-+B Qith the same residual class
field K will be called a Weierstrass mérphism’”ff‘it has the
following property:

If M 1is any finite B-module such that'rM/mAM igi0f finité
‘length as A-module, then M is also a finite A-module.

We will frequently use the following result.about Weierstrass. ... .

morphisms

Proposition 1:-If M > M'! are finite :B-=modules and there exists-- -

-+an--integer h such that:LMPM¢gmMﬂ¢.thenyﬁQri§nY AmsubmodpleGMmhfiﬁé,:“.

it

P ¢ M there holds: : R
If M' ¢ P + me S for Sdz e (P) (h+e:(m.)) then E A s,
-~ B =T AA '
M! ¢ P (e, (B) = dim (P@K)) - it
B def. r A

+ :";'
c31M‘ and we have TonT.

Proof: If P' &= P n*M', then : : M'" = P' + m
to proof, that the residual morphism_ P! = M! .= M'/m M is
surjective, then the result will follow by the property of

Weierstrass-morpnisms and Nakayama's Lemma. Now

Pt ﬁ'/ch+1ﬁ' is surjective by hypothesis, hence
c . B . B . ;
1(&'/mBC+1ﬁ') =0y l(m%M'/mB]+1M') = 1(P'/mAP') and therefore .

. 3=0 _
the result follows if we prove 1(P'/mAP') £ ¢, because then

C= ] C+1_ (] i ] . 1 o o
mBM =m M and from Nakayama's lemma again we infer

C=—

Jioe : —2
mBM 0. :
From mgM < M' follows mAP ¢ P nM' =P' hence ey
23 h+e_(m )
+1
1(et/m,p") < 1(/m,"* ') < 1(p/m P)1(a/m P*Y) < e (p) ( Ay = ¢
A A A h

q.e.d.
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§2, Itouivalence of mapplng germs

Lo mapping germ. g :@J%cn - (Ap,o) is e@uivalent‘to a p-tupel
of algebraic power series without Sonstant termesBys &ényp) we
will denote the set of all such p-tupels and by Jc(n,p) the
affin space’=of a]l p—tupels of trunced power serles without

constant term, of degree c and by

1 ° — '/ L § ‘ =
Pt JC.(n,p) Jc(n,p),(w/c - Jad="d)

the corresponding truncations (it Corresuonds to mapping germs

& cimiobed bosthe o intinttesinal neiphbourhooa srie

will also consider the set, J(n,p) = lim Jc(n,p) (formal power
e = : : c
geries) . By €(n,p) we denote the group of equivalences of J(nip)s

i.e. the group of automorphisms Aut@%n,o) x;Aqt&Ap,O) 4

J(n,n) ~ J(p.p) . acting on J(n,h) by
-1
(9,1‘) (CP) = gion@ o X
The linear algebraic groups Gc(n,p) = image of ¢€(n,p)
in Jc(n,n) x Jc(p,p)

acts algebraically on Jc(n,p), and we have again canonical

truncation maps, which are surjective

jc : @c,(n,p) -+ ec(n,p) (co2ct> ) :
AN 3 ; ;
We define €(n,p) = lim Gc(n,p), this group is contained in
= . e

A : .
3(n,n) ~ J(p,p) and acts on 3(n,p), compatible with the action

A
of €E(n,p) ¢ &(n,p) onto J(n,p) ¢ J(n,p).

The groups @C(n,p) are linear algebraic groups acting algebrai-
cally on the affin spaces Jc(n,p).

If ¢ € J(n,p) (resp. 3(n,p)) we denote by I(¢9) the ideal of
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h :
A
@n = 2An 0 generated by the components of ¢ (resp. by I (¢)
: : A - n :
the ideal of @n = QAn 0 generated by the components of g),

by Q(¢) (resp.‘6(¢)) the K-algebra @n/I(¢) (resp. 8;/&(¢))

and by X(¢) (resp. %(@)) the scheme Spec(Q(¢)) resp. Spec(a(wTT3/

which is the fibre of the mapping germ .

It is useful to consider the somewhat larger group C(n,p) of
contact equivalences. C(n;p) consists. of all automorphisms. vy
n_,p ARE : n_.p n
of (A »A",0) such that the composition PyeyY * i xms ,0). - @A ,0)
débends‘only on the first component x of a point (x,y) e;ﬁnxﬂp
.and such that y induces an automorphism -;QA_?.XO,O) - (/A“xo,o)
It acts on 'J(n,p) such that the graph of yg - is the trans— - o+
form of the graph of ,¢ ﬁnder Y il eun-if iwe writer ".'_ g_
y(x,y) = (a(x),B(x,y)) (the first component of (An,o), the
second one of (%p,o)), then
: -1 -1
(vo) (x) = Bla " (%) ,9(a "(x)))
Considering truncated power series we get a projective system
of linear algebraic groups

e CC.(n,p) = C_(n,p) (ct > ¢)

C

acting algebraically on the projective system of affin spaces

) o A
Jo(n,p). Therefore the projective limit C(n,p) acts on 3(n,p).
Mapping germs in the same 6(n,p)- orbit are called formally
contact equivalent. The following proposition is obvious (cfs

appendix).

Pronosition 2 Mapping germs e¢,¢'€¢ J(n,p) (resp. S(n;p)) are
contact equivalent (resp. formally contact—eguivalent) ifsand

only if: G = e (re.s_'p. %(f ) = ?C(«f D0, ulvere oN6METTT T
denotes the fibre 9’-1(0) : §<7’> . the formal fibre. S

If we congider 1-parameter families e@ln,p) resb.Cln,pn)

Ve
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such that T Y «F id, and if we calcuiate yt(¢) - ¢ mod (t2) we

get what we call the tangent space to the orbit at ¢:

g, @ VST, dua i R @M L00R)
e ) = n G ¥ TP ¢ n & = 3(n,p)

: h
where Aal(g) 1is the @ n O—module generated by ég ,...,%En and

<W(m ) is the maximal ideal of K(¢1,...Hp)c K{x, ,...n<} -9 il :

They are mapped onto the tangent spaces
T(ch,GC) resp. T(jc¢ycc)
of the orbits of € feSp. C At g (& and C: are algebraic
: c c € c (e,
groups acting algebraically on the affin space Jc(n,g>. We call
¢ ¢-finite resp. c-finite if T(¢,€ resp. T(9,C) are open
in the Krull topology of J(n,p) , more precisely:

The morphism ¢ ¢ J(n,p) 1is called k-¢-finite resP. k-C-finite

' k
if T(¢,€) resp. T(¢,C) contains mﬁJ(h,p).
We will also consider the subgroups ¢ = Ker (¢ - GU)' of &

the tangent spaces to the . ¢ -orbits are

v v+1 v &p
T(e,6) =m. ~ale) +m_ (e*m =7)
¢ £ ¢ b ey .
and the mapping germ ¢ is called ke @ -Einite n Lf an c T(@,Gv).
We will show that ¢-finiteness implies ¢’ ~finiteness and that

it depends only on a sufficient high jet of ¢.

Proposition 3: (1) For any integer k there holds:

If a mapping germ ¢ ¢ Jinp) - 48 k-C-finite and o' € J(n,p)

is a mapping germ such that (") (¢) , then @' is

Ik+1 = Jg+1

k-C-£finite.
“(2) There existy functions a(k,v) with the following property:

If a mapping germ ¢ aadiin jp)z - is k-¢-finite, then o is

e e e
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a(k,v) —_@U-finite ;

+
(3) Tf . elk) = k+l + p2(kpp) then there holds -.
If a mapping germ ¢ is k-¢-finite and if o' 1is a mapping ﬁer%b

gisFen such that jc(¢') = jcfw)and c 2c(k) then ¢'_ is k-g-finite.

The proof of (1).is a straight forward application of Nakayama's
'iemma.

To prove (2), we define af(k,v) by induction on p. Put

a(k,0) = k and assume a(k.p) has been defined for T ﬁ

such that ¢ is a(k,p) - @p—finite.

From T(¢,@D) = mnv+1a(¢) + mpv(¢*m;Bp) we. infer
: v-1 v n+v-1 p?u-l
<
Bies ) /ARRODUIE S IRUE L A% e due
hence
2T Y 3
L(T/T(9,€)) 5 €(T/Tle, e 1)) + n(™0-lyy o @HY,

‘ e e v + D '
E/n(p:e” ") 5 eia/m 2ty e R B
therefore, iisf .k, n,.p are fixed

€(I/T(p,c")) < E(v) (depending only on v)
Now we define integers qj(u) by

q. (v) +p

Ugfplen @ Gelamh (Esaaptuberabid o > @18 Thes 4

The term p(gji) is a bound for the embedding dimension of the

B

0p4module P = T(@U,¢)/mnv 1A(@) and by proposition'lv(applied
- (U)
J

to P.CM = J/mnu+1A(¢) and M' = m M) dF

q. (v) fenda Ladv)
B/Tie’ g) #m I 3) = L/T(e’ ) +m T

q. (v) =
then m_ J de e o).

J)

Because of @(J/T(eu,¢)) < 2(v) we obtain therefore, if we put

a(k!U) =q‘?(u)(U))
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the inclusion

ma(k,u)

'U
A J %, T (s Ex)

Now we want to prove (3). We will apply again PrOpoéition g,
s M= J/mnA(q)‘) , M' = mnkM and P = T(cp',(ﬁ)/mnA(q)'). thus

2 k+p)

we get: If c = clk) = k+i4p ( - and jc(¢') = jc(@), then

mnkJ ¢ T(e', &) q.e.d.'

Proposition 4 C-finite mapping germs are the following ones

(i) finite mapping germs

(ii)mapping gerﬁs ¢ such that X(¢) is a complete intersection
of dimension n-p, which has.bnly an isolat;d singularity

Proof: Céfiniteness is.obviously equivalent to the property,

that the jacobian matrix of a defines a linear map

vQ(w)n = Q(w)p, whose cokernel is concentrated on the maximal

ideal, which is eguivalent to (ida or Wdi) .

Remark If ¢ € J(n,p) is ¢~finite, then it must be c-finite,
hence ¢ is finite or X(o¢) is a complete intersection with

an isolated singularity.

. If ¢ is finite and 1rg(e) < p, thgn‘necessarily de§k¢) < g:fGE'
If thesfibre X(updnids 2 complete intersecfion then w 1is
necessarily represented as a gern of a morphism U:ﬁV  0£ smooth
algebraic varieties at points 0eU, O =« (0)eV such that, if
C(¢)cU denotes the critical locus, then C(g)- {d} - V - {Oj

is a closed embedding.

proof Assume ¢ is finite of rank I < p,ethat means if L
fis he quotient tield of U, then Ehe Weckor Spaic- Ale) ® gL

has dimension r over L. Let us denote by K ¢ L the
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quotient field of ¢*G§ < E;, then deg(¢) = [L : K] and

»Qn ® ¢*bpx = L. Because of the-@ffin%féhess 9?..?"_??“h?33
1P = gP 4+ A(gg)@(p L, hence p degy & p + r.degg-, -i.e. aeg ¢ <1§:'—17'
n G m : :

. Proposition 5 If two mapping germs g,¢%'¢ J(n,p) are formally

C-equivalent, then they are C-equivalent.

Proof: E—equivalence‘means that there exists an isomorphism
T 2 Q{9") = 0lg) hence we get a 0 {¢) ~homomorphism

T Q@) {X3/T (MR XD ~ Qle)

-

by G(x&),: E(xj). By the approximation theorem for algebraic
- “equations, for any integer-c we can find a 'Q(¢)-homomorphism1¢;v£
u_ oz () X)/I(e")Q(e)<X? - Q{¢)

c i
such that u_ = u mod ma Bl and u_ composed with the
c Q (o) e

 canonical map i : Q") - Q(w)(X)/I(w‘)0(¢l<X),i(Xj) = Xj

mod I(¢')Q(¢)(X) yields a homomorphism ’cc = ucoi : Qle') - Q(¢)

Sach thet 0 - 5o
c Qe

is therefore an isomorphism, since, in the same way, we can appro-

y- For c 21 ‘the homomorphism 9,

- -1

ximate the inverse isomorphism 7T =30 = to geét a homomorphism

T and e is a homomorphism of Q{¢) into itself, which

coincides up to order c© with the identity and therefore it

must be an automorphism by [11] as well as lUcoTéf

Proposition 6 If ¢ € J(n,p) is a finite mapping germ and if
the mapping germ ¢%'e¢ J(n,p) is formally equivalent to ¢, then

¢! 1is equivalent to ¢;

Proof Consider o* : E% - @%, which makes G; to . a finifer—
OP—aIgebra and the following functor on the category of

‘Henselian-K-Algebras: For a K-algebra R the elements of F(R)



S

are tripels (g,0, 1), where € @p R {5 _a K-=morphism.of local
rings o : 0 ® @ -+ R 13 a0 —morphlsm of local rings (® denotes
the Hensellan tensor product) i.e. o(f®g) = e(f)o (1 ®9)
e : - C pic 3 ) o
T @p ® @L_ R ® o, & 6% morphism of local rings, 1.e.
Q>
T(£@g) = ¢*e(£) v (1Qg)
such that

e

il

T(1@e'*(g)) =0 (1gy) ® 1

e

Then F commutes with.filtered limits, and if (a,B) is a

g g ¢ - A P A
formal equivalence of ¢' and ¢, i.e. a*e @'* = ¢*o p%,

S : A A : ;
(where o¢* : @% = Qn denotes the prolongation of ¢* to the

(

completlon), we get an element
(8 O,T) € F(O ) ’
P

where i o %} is the canonical embedding,

S Xps

S (s ©9) = £*(9)

v ¢ 2
S e e (R )

» . A A
(here we use the canonical isomorphism @ gt) © T 0 , which
: P it 1 n
follows from the finiteness of ) B
Hence, by the approximation theorem for algebraic equations,
for any .integer ¢ >0 , we can.find an.element (ec,ac,fc) € F(G%)
which coincides up to order c with (Bici i) I ci> 0 €.
o] . ‘-' . .
is an aptomorphism Op - @p (see [11]) and if we define

p. ¢ But(®®,0)) ,a, ¢ Aut((A",0)) by

p* _(£) = o (1 ® f)

il

a*c(f) Tc(l Q £)e @p ® ,Q" =9 ,

n n

then ac,ﬁc coincide up to order c¢ with a, B, hence they
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are automorphisms. Moreover

1l

o* _(¢'*(£)) = o*(pX(D),

i.e. ? e ' i o
o T Be 222 :

Proposition 7 1f ¢ is a germ of 2 function, i.e. ¢ ¢ J(n,1),
which has only an isolated critical.point, and if ¢%¢ J(n,1)
-is a function germ which is formally -equivalent to ~#, Then p"

is eguivalent to .

We only will sketch the proof: One considers the group

Aut(QAn,O))'= R ¢ €. acting on J(n,1), and «its "tangent space

to the orbits" ~T(¢,R) = mnA(w) similar as for; the group €

or C. If ‘¢ has only an isolated critical point, then T (e ,R)

is open in the Krull topology, i.e. there is.a k such that

m ot o

In the same way as for C (see the next section) one shows that

this implies, that ¢ is formally (2k+1) -R-determined, i.e.
2k+1 SS A e A ; % : ; :

p tm- J(n,1) ¢ R (R-orbit of ¢ in J{m,1)). Now b - A

ds formally eguivalent to ¢, we can replace @' by an equivalent

T " ; . Y R ' ' »I

fuanction ¢ such that J2k+1(¢ ) 32k+1(Q)' therefore the

"

function ¢ is formally R-equivalent-to ¢, i.e. the
" (a(x)) = ¢(x)

has a Tormal solution &(x). ‘Therefore, by the approximation
theorem for algebraic equations it has an algebraic solution

a (x) such that jl(a) = jl(a), which implies that a(x) is

an automorphism g.e.d.

| /U—,e-,d {66 31
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3. Finitely determined mapping germs

We say that a mapping germ ¢ ¢ J(n,p) is c-S—determineB

. P

resp. c-S-determined (where 'S is one of the 'groups Se or €)
if any mapping germ ¢' such that jc(¢') = jc(¢) is S - resp.

A C A
S equivalent to ¢, 1l.e. an(n,p) + Qe S(P resp. ¢ S‘p :

" Proposition 8 For any integer k there holds:

If a mapping germ ¢ € J(n,p) is k-C-finite then it is

(2k+1)—C—determined.
, If the characteristic of K 1is zero, then "k-C-finite" implies

" (k+1) -C-determined) " and "k-@-finite" implies "c(k)—&—determined";

N ) (kgp) P el

'Proof:'For r>v we denote the unipotent algebraic group

: v
Ker (Cr T L i
TE ¢ < 2v: and oyiE (e lx) PR, ) ielx) = X+ ao(X) ,ﬁ(X.y) =y+Bo(X.y) ;

the action of C; on Jr(n,p) is given by

o ity = e Do (0 + SoleE ) o (Be T (RY)

3P : ; A P P
where gh(x) denotes the matrix with columns ac and o=
X Gxi - Oy

is defined by considering P as a polynomial in x.
Therefore C'P = +m’7 % = &
= P : mn : ARk mnI (P) Rk mnTP (cp)
v X : v X
+ =
C¢ mmJ ¢ + mnT(¢,C) + an,
4 . ° : . . \ . . 3
and if ¢ 1is k-finite, this implies
v vtk

r
C ™ + me +
® T an

Assume ¢'¢ J and j2k+1(¢') = j2k+1(¢)’ i.e. ¢i€¢ + mn2k+1J
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' = ' kel v g

Therefore, by induction we find a sequence y ¢ C R o
and

: a a-1 1 TR

J2k+a(Y °Y cce0Y @ ) = 32k+1(¢)
: - : a a-1 I - - ,
If y = lim{y oy ... Yy ) € C, then yo' and ¢ have the

a-’CD T - “

same jets for any order, hence yo' = ¢.

By the‘precediﬁg proposition ¢' 1is C-equiwvalent

to ¢.

Now, for r2c we consider the affin subspace N ¢.J_ ~ of all
jets P havingfthe c-jet jc(w). If ¢ 1is C-finite and .

c 2k + 1, all elements P ¢ N represent C-finite mapping germs. -
The same is true for the group €, if ¢ 2 c(k)

‘If G is “the group Coks1’ € = k + 1,-then k-C-finiteness of @%5 
¢ implies,for P ¢ N,

TP (GP) » mnkJi 2 mn?Jr ,‘= tI‘p“‘(N)
If G=¢ (r2v) and ¢ =max(c(k) ,alk,»)), the k-finite- -
ness of ¢ impliés .

T, (GP) 2 m°J_ = T, (N) |
We will show that this implies N ¢ GP for anyv P ¢ N, provided
the ground field K 1is of characteristic O.
Tence, fior the seoup C we get = ~IF thg"mapping germ is
~k-Cc-finite anq. ¢' is a mapping germ with jk+1(¢‘) = jk+1(¢),
then there is: a tramsformation .y ¢ C .and j2k+1(Y¢') ='j2k+1(¢)'
Hence, by the first part of the proof, ¢' is C-equivalent
to ¢. By repeated application of the argument we get, for the
group €, chosing ‘

Acv = max(c(k)?a(k,u))rv el



- 20 =

If ¢ € J(n,p) 1is a k-e-finite mapping germ and ¢'e¢ J(n,p)
- . 2 v ; 3 - ' i o o .
is a mapping germ with jc(k)(¢') Jc(k)(¢)’ there exist a
sequence of transformations yu e € and

v—-1 ;

J Kyuoy A e ()
Sivd SSua

If. 7y =-lim . cew TR T T

V0

To prove N ¢ GP we first need the following lemma .

Lemﬁa 1 IE. G sis dn algebraic group acting on smooth varieties
X ang Y andiif j : X » Y is a smooth eguivariant morphism
and N = j—l(Q) (@ e ¥), then TP(N) 4 TP(GP) for all

points P ¢ N implies dim (GP) = dim(GQ) + dim N, i.e. all

orbits through N have the same dimension.

Proof TQ(GQ) = TP(GP)/TP(GP)nTP(N).= TP(Gp)/TP(Ny BER T (N) ¢ TP(GP}

il

hence dim(GP) = dim T, (GP) = dim T,(N) + dim T, (60)

dim(N) + dim(GQ) g.e.d.
In ‘Our case <« X = Jr, Y = JC and therefore all orbits through N

have the same dimension. Now the result N ¢ GP foilows from

Lemma 2 Let V be a quasg:projeétive algebraic variety, W an
algebraic subvariety_and G a connected algebraic group acting
on V. Assume that for any Q ¢ W the following conditions are
satisfied
(1) T W ¢ T, (60)
(ii) dim GQ = 4 “independent of Q
~ Then W is contained in an orbit GQ,'provided thé ground field

~——K has characteristic O.
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Proof: The prodf if reduced to the case where V is a non- .
singular variety and W a smooth curve. It is sufficient to
prove that any curve on W 1is contained in an orbif, because
the intersection of W with an arbitrary orbit is closed by
(ii), 'and if W “Vilsi notcontained incan orbit,.ithexe would.
alsb exist a curve on W not contained-in an orbit.

Hence we may assume that W is a curve. Now we can replace V

by the smallest subvariety V, ¢ V containing W which is

1

G-stable. Therefore, any G-stable open-subvariety ~U1 < V,1 has

a nonempty intersection with .W, and if:-W.n.U, is contained .

in an orbit then /- Is contained in the sameserbit, too.

Hence we can replace V1 by its nonsingular locus; moreover ; - -:

we can assume that any orbit meété W (the union of orbits
intersecting W contains a G-stable open.subvériety), and
only finite many orbits intersect W in a:-singular point
(because of dim W = 1) . Taking the complementary set of this
orbits, we are in the case described above.

If W 1is not contained in an orbit, we will sﬁow»that—con—
dition (i) cannot be satisfied (assuming Vf W nonsingular,

dim W = 1) . Any orbit meets W in a finite set of points,

N

b rletish

hence dim V = d+1 if d is the dimension of the orbits. The

variety -V isieontained in some'projective space and if B
is a sufficiently general section of V with a linear subspace

of codimension d, then B will be a nonsingular curve on Vo

and alimost all ombits GJ, U € W, will=trahsversally* inteuisicicid B

(by Bertinis theorem) .
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If V ¢V x B denotes the closure of the image éf ‘G x B »VxB,
(o, @) = (gQ,Q) and p :'G - B, q : 6 - V the projections,

then q will be ~etal over a nonempty.opéh set U ¢V and
aiﬁost'all fibres of p have the form Gox{Q},Q elB..

If % < V is the inverse image of W, then property (i) would
imply that the restriction 1w = p/% would have a zero tangent
map, hence it would be a constant'map and therefore. Wv would

be contained in an orbit.

Remark This lemma is not true in positive characteristic as

one can see by the following example: V =¢@2, G = Ga acting

ohw Byt (x,y)) ~ (x+t,y+t5) .
The orbits are the curves xp—y = const, hence the line
W:y =0 has property (i) and (ii), but is not contained in

an orbit.

4. Unfoldings

If ¢ is a mapping germ @™, 0) - {&P,0) , by an unfolding of ¢
over a germ T, we understand a mapping germ
o ¢ (A"xT,0) -~ @FxT,0)
2 (x,t) = (2, (x,8),1)
such that @1(x,0) = ¢(x)
Two unfoldings ¢, ¢! over (T,0) are called equivalent, 2
2t = LogeR -
where R is an unfolding of the idendity of a&n,o) and L
an unfolding of the idendity,of. @ o) e, Blyt) = (Ll(y,t),t),

Ll(Y,O) )¢ and R(x,t) = (R

L (x,8),8) R, (x,0) = x), equivalently
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Q'i(Rl(x,t).t) = L1(¢1(x’t)’t)

If T = Spec(A),where A is a local (llenselian) K—algebra with residua

field K, an unfolding of ¢ ‘is given by a p-tupel of functions
p =
¢ e ALX> (X = (X;,...,X%))

which reduces mod mA<X>p to the p=tupel syl

Example Any mapping germ ¢ ¢ J(n,p) of rank r (i.e. the

rank of the linear part of ¢) 1is équivalent to an unfolding

of a mapping germ ¢ € J(n-r,p-r) of rank O:K_ o e 50 al g

If the components are such that their differen-

'¢p—r+1""’¢p

tials de ,...,d¢p are linearly independent, we can

p~r+1

find coordinates (xl,...,xn s ,.1f,tr) onw‘QAn,O) in such

33 i
‘a way that o943 tl,...;¢p 5t and on {mPJQ) in such

a way that
n

(pi = (poi (xl’ ._.7 ° )xn.r) v 2 ‘yij (x ,t) tj . \ far 4

j=r+1
for i =1,...,p~r, hence after this coordinate transformations.

¢ becomes an unfolding of the mapping germ

(po(xl,...,x )

n-r ¢°1(§,---.X )

n-r

X0 B0
(pop_-r ( 1 » 9 n_r)
Consider an unfolding ¢ over T of a mapping germ P .
If “f ¢ & — T is:a morphism, we get .an unfolding over = indgqed

B e A Hedliliais)c
f*e(x,8) = (e, (x,£(s)),s)

The unfolding @ 1is cailed versal if to any unfolding of ¢,
o (A"cs,0) » (APxs,0)

and to any mapping germ f : S - T, where S¢S is a zero-

dimensional closed subgerm, such that f*p is equivalent to



o

the restriction W‘ﬂnxg, there exists a prolongation £ : 5§ = T
of £ , such that Vv is equivalent to f¥*g.
if)moreover,the tangent map

To(f) :‘TO(S) 5 TO(T)

is uniquely determined by Y, then @ 1is called semiuniversal

; e /
or miniversal.

If this property holds only for arbitrary O-dimensional germs

S;f¢wiswcalled"formally versal resp. formally semiuniversal.

Assume the unfolding & is (formally) semiuniversél and consider

the germ 1, = spec(1(£)/(t2)). If ¥ is an unfolding over I,, 1t

1

corresponds to a linear map To(Il) = K - Tb(T)’ hence
to a tangent vector 1 of T at O. Conversely the tangent

vectors of T at O are in (1,1)-correspondence with

f

morphisms 111 - T because any £ is given by a linear map

% )
£* . Hom(mT’o/mT’O ,K)

r

' = * * : * —
f*(b1t1+...+b hiiie) blf (t1)+°"+bsf (ts), £ (ti) = cit

sts
Hence TO(T) is in (1,1)-correspondence with the set of equi-
~valence clasges of unfoldings of ¢ OQer I,-
An unfolding of ¢ over I, has the -form

o, (x,8) = wilee) k()
where g(x) is an:arbitrary vector of (algebraic) power.series.

Two such vectors g, g ,determine equivalent unfoldings

if and only if

1l

n
o (X)ghbg alx); = so(x)E + £L = r,(x)%ﬁ_ + g(x) + Ale(x)))
23 _

i=1

where r(x) 1is a vector of power series with components ri(x),




o

AMy) a vector of power series:with_ P cbmponents
(i.e. ¢ = Lo®oR -
Lyt = 1y wiealy) Rl k) =ax +itrie) )

Hence g and g' define equivalent unfoldings if and only if

1 n OXi

n

g-g'esx O 2 + ox©)P = a(g) + ¢*{0)P
i= e P 5= P

Consequently we get the following isomorphism

1,1 = 0P/a(e) + ¢0F F 3(n,p)/(alg) aT(n,p)) + ¢*I(p,p)

Remark If ‘dim_To(T) < @, then

TO(T): éiﬂﬁnA(¢) + @*@g (by Prop. 1), hence there is
no difference between the formal and the algebraic case.
Assume that this space is of finite dimension; if

i e iV iy :
g ,...,gTe mnE?p represent a base of this space, then

ok SRR B = it T
d(x,t)y = (plxf + tig (x)+...+tTg (x),tl,...,tT)
~should be a“candidate for a semiuniversal unfolding:

Brersiles i ol A Olegilites®)

n+1
p(x) = x 4
. e n+1 3 n-1
RK{x)/K&xYx + K<k ) =" Kx+...+Kx
hence
: n+1 n-1
o(x,t) = (x‘ + tlx +"'+tn—2x’t1”"'tn-1)

is the semiuniversal unfolding of ¢
2 Sl
2) HIEUAT ,0) salh ;50) ¢ (x,%,) = X%,
.K(xl,x2>/K(x1,x2)x1 & K(xl,xz)x2 + K(xl,xz) =0

hence the semiuniversal unfolding is trivial.
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2 1 : 2 3
3) @ VA ro) = % ’O) ‘f(xl’XZ) = xl g X2
: = 2 2 3 5
e R e i %oy =5 Kxy
2 3 _ '
Q(xl,xz,t) = x," = %y + tx,

" Proposition 9 T = (x),..., g Cﬁ)ej(n,p) represent a base
';f the vector space T (Lf) (]p RN (q’) e p Upp.

The unfolding & (x,t) = Qe )y (x)+...,... ?g (X))

is formally semiuniversal.

Proof ‘Ihe >rnof L] deducea from Schlessinger's criterium [15].

Iﬁnsider the funotor (- Tocal nrtln—k~albebra with reSLdual field K)

n e SRS e » e S IetPE S S

D(R) = set of all unfoldlngs of £
{equivalence} _ ;

¢ over Spec(R)
It satisfies Schlessinger% conditions, hence there exists a

formal semiuniversal unfolding, i.e. a complete local K-algebra

3 with residual field K and for any v onbunfolding

- v+1 vl o
¢, over Spec((A)/mA ) such that @v+1mod m= - and

any infinitesimal unfolding is induced from some ¢ with a

unique tangent map.

Moreover: BY construction of Schlessinger

- . 2 ' o
o ¢(z,t) mod (tl”"’t¢) & %
and A = K[ﬁl,...,t+]/some ideal I :
: 2
Tiie (tl,...,tT)

But because for ¢(x,t) there are no relations améng thes t

; +1 : s
and ¢ 1s mod (t) " induced by a morphism
v+1 ‘ :
£ A~ K{tl,...,t 17/ GE ,...,tT) from some @g with
uniquely determined tangent map To(f;) =1, we infer
- v : g
A< K[tl,...,tT] and ¢ mod (t) 1 is equivalent to ¢,

hence ¢ 1is formally semiuniversal.
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Thus it is clear that the condition

(*) dim, (J(n,p)/ (a(9)nd(n,p)) + ¢*T(p,p)) < ; T e
is necessary for the existence of a semiuniversal unfolding,
and if there exists a semiuniversal unfolding of ¢, then

.
e(x,t) = (¢(x)+v§1tvgv(X), t

1,..,tT)-
represents one (if gl(x),...,gT(x) e J(n,p) represents a base
mod ((A(¢) nT(n,p)) + ¢*J(p,p§», and any semiuniversal unfolding
is(in a non-canonical way) equivalent to ¢(x,t). The condi;ion
(*) is obviously equivalent to the property

(**). ¢  is ¢-finite.

Before we consider the question of existence of semiuniversal

dnfoldings, we will consider deformations of germs of schemes. -

Y« Deformations

Letl V be a variety or more general an algebfaic scheme or a
germ of an algebraic scheme. By a deformation of V over a germ
T we understand, as usual, a flat morphism P T s 40L 28T mS of
algebraic schemes together with an isomorphism V':'--X0 = special
fibre off@iielover T &

Equivalence of deformations over T 1is defined in an obvious
Wy ek ! afe defined to be. equivalent if there exists a
T-isomorphism X <2 X' (of germs) Which moreoverlis compnatible
with the lseomerphisms V = XO and V = Ko'. The pull back with

Al o

respectisto avmap . £ @ 3 =+ T induces a deformation L£*X =8 oF'iv

over 8. The deformation is called semiuniversal 1f, to any other

cet|

deformation Y -+3 of -V and to any mapping germ T : 5 =T



~-of a zero-dimensional closed subgerm S ¢ S such that

— /8 (as deformations), there exists a prolongation

i

Fex
£ . s -7 ouel thot < E°X ~ vy (an isomorphism of deformations)
and such that the tangent map To(f) is uniquely determined
by (Y = S, V;JYO).
Now, concerning the existence of semiuniversal deformations,
the following facts which are consequences of the Tlatness
should be observed:
We can think of V as the special fibre of a mapping germ

o v e -~ @0
(if vV is embedded into (" ,0) and defined by p equations) .
Then |
(i) Any deformation X - T is embedded into: (An,O) X
and defined by a mapping germ '

o, @"”,0) xT ~ %p,O)

such that @1(x,o) =HplFTxis Qzl(o) and V = Xo is induced
by the embedding into /Anx'I';
(o) -TE Q(X).= (Ql(X)""’Qp(X)) “is a relation of ¢ ises
o - ¢ = O, then o(x) can be prolongated to a relation
Pty of Ql(x,t):
Sl s i
(whicﬁ is, in fact, equivalent to the proéerty of éi’l‘o).to'be

flat over T).

1f e UAn,O)><ijbyﬂp,o) is an.other map with the property

4.
e e ' : ] : : :
@1'(x,oy = ¢(x), then Rlo=wn (0) defines a deformation

equivalent to x if and only if there is a T-isomorphism

E ~ 5 9 n
ext N % {pduding the idendity on X'O =X oc (A ;0) s The
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isomorphism ¢ can be prolongated to an T-isomorphism
R : (&",00xT ¥ @",0)XT, such that R(x,0) = (x,0) and

®, oR generates the same ideal as ¢&'. Using prOpefty (ii)

1
we see that this is equivalent to the existence of a map
Lilx,;y,t) such that

(1) .L(x‘,O,t) =0

(2) Lile,y,0) =y

(3) Lx,e}(x,t),t) = ¢, (R(x,t))
Furthermore, the property (ii) (flatness) is equivalent to
(4) . Lf Ql(x,t) = @(x) + Fl(x,t), where Fl(g,o) = 0O

then for any relation ¢@.¢ = O there holds

e.F

1 € mTI(Ql)

(because the elements of m I(Ql)"‘have-the form Q(x,t).Ql(x,f);

T
Q(x,t) = 0y (5,6 ....Q, (x,8)},0(x,0/=0s. but fig.Fy = Q(x,t) g {xt)
is gquivalent to. o(s) + Q(x,t))f¢1(x,t) = O Dbecause of

Q- = 0, thus wPlx t) = o(x) + O(x,t) is a(lifting of the

relation o(x)).

LE 4T = Spec(K[t]/(tz)), we get,by (1)...(%#), a description

of the tangent space to a semiuniversal deformation laF sk

existd , it must be isomorphic to

T, 2 Hom(I(e) ,0,)/a(esv) ¢ 9.P/T(9)® P + a(y)

To ¢1(x,t) = ¢(x) + tF(x) we associate the map. I(p) — @v

given by vglfuwv »ugiquD[V (which is well defined by (4},

from (3) we infer %that two suoh‘maps define‘equivalent de-="
formations if and only if their difference’ is ‘contained inc

ACy ) = ACe)| v . There are different possibilities: to
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prove the existence of a semiuniversal deformation, provided
dim TO< e , I will describe one of thenm (which was sugzested
by o cohversation with D. Tessier).
By a result ol Gruson and Rtaynaud [16] g -Eoiany algebraic
scheme X over a cenm: T tlhere exists a closed subgerw e
which represents the functor

Ea)ie Y mer T BRCEE flat}

This result we will apply to our situation.

Proposition 10 Let €& E(n,p) be a mapping germ,

e = X(%)-QI(AH,O),‘and assume
a0 e @) + I9)" ) =i

4 .
et 5 (), oy gr(x)16 Can' represent a base of the vector space

an/A(Lp) + I(y) ®P and T elns lfar,O) the germ defined by

$G) 2 tegt (0 =0

ir e (Ar,O) is th; closed subgerm which represents the functor
s ~ff 1 85—~ (a%,0); PR3 e

then‘ X = ix(mf,O)T'*,T together with thé canopnical lsomor=

phism V”=iXO is a deformation of V , which is formally

semiuniversal.

-Proof Consider unfoldings (o (Anrfs,O)-—v(Apx-S,O) of
and define equivalencé of unfoldings in the following sense:
Unfoldings & ,@' ¢ (mnx:S,O)—*'(Ap><S,O) are called equivalent
if there exists an unfolding R(x,s) of the identity of (An,o)
and an unfolding iz, 7ya)~ of the ldentity¥of (A“x3Ap,o)
such thates D) = (s lulstsiis)) and o B (e 0580 = 0.

By P(s) we will denote the set of .all egquivalence classes of

untoldim: s =08 r¥Ps e

S Sy i
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Then 3S[|-=1(3) 1is-a cofunctor on the category of germs.

By the yro;erties.(1) - (4) abéve, if D denotes the cofunctor
NG = o OfAequivalence tlasses of deformations bf V over S,
then D 1is a subfunctor. It is easy to check that F - satis—
fies the Schlessinger's criterion and

B (x,t) =plx) + 57
' e=

universal element of F .

to 2%(x) represents a formally semi-

Since D ¢ F and by the definition of T & (A¥,0) 1t is

evidenf that X —T (defined above) is formally semiuniversal.

6. Soieiinea s ity ol delornaiaobaand Upi ol ines

In both cases,'unfoldings and deformations, we have a co- .
functor on the category of-éérmé,
D : S » {classes of‘unfoldings of ¢ over S} resp.
S {clasSgsﬂﬁf'defOrmations'of~ V :over S}, and if the . vector- -
space J(n,p)/A(9) n J(n,p) + ¢*J(p,p) = T¢ resp. “

Hom(I(¢),Gb)/A(¢),V) = Tv (if V = X(¢)) is of finite dimension,

"agerm- T and a class ¢ € D(T) were constructed such that the

corresponding natural transformation

5
<

A

E:T =D (£f:8~TP£" (§)(e DI(S))

has the following proéerties:

(a) ¢ 1is formally smdoth
(b) ¢ induces an isomorphism :

2
T (T) = Hom(Spec(K[t]/(t%)),T) - D(Spec(K[t]/ (t2)))
Kand TO(T) -_Tw resp. ? TV)
Recall that a natural transformation v gUE F* of cofunctors

F,F' on the category of germs is called formally smooth if
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for any zero—dimensional'germ s and any closed subgerm
S C s the canonical map

e T e Al ol - i e (v(n), n(8))
F' (S)

is bijective. This property is stable under pull back along
any natural trans formation gt - FY and if 'F, F! are re-
presentable, it is equivalent to the fact, that the Jacobian
of v at O. has the rank equal to the dimeﬁsion of "the
térget germ F%.

The cqfunctor D  can also be considered as a functor on the
category H, on allﬂlocal Henselia Noetherian K-algebras with
residual field K.

it is easy to prove

Proposition 11 Assume D is a functor on the category HK into
the category of sets, such that there exist'a finitely generated
AHenselian K-algebra A € Hy and an ¢ € D(A) such that
(1) T T = spec(ad) - D is formally smooth
(ii) The.canonical map 1im D(Ba) - D(lim Ba) is bijective
for filtered limits B = lim By
{£ii) The canonica} map D(B) .= lim D(B/mv+1) is'injective

for algebras B € HK of finite type.

is a

wnl

Then, if B is an algebra from HK’ T : spec(dr) -

wn!

morphism into a sero-dimensional closed subscheme of

- %

s = Spec(B) "and n € D(S) such that ﬁ? = f ¢ , there exists

a prolongation pegagiey (Tof ( £) \Such) thatsan= £ e

proof Because of (ii) we can assume that B 1is of finite type-
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Let v Dbe big'enough such that S ¢ S = Spec(B/mD+1) ¢ S =
: v : B v+1
2
)

o= Spec(B/m;+ €.... By (1) the morphism £ extends to a map
E : g = Spec(g) ~ T such that %*glsv = n[Sv. By (iii), there-
fore %*g = i*n ot e g - S 1is the canonical morphism.
Therefo;¢~ o =(%,i) : S TxDS is a natural transformation

(we identify schemes with the corresponding functors by the

I

Yoneda embedding) ¢/3

(2,I) =~ @ and the diagram
def . :

Tﬁbs-————+ S
R§>\\\\ I i

a :

: S

is commutative. By (ii) the functor TxDS commutes with

(projection)

filtered inductive limits, hence we can apply the approximation
property foi‘algebraic equations: for any integer . c¢ there"
exists a natural transformation SO S =+ TxDS such that

|S'-= clsc; We choose ¢ > 1 and such that Sc 5> S. Then

a
C C

the morphism- T =‘qqcc': S-» S .-dinduces the ideptity on Sc.

By'[11], proposition 3.4.5.4pége 92, the morphism s is then

an automorphism and o = @ SO is a section of g, prolongating

G. Thus the first component of o 1is a morphism f : § — 1T 4

- *
prolongating £ and such that f g = n g.e.d.

In the cases of unfoldings and deformations (assuming T
; P

resp. Tv are of fiﬁite dimension) the conditions (i) and (ii)
"are satisfied, the crucial property is (iii), which in this
case means obviously the following: If unfoldings (resp. de;

formations) are formally equivalent (resp. formally isomorphicb

then they are equivalent (resp. isomorphic).
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proposition 12 Let Vv be an algebiaic germ over K such

that TV has finite dimension. If V has only an isolated

singulérity or 1f K ig-0f characteristic 0, then it has

a semiuniversal deformation.

proof: We have to show that two deformations X, over
S = Spec(A) (A a Henselian Noethgriaﬁ K-algebra) , which are
.formaily i somorphic, are also isomorphic.
We canléésume that X and X; are given by unfoldings
p

o,0" € A<x1"'ﬂ’xn>  formal equivalence means: T £

A A : : v
A{X} = A{xl)cao )xn} = 13:m (A<x1)"‘ )xn>/m A"<x1’..‘. ’xn>)

then

S = P, )

|

ShoveL aln) e R % mA_I'\{x}n
= ~ P : e
Bl ey b mAA{x,y} LI (yl,---,yp)\

0]

i

B (x,0)
This equation 1is equivalent to an equation

Sy} = 2@y + Blx,y) (y-elx)
and the formal solution a(x),ﬁ(x,y),@(x,y) (with components in
;{x,y} e ;[x,yﬂ = Kﬂf,x,y] e o= Ry Acan bé ap§£oximated
by algebraic solutions up to arbitrary ordér by [12]; 1f K
ias Characteristic"o. .
The case of isolated singularities goes back to R. Elkik. One
uses the following reésult of (ElkikenI£ .R is a Noetherian ring,
which is Henselian along a closed subset' v = V(I) ¢ Spec (R)
and if y - spec(R) 1is a quasiprojective R-scheme which is
smooth over Spec (R) outside a closed subset W ¢ Y, then any

A A : .
R-morphism E : spec(R) - Y such that  Elspec(R) -~ V¥ ¢ Y - W




A 5

(R denotes the I-adic completion), then for any integer ¢ > O
.tbere exists a section 5 Spec(R) ».Y such/that ! & = £
on Spec (R/Ié+1). (éee [7 |Homa[2 }) 3 3 - T
It can be applied to R = R(x)/I(Q) and Y = Spec(R(x?,/I(@‘)R(x'))'
(which is-a. filtered colimit of affine schemes of finite type
Qvér B) . The formal isomorphy of the deformations means that
there is an isomorphism
& g{X'}/I(@')R{X'} = g{x}/I(Q)R{xj»~-i,w~.
inducing the identity mod mA). ‘ RN < I
If HY:icRY.= R(x')l(@')i(x') is anfidéai,defining the critical
locus of Spéc(R')’-oVer Spec(g), then“*r'/H" is’finife over
;, because it is quasi-finite by the -assumption - -that
v =‘Spec(R'/mAR') ‘has only an isolated singularity. (For Henselian
'~ rings, quasi—finite-implies»finite,wby@Zaanki%; main ..  theoremygas vosns
see for example [11]).

Therefore the quotient R'/H'R, is isomorphic to R'/H'  (because

it is the completion of R'/H', but R'/H'! 1is already complete) ;

~

if H =R n o(H'R'), then R/H ¢ R/ (H'R') = R'/H' is finite

over A, hence complete, hence R/H it R/c (H'R') , and H defines

the critical locus.of 'Spec(R) over A.

.

We apply Elkik's theorem to the ideal I = mAH, the ring. R

is Henselian with respect to V(I) and because all gquotients

A~

R/IU are finite over A, hence complete, the I-adic completion

A A

is R = A{x}/I(s)A{x]}.
The ideal H'@y defines the critical locus W of Y over

Spec (R) (because Y 1is defined by the same equations over R
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as Spec(R') over ;). By e(x') = o(x') we get a R-morphism
Speé(a) -~ Y and ‘E* (H'@y) = H?( > mAHa = II‘;, hencé

E(Spec(g) LX) e S oW Let e 4e Spec(R) = ¥ i.be a section
which coincides on Spec(R/Iz) wikthe, & A £ @ : Y - Spec(R")
denotes the canonical projection (given by the embedding R' ¢
R\X')/I(@')R<X')), tlhiensgisete aurSpec (Rl st Spec(R') - is an
R—morphism which is mod 12. an isomorphism, hence by [11] *

it is an g—isomorphism G g(xf)/l(@')%(x'? = R(XZ/I(@)R(X).
Now by the approximati&n theorem it can be approximated by an

A-isomorphism A(x”}/I(Q') = A(xz/I(@), which induces the

identity mod o hence by an isomorphism of deformations g.e.d.
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7. Stability and minimal stable unfoldings

A mapping germ ¢ € J(n,p) 1is called stable, if any un-
folding of ¢ is equivalént to the constant unfolding over
the same parameter germ (at least formally, later we will see
that this implies also algebraic equivalence).

Using the'(fofmaliy) semiuniversal unfolding,we see that

stability of a mapping germ is characterized by T¢ =0, i.e.

by

Pids x0 P
.(Qn‘ AF¢) +» A(p (Op

or also by
STnUp) ¢ Ale) + ¢t I(p Bl EEKP

Here are some. properties of stable mappings

Proposition 13 " Let "~ @ Jilnp)T - bea mapping germ, q > p

(1) ¢ stable A, :J(n,p) ¢ Alg) + I(¢)® By mﬁﬁ(n,p)+ KP :
(hence ‘stability depends only on the (p+1);fét of a

mapping germ)

(2) If n>p and ¢ stable, then ¢ is flat with finite
critical locus over (ﬂp,o)
(3) > T€ -m <P and ¢ is - stable, then . is finite and

)

'dimyw(xp)<< e or ¥ is a closed embedding and n=0 .

Proof (1) If M = 9P/ale) > P = ¢*@§P + a(9)/a(¢), then

P =M if and anlymif the canonical map P = P/m P - M/m M = M
P B

is surjective, and because of dim P < p this is equivalent

K

to the surjectivity of
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5 & it i = OPyae) + 1 (o) PP + m2a(n,p) .
n n n

hence stability is equivalent’to

P ok ®p q '
L WO T e J(n,p) = kP + alo) +I (¢) PP+ (n,p)

pProperty (2) is obvious, because stability implies that the image

of the Jacobian Qo) - Qo) F contains an(¢)p, hence the

Jacobian of ¢ is surjective except at the origin, hence if

n > p,.then dim X(¢) = n;p and it has only an isolated singu-

larity, which means that ¢ is flat with finite critical locus.
I1f n =p, then ¢ must be finite, hence flat (beéause both

local rings are regular).

To érove (3) we consider again the cokernel, say €, oif the

~

Jacobian Q(cp)n = Q(¢)p.,Because of . n < p: and dimK(C) < p we

e

see that Q(g) must be finite and dim(c) = (p-n)dimKQ(¢).

In case of equality we must have dim(c) = p and the Jacobian
must be injective, hence ¢ must be of rank . n. and therefore

‘a closed embedding, dim (Q) = 1 = L. ne=0.
: K p—n

‘Corpllary I1£ p Z 2n and ¢ ¢ J(n,p) is stable, then ¢ is

a closed embedding.

This is clear because of dimK(Q(@))<-JQ— =1 + =2

— < 2
p-n p-n

or n = 0.

.



Proposition 14 Let ¢ ¢ J(n,p) be a‘mapping germ o.f rank O
and (Q(x,t),t)éJ(n+r,.p.+ r) be an unfolding of ¢, then the
following statéments are equivalent |
(i) (¢(x,t) ,t) is stable
(ii) For some c > r the vector space

I(n,p)/a(e) + I(@F + nP %3 (n,p)

is generated by the classes of the vectors

o1 A% . 0% 02
X,O) S (0,0) 3is e oy (X’,O) S (O;O)
Ot1 atl : atr atr 5

Proof: (i) = (ii): If (eo,t) = ¥ 1is stable, then
ptr ptr

Bh a8 ‘Y*(Dp+r + a(Y), hence for any germ y(x) ¢ J(n,p) there

exists a relation

,§1§§- (w(x))= (U(@(x,t),t)

o oY r oY ok B9
+ > » T ’t + ? S ,t : o
5o v(a(x,t),t) I Ex, Bl b der v, (it )_

1=1 1 e=1 9 o)
and for t = 0 we get £
o
24 OX .
?(x,0) = ¢(x), %;(X,O>=(axl and
il

%\é’- (x,0) = (OQ/GFQ(X’O)) (where S denotes the (o-th canonical
Q.

Q
unit vector of Kr) , hence
| i : le] 5 o
Ux) = u(e(x),0) + I £, (x,00=2(x) - = v, (o(x),00% (x,0)

i=1 i o=1 (6]
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= v (o, o)iZi (x,0) %% (O”O)] niedialp) + Tle) 2F)
o=1 © Q Q

(because ¢(0) = O and rk(@) = 0 implies:

u(0,0) - s v, (0, o)—- (0,0) = 0) B E s
Q=1 Q
: r
(ii) = (i) : Because of (2@ - Elcvtu,ﬂ'w (¢,t) we can assume
p= .

6t (O o) =0 Ffer v =1,...,r (replacing o by

: ¥ :
L 0n :
% - E ct , ¢, = ot (0,0)) . Because of ti,...,treI(W),

from (ii) we infer

®p ,  ptr - 20 ¥ :00
J (n+r ,p) g_I(W)_ o J(n¥E ,p) + zi@ rox, + 21 KSEQ
-— Q—.

We can consider J(n#r,p)  as a direct summand of J(n+r,p+r),

+ +
and therefore as a subquule of (O§+i. In (pg+r there holds

=
a(¥) + J(n+r,p+r) i +Jh&;@)

which implies

O ptr

+ :
J(n+r ,prr) ¢ INY) + mi+;J(n+r,p+r) + a(vy),

hence stability of ¥ by the preceeding proposition.

XYy

Example If o¢(x,y) =(‘a b> and if the characteristic 1 = o 3K

X +y

does not divide a+b, then the smallest stéble unfolding of*lp
can be determined as follows:
Consider the vector space E = J(2,2) /6 le) I(@)@ : and

determine a base of this vector space.In our case, A(g) is

b-1

Y X
generated by ( a-1> and < ) and it contains 6022, where
ax by ;

6 = byb—axa is the determinant of the Jacobian of ¢




Because of 6 + ag, = (a+b)yb, by, - 6 = (a+b)xa (¢, = xa+yb),
2 2 2
the vector space E is the quotient space

o Anp 3 :
(xxix1/ %) @ yRiy1/ D) 182/ Ty g ) ol Tag ) IROXYI/ ey y)
by ax

s

SR 0--- @ K(Ja-1) @ K‘;’ Beue @ Kf?b-i)

By ¥(x,y,s,t) = (&(x,y,x,t),s,t), where

XYy &
Q(st!s:t) = ( : ' )
- : a a-1 b b-1 3

b4 +sa_1x +...+six+y +tb_1y +,..+t1y

we get therefore a stable unfolding of ¢(x,y).

This example shows that a stable unfolding is not necessarily
a versal unfolding of ¢-.
Now we consiaer the following functor on the category ‘HK of
local Noetherian K-algebras with residual class field ”K.
Let ¢ ¢ J(n,p) :be a mapping gerﬁ,V§nd consider ¢ e A(xl,...ixg>p
such that ¢ mod.mAA<X>p = ¢ énd 2(0) = Q._
we define ¢ ~ o' (o' ¢ A<x>p) if there e#ists an R.e a<xy"
such that R mod mA<(X»> = X and an L ¢ A(x,Y7p (y = (Yi,.;.,Yb))
such that L(X,0) = 0 and L mod mACX,Y)> =Y and :
L(X,e' (X)) = ¢(R(X)) .

By D(A) we denote the set of all equivalence classes [a]
of such unfoldings ¢ with respect to the equivalence relation ~.

It ig easy to check that

D(A) - D(A')x D(A") 1is surjective if

D(At/tA?*)
A", £EAY ¥ K and A" -~ AY/tA% ' is @ morphism

in e Do ik 1eze DA S)es [0'] & D(a')  and if 3', 3" denotes
the image of &', &" in (A'/tA')<X> , then ' ~ 3" means

that there are transformations '




p

L(X,Y) e_(A'/tA')(X,Y?p, R(X) e (A'/tAU(X) as above and

=L (X3 (R(X)) |
‘We can 1lift Ty Ro.top LY at<x,Y>Y and R ¢ AX>" such that.
Lix,0) =@, L% ¥ = ¥mod mA,A'<x,Y>
R(X) = x mod mAJA'<X7

and we can replace ¢' by L(X,2'(R(X))), hence we can assume

=B

and if o =N(I¥ 00 ¢ A(X)p, then [¢] is mapped on [e*],[e"].

o —

Hence the first condition of Schlessinger's criterion is

fulfilled.

If A' = K[t]/(tz), then ‘A = A" @ Kt where t = mA,,t =0
and the lifting ¢ is uniquely determined, and

D(K[t]/ (tD) Z 3(n,p)/13fn,p) n ale) + I(e) ©P]

This is a finite dimensional vector space if ¢ is finite
~or if X(¢) 1is a complete interéeétioh with an isolated

&

critical point.

Proposition 15 Assume ¢ is a finite mapping germ or X(¢)

is a complete intersection with an isolaed critical point. Let
wl,...,¢q ¢ J(n,p) be mapping germs which:represent a base of
the vector space
J( ) J ; @p
n,p)/[J(n,p)na(e) + I(e) ] and

W = T e
e U

Then (o(x,t),t) 1is a stable unfolding of iip: *and “1f (¥(x,s) ;s)

is any stable unfolding of . ¢ over a germ S, f : 8-T a

mapping germ of a O-dimensional subgerm S ¢ 5 inte: T, suech
that (eo(x,£(s)),s) 1is equivalent to (¥(x,s),s), there exists

a prolongation ~£'% saip | g8 EAsudh that v (xgs) 3s)
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is equivalent to (e(x,f(s)),s).
Moreover, the tangent map To(f) is uniquely determined.by

(Y(x,s),s) .

The proof is completely analogous with : the proof of the exi-

stence of semiuniversal deformations in the preceeding section.

We callb,(Q(x,t),t) a minimal stable unfolding of ¢ (it is

uniquely determined up to equivalence. As a corollary we get

o

CorollVary it @Foriia ifinite mapping germ ¢ ¢ J(n,p) or a mapping

germ which defines a complete intersection with isolated singu-
larity, the properties
. _ infinitesimal stable
- formal stable
- stable
are equivalent.
Using the result of Gruson and Raynaud ‘quoted in the last section,

~we also get the following

Coroiilry 2 Xt M@ (x,t) be) AR P o) is a minimal

. , . : + 3
stable unfolding of ¢ and T c(ﬂp q,O) the maximal closed
subSpaée over which (&(x,t),t) is flat and ¢ : X = T the
mapping germ induced from (2(x,t),t), then ¢ is semiuniversal

(i.e. ¢ : X T is a semiuniversal deformation of X(e)) .



8. Stable equivalence classes

Proposition 16 The set of stable jets in Jp+1(n,p) is.

Zarlskl—Open in Jp+1(n,p).

. Proof: The points of Jp+1(n,p) are p-tupels Z(x) of poly-

" nomials of degree < p + 1 such that 2(0) = 0. Let z(”)(x) be

() 4 e g |

the components of 2z(X) and 2° the coefficients of Z(D)(X),

a = (qi,...,anL O< |a] = ogte et < p+1. Then the Z(i) are
affine coordinates on Jp+1(n,p), and the coordinate ring of
PGl Sed ok 21 = xpen Dy
Consider the modules
: . +1 1
Dot lacamni el R K[z( Y x),...,2® 1P

0Z

n

+ ¥ — K[2Z, X]
X
=1""p

v

(]
i

P
- x[z,x] /sp+1

The latter one is a finitely generated K[Z]-module and from
proposition 13 we infer that -supp(Tp+1) = ﬂp+1(n,p) c Jp+1(n,p)

“is the..set rof snon~-stable jeits.

Corollary For each gq )-p the set of stable jets in J (n,p)

is a Zarlskl open set ]Let us denote the set of non—stable

mapring garms by II(n,p) € Jifnso) nand its image in k(n,p)

Proposition 17 If ¢ € J(n,p) 1is a stable mabping germ,

then C¢ ~ I(n,p) C Gop.
We show: T (¢, ¢) ='T(¢,C), if ¢ g istable; i.e.

I(W)G)p ¢ TiEoie) = mnAﬁp).+ @*mpébp, which follows imme-
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| diately from
(0p= + *@p
- Alg) Q o
by multiplication with @*mﬁ.
Therefore for any g2 p + 1 we can conclude

¢ jq(¢) = qjq(¢) > Hq(n,p)

(because the Gq-orbits are open in the Cq—orbits and the
Cq-orbit is covered by cq-orbits), hence C-equivalence of

stable mapping germs implies formal ¢-equivalence.

Corollary Stable mapping germs ¢,¢' ¢ J(n,p) are formally
equivalent if and only if

2p+2 2p+2

Q( )/m )/m

If" the characteristic of ‘K .isi;zero, then already

Q(w)/m T Qe ')/m )

Q( )
implies formal equivalence of ¢ and ¢!
If ‘p =1 -or if-'n-< p, then formal equivalence implies equi-

valence.

3‘2”)2 s ')/m f) implies

Proof An isomorphism Q(¢)/m
2p+1 i e

¢' € Co + m P J(n,p) = C¢ Dby proposition 8.

For characteristic zero the proof is analogue.

For p =1 0or n<Sp the equivalence follows from propositbn 6

resp. proposition 7.

Remark Stability is not invariant with respect to contact

s
equivalence. Lxample: = ( y Xy

gquivalent, % is stabley but . 4! is not. .

= :
) and o= (yB) are contact
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9. Normal forms of stable mapping germs

Let Q‘ be a local Artinian K-algebra . Ve want to determine

all stable mapplng germs ¢ such that Qf(e) = Q.

If Q 1is of the embedding dimension o= dim(mQ/m ) , then there

exists a surjection
4y 4 K(xl,...,xm> -+ 0
We denote its kernel by I and define (according to Mathery
i(Q) = dim(I/mmI) -

which is an invariant of the algebra . Q.

Tf+ e d(n,p) ~Ls-a mapping germ and ole) ¥ Q then necessarily

p-n2 i(Q)
The integer p = dim(Qp/57;)) (where a(g) - denotes the
image of A(e) in QP = @np/I((p)Qa Py  has also an invariant
meaning, it depends only on Q -andeep.=.n and ve denote it,
according to Mather, by »
= AN P
pp_n(Q) = dim(Q"/A(9))
" The invariance follows from
Lemma 1 There exists a constant g{Q) = e(@) and -
B (Q) = (p-n)dim Q + g(Q)
(g (@)

e i(Qaimigs 1€ 1 ="ila

proof Consider a presentation Q = @L/I where e = dim(mQ/mQ

and choose a minimal set of generators wl,...,wq O a Ly,

: Y :
then ¢ =(§1)e Fle,q)s and , Q.= Q(y). We call ¢ a minimal
i q’ a: :

]




e

presentation of Q, we have i(Q) =g - e and if

po= dim(Qq/A(q,)) = “i_(Qj (Q)), then py - q is the numiber of-
parameters of a minimal s'table unfeldirng of Wy, i.e. the -
smallest intvegers p,n, such that there exists a stable mapping
germ & ve J(n,p) wiAth f,ibre Q , are

P=p and n=e+p -q=1i(Q + M (i)y pi‘Oposition‘llI).

Now we consider the mapping germ

wl” e e G

then -Q(¢') = Q(¥) = Q, hence ¢' and ¢ are contact equi-

valent, which,xifnplies dim Q?A(qﬂ) = dim (f/A((p) ‘by using the

definition of contact equivalence. On the other hand, we can

calculate dim Q/A(¢') very easily because of the particular

simple form of ¢':

T e i@
ale") AfY) x O @ Qe_ ,+...+Qe " (where S p i Sy

XA

~denotes the canonical base of Qp) ’ so we get

aim QP/a(e) = dim(@Y/A(4)) + (p-n) dim Q - i(Q) dim Q

- aim (QY/a(p)) - i(Q) dim Q

hence g(Q)

q dim Q - dim A(y) ~ (g-e)dim Q
; = e dim Q - dim A(y) > e

because A(y) has at most e generators, each of which is

contained _in mQ@ q-.

Assume now that p, n are positive integers such that



() et G

() o e (Q)

pp—n
and-let ¢ ¢ J(e,q) be a minimal presentatioh (o) T O
We want-to construct a stable germ ¢ ¢ J(ﬁ,p)n such
that Q = Q¢ .

: -n+
We consider ! =Kg) € @2 nTe€  (observe that p-nte = g

g

by (1)), then
0 < (p-n)dim(my) + (g(Q) - e = pp_n(Q)‘,- (p-n+e) < n-e
by (2) and therefore there exist an integer d, O < 4 § n-e

and germs V4 ,-..sVg € J(e,p-n+e) which represent a base

: 20, 3 -n+e i

of J(e,p—n+e)/A(@') + I(q:)ep . Consider coordinates
xl,...,xe, tl""’td“ ;énd zi,...,z8 (if s =n-e-d > 0)
: n e

on (A ,0) and the germ

: Pr+t, v +;:.:+'t;:"7v
Aol 4 d
e A5 |

A

e J(np) .

It is stable by proposition 14+, and QCy) = O by construction.

This proves the njf-part" of the following

,Theorem 1#iBQ (018 a logal Artinian K-algebra, there exists

5 stable mapping germ e IGnyp) Y Q(y) & Q if and only
1f (1) and (2) (see above) are safisfied.

Any such wapplng germ is equivalent to one which has the
wpormal form" (3), and g

s 2l = CpSE)E S (p-n)dim(my) + 8(Q) = e,

il

d
D

P -/up,_n(Q)

]

S

Proof We have to show that for stable map, ing germs Y€ Jenm)
it holds that P ;,up_nm) (the inequality p-n 2 i(Q) holds for

any mapping germ ¢ such that Q(¢) = Q). But this is obvious
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vbecause of dim(Qp/A(¢)).$'p for stable germs ¢, hence

~

b, bRl dimi(eP /sl n s, 2

Example Q = Ktx]/(xc+1)

I£ é + 1 is not a multiple of char{K), then Q) =c,
dim(Q) = c+1, 1(Q) = 0O, hence stable mapping germs ¢ ¢ J(n,p)
exist if'andJonly i£ é = n.- ang 'p Z(p—n)(c¥1) + . In |

this case, they can be put into the form

c+1 c-1
b ¢ +tc_1x +...+t1x

. JC=1
LT L tyx

c c-1

O e Lt

€oon,1¥

z
Zin - W :
where z = Qé ) » 8 = n=c(p=n#il) ,

If c+1 1is a multiple of char(K), we get a similar Kesult, 3

but Withddgi@lesictlisahence 2 p- 2 oy, pi Silp-n+ihiletl)s

Corollary 1 If ¢ € J(n,p) 1is stable and p > n, then

p=n’

if and only if p = pp_n(Q) and e = &(Q).

dim(Q(e)) < e where e = dim(mQ/mQZ), and equality holds

-~

Corollary. 2 fLEE o & J(n,p) is stable and p = ik rkilo) ,
then either'»¢»-is a closed embedding or rk(e) = n-1, p=2n-1,

and (up to equivalence)
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Broot If P s.n + rk(¢), then dim(Q(¢)) i +_£§éﬁl-; 2
(by the preceding corollary), hence ¢ is a closed embedding.
If p =n + rk(e), then dim(Q(q)) £ 2, hence ¢ is a closed
smbedéing or dimﬂQ(¢)) = 2, rk(¢) = n-1 = péﬁ,;andAthe no:mal

form of ¢ vyields the assertion.

Remark: If Q is local Artinian K«algebra,' dim(@)- = 1, then
-("1- 1

2 )

Proof: If ql""’ql—i € mQ is a K-base of mQ,Athen Q is

i(Q) <

1 > : . :
determined by at most (2) equations g.q. = za,.q, i < 3J,
; 1) k 13 k
-1 :

hence (;) - (1-1) = (12

)2 i(Q) g.e.d.:

Example Stable mapping germs ¢ € J(n,p) such that 4p = 4n + rk(e)

For.the corresponding local algebra Q = Q(¢) there holds
dim(Q) < 5. | '

If dim(Q) = 5, then necessarily e = ¢(Q), which implies by
definition of g(Q): dim(a(e)) = e dim(mQ). Therefore, if

'Q = Q(y), where ¢ ¢ J(e,g) 1is a minimal presentation of Q,

the vectors %ﬁ ,...,%& “must be linearly independent ‘over

' A e e :
Q/ann(mQ) and ann(mQ) must be of dimension 1. If ch+1 =0,
mQC # 0, then necessarily ch = ann(mQ), dim(sz/ch) =.3—e el

or ¢ =2"*and! %e = 3¥gL Ser= s then ¢ = 4 and QYQ) =4
which is not possible. Tf e = 2,"then ¢ = 3 and by multi-

plication we get a non-zero quadratic form
% 2 - 95 3
(mQ/mQ ) ® (mQ/mQ ) my /mQ -
Hence there are generators x,y of mQ; such that

-2 2 g A - -
m,” = x K + x'K, x =0 and xy = O, and up to isomorphism

there are the following possibilities for a minimal presen-




tation bf Q:
Yy = (x”, yg. xy) , ' g(Q)'é‘6
¢2'=(X3 + yz;XY); g(Q) =5
These algebras ﬁave no stable represéntatiQe in the range
4p = 4n + rk(@).
If e = 3, we get, in the same way,up to isomar phism, " the
following possibilities for a minimal presentation of Q
b, = (xy, xz, yz, yz, z2,x3) g (Q) = 10

2 2.2
(xy, xz, yz, y° + x°, 2%) g4(Q) = 8

&
N
Il

2 25.92° "9
¢3=(XY5 Xz, YZ,Y.'*'X»Z'*'X) g(Q)=7
These algebras have again no stable representativeé in the
range 4p = 4n + rk(g).
Therefore it remains the case dim(Q) < 4. We describe the
corresponding algébras by minimal presentations.
(i) e =3
' 22B 25/ 5 : | :
V= (x,y",2" ,xy,xz,y2) , i(Q) =3, gqg(Q =6, dim(Q) =
Range of existence: p - n > 3, p > 4(p-n) + 6
(ii) e = 2
g8 ; ' : ‘
Yy = (x .y ,xy) i(Q) =1, g(Q) =5, dim(Q) = 4

'Range of existence: p - n >3, p > 4(p-n) + 5

fl
RS

v, = (x"+y% xy) i@ =0 g(@ =4, ain(Q)

Range of existences: P~z 2,.p>A4p ~n) 4

]
A
Q
P.
3
©

]
w

) :
Yy =zt y xy) A =0, gi(e)
Range of existence: p - n2> 1, p = 3(p = n) + 4
(i) T ei=ad

Ve=x7) , i(@) =0, gl@) =s, dim(Q) =s + 1

Range of existence: p 2(s + 1)(p - n) +s. and p - n = 2 or

S % 2 amd pr- m > 1.



Appendix: Multi-germs and multi-jets

For later use we need some slight generalizations of the results
about germs (jets) to multi-germs (multi-jets).

By a multi-germ (resp. multi-jet) we mean an m-tupel of germs,

w(l)’...ﬂw(m)) € J(n,p)m. i.e. a mapping l%ﬁ@n,o) - (AP,O)

z(l) ,...,z(nn) e»Jk(r14?)m).

o = |
(resp. jets Z2i= |
The group e’ (resp. CQ) of contact equivalences on J(n,p)m
(resp. on ka(n,p)m) is defined as the semidirect product of
.the symmetric group Sm with the m-fold direct product of the
'gréup of contact equivalences on J(n,p) (resp..on Jk(n,p)).
The group of equivalences & (resp. Gﬁ) is the subgroup

of the semidirect éroduct of. Sm with the m-fold direct préduct

of the group € of equivalences, consisting of ‘all elements

((al,ﬁl) seeenla B )M, (0y,B,) ¢ € such that g, = cee =B

-This group  acts on J(n,p)m resp. on Jk(n,p)m (algebraically),

for example

,(;{(1? ) (1) (m)

,s"f:’Y : » ) (o rece s @ ) (y(i)‘p(n(j‘))

(m) (3 (m))
@

9%y

)
ei',:eSp. Ci are linear algebraic groups having m! connected

mo_

components and (e e 38

k) G

k
connected component of the unat) .

We put Q(¢) = Q((p(l_)-)_x oipal iRt Q.(q)(m))

(1))x (m))

(C (where‘o indicates the

0(z) = 0(z i el

The tangent spaces to the orbits are
e e N
T(CZZ).Q (méi)a(z(i))x et e m(m)d(z(m)i) + .’1‘4(:3)@EJ ch(n,Q)m
T(&m@) = (m(i)A(p(i))x S mém)a(é(m)))-+ @*mbﬁp e lanp)

n

o e ] i {x i:-x >
Bie el = (g ’A(z(*))x e :-::n"“)A w‘“)))




SO0~

Proposition A 1 'Mqlti—germs @,V € J(n,p)m< are contact
equivalent if and bnly if Q(¢) = Q{w). The same holds for
multi-jets. - ‘

Proof: Obviously, contact equivalence implies isomorphy of
the corresponding algebras. Convérsely, assume Q(¢) = Q(y).
@)y v gy 1)
(3)

By a permutation we can assume Qe ) . Then

there are (pxp)-matrices- A(J), B with coefficients

in G% and automorphisms oy of (a",0) and

¢(j) = A(j)w(j)oa w(j)='B(j)¢(j)oa51. We can assume

eI B

Sy

J . : :
because of W(J) = _(C(Ip - A‘J)B(j))+B(J))¢(j)oa51,.

by the following

Lemma If A,B are (p.x p)—matriées over a local ring (with
infinite residual class field), there exists a {(pxp) -matrix C
over this ring such that C(Ip - Aé) + B is invertible.

Proéf of the lemma: Reducing modulo the maximal ideal we can
consider matrices over a field K. Let E ¢ KP be a sub-

space complementary to Ker (B) (consider B as an endo-
morphiém of Kpj and let F ¢ K° be a subspace complementary

to Im(B), and let C, be an isomorphism Ker(B) > F.

We define ‘

C v if v e Ker (B)

AV 150 e B

where A ¢ K is a scalar such that }\(Ip -~ AB) + B induces

an isomorphism E > Kp/F (cbserve that B induces an isomorphism

~

B~ Kp/F). Then C(Ip - AB) + B is an isomorphism of KP g.e.d.



Now the proposition follows by choosing the contact trans-
formation

) = (e () 5 (3) (a; ()Y 5 = 1,...m.

Unfoldings of multi-germs are defined in the same way as for
germs. If T is a parameter germ, an unfolding of the multi-

germ ¢ over T is given by an m-tupel

(1) (m) ,_ (m)

o' Wy o ey iere (87 (x,8),8) is an

unfolding of P
‘The multi-germ ¢ is called stable if and only if any un-

folding of ¢ 1is equivalent to a trivial unfolding. As for

the case of germs there holds

Proposition A 2 If - n € p, then the multi-germ ¢ ¢ J(n,p)™

is stable if and only if Qp (;)p = kP + Aleg) -

it

+1

. kel —— ,
(Qk(¢) = Qo) /m 1T, ale) = image of aly) in Qp+i(¢)p-)

Proposition A 3 If n<£p and if o,V ¢ J(n,p)m are stable,

then ¢ and ¢ are equivalent if and only if they are

contact equivalent.

The proof of proposition A 2 is exactly the same as for-the
analogous proposition about germs. For proposition A 3 the

proof is also the same as for éerms, provided we know that

the set _ﬂﬁ(n,p) < Jk(n,p)m of non-stable multi-jets is
Zariski-closed. This will.be proved in more general context

im 2L,

Stabilibty ofimulti-germs (resp. multi-jets) can be characterized
as follows: We say that branches of the multi-germ ¢ are

transversal, if the linear subspaces
Noriwa //y Cr@ﬁS/i/uj
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(1)

. o= 1 £ )t
T image o (QAP,O n (T (¢ )(QAD’O) mp¢ ?ép’o))
in .To(Ap) are in general position, i.e. if
codlm(Tin...nTm) = codim T1 + 7..“+ codim Tm.

In other terms

T, = 0P 0 ™) + 16 A e 4 (a6 4 1 DeP,

Proposition A 4 The multi-germ ¢ is stable if and only if

cp(j)

each component is stable and the-bfahches_of Q- are .

normally erosSsing.

If ¢ 1is stablée, then each ¢(J)

(3)

is stable. Now assume’ that

each ¢ is stable, i.e. @Lp Lo A£¢‘J>) + I(¢(J))@p.> it

Consider the diagonal map

a1 o B a4 1IN a4 (3%,

J=1
Then ¢ is stable if and only if this map is surjective.

On the other hand, the linear subspaces T .,Tm are in

1 9y e'e

general position if and only if 4 is surjeétive gae.ds

An analogous proposition holds for kemulti-jets, k 2 p + 1,

Further properties of multi-germs are derived in § 22.
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§ 10 The nice range

To apply the local considerations for the classification of ordinary
singularities, i.e. the singularities which appear as generic
projections of smooth projective varieties into some lower dimensional

projective space, we have to clarify the meaning of 'generic' in this

.case. One condition which we impose for 'generic' projections will be

-

that they have stable germs everywhere. As J. Mather fgund out, there is
a 'nice range' of dimensions (n,#), n = dim(V) < p = dimP®, such that
the set of projections V - PP (fixing an embedding of V into some PN)
which are locally stable everywhere, is not empty; outside the 'nice
range' there are always examples of varieties V and embeddings V C PN

such that there are no projections V = PP which are stable

everywhere,

. We will derive here the results of Mather over arbitrary algebraically

closed ground fields K, but for simplicity we exclude char(X) = 2.or 3e
Most of the ideas are foughly the same as in Mather's work,
In § 20 we will shew that the nice domain is characferized by

codim ﬁk (n,p) > n
In § 12 we will show that, if Wﬁn,p) € Jk(n,p) denotes the Zariski-
closed set of contact classes depending on moduli (for‘precise
definition see § 12), then codinm Wk(n,p) — implies codim'ﬂk(n,p)
€ n, and codim Wk(n,p) > n implies that there are only finite many
contact classes C1""'CS of qodimension being at most n.
If |

dim (ACz) / mA(z)) = n

holds for =z & C.» this implies codim Hk(n,p) >0,

Hence we have to determine

a) pairs (n,p), n < p, such that codim wk(n,p) >n



b) the (finite many) contact classes of codimension ¢ < n, and we have
to check for them that dim(a(z) / mA(z))

‘The result will be the following:

The 'nice range' of pairs (p,p-n), for which n < codim Hk(n,p), s

characterized by the inequalities

< 7(p-n) + 7 or p< Tp-n)+8, p-n<g3
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If (p,p~n) is in the nice range and € J(n,p) is a stable mapping germ ,
L . 7 ping g

the algebra ng), which determines P up to equivalence, is one of the

following 48 local Artin algebras:

" Table 1:

corresponding algebra Q = Q(y) =(’)e e ls)

Stable equivaience classes in the nice range (classified by the

Generators of I

Bl HilTene- “aim(Q) {g(@) 1i(q)
sequence
of Q
e(Q)=h,=1
1| 10 e 2 1 o
2 | 110 x> 3 2 0
3 | 1110 5 4 3 0
4 | 11110 x? 5 4 0
5 | 111110 - 6 5 0
6 | 1111110 X" 7 6 0
¥ | Maqagdo X5 8 7 0
e(Q)=h, =2
8 20 xz,xy,y 5 L 1
9 210 'y2+x2,xy & b 0
10 x3,xy,y2’ b 5 1
19 ] 2440 2o, xy > 2 0
12 2t 5 6 1
13 24440 y2+x4,xy 6 6 0
s X2y X3 +7 6 7 1
15 24491 y2+x5,xy 7 7 0
16 2, xyy2 ? 8 1




wi ol

- g(Q)

Nt *o8 Siilvere- Generators of I dim(Q) 1(Q)
. sequence &
of Q
o | e xy7,%0,3° 5 - 1
{8 yz,xzy,XB 5) 7 1
19 Sails Xy, x4y 6 6 0
ge | 7 y2 ,x3 6 T 0
21 zy,x4;y§ 6 {0 1
i y2~x3,x2y,x4 6 8 1
23 X T 6 9 it
24 ) =il xy,xtay” 7 7 0
| 25 yz—XB;xzy ke 8 0
26 Xy,xs;yB ; % 8 1
o9 2220 it 7y 8 1
28 230 xB;Xzy,xyz,y3 6 10 2
e(Q) = 3 |

29 30 (X,y,z)2 & E 3
30 310 y2+12,22+x2,xy,xz,yz 5 T 2
131 y2+X2,22,xy,xz,yz 5) 8 2
32 x2,y°,2°,2y,%2,y2 5 10 3
33 3110 y2+x3,22+x3,xy,xz,yz 6 “8 ‘ 2

SRS >



g(q)

Nr. Hilbert- Generators of I dim(Q) i(Q)
sequence -
of Q
54 y2+x3,z2,xy,xz,yz o 9 2
35 » x4,y2,22,xy,xi,yz 6 M 3
36 320 x2+y2+22xy,xz,yz 6 2 9
3l xz,yz,zz,xz+yz 6 8 1
38 x2+yz,xz,y2,z2 6 9 1
29 xz,yz,xz,yz,z 6 9 2
40 x2+yz,xz,_xy,y2,z3 6 10 2
41 xz,yz,zz,yz 6 11 1
42 3210 x2+z3,y2+z3,xz,yz 74 8 1
e(Q)=h1=4
43 | 1o oty oG i 16 e
- - 50 o poa s
44 41 -»(x2+xq,$3+xq,x4+x1,xixj,1>q) 6- 11 5 .
2.'.2 : >
45 41 (xg+x1,x3+x§,xi,xixj;1>g) 6 42 5
46 41 (xg+x§,x§,xz,xixj;i>j) 6 14 5
R LD T
47 41 (xi,xz,XB,x4,xin;1>g) 6 17 6
e(Q):h1=5
2
48 50 .(X,],oot,xs) 6 25

10
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§ 41 The codimension of nonstable jets-in a contact class

Me Ffix Xk g n + 1 and consider Jk(n,p). For k-jets 2z € Jk(n,p) we

consider the algebra Q(z) = Q%/mi+q + I(z) and the contact class-

noT
: : X3 3z | :
€Cz) fof = in Jk(n,p). The modul A(g) = 121 = Q(z) is only

k) ®p

determined modulo.(mQ(z) therefore m A(z) is uniquely

Q(z)

determined and
c(z) = dim(Jk(n,p) / m A(z) + I(Z)C>p
is uniquely determined and is the codimension of C(z)C Jk(n,p).
We define ' -i
p(z) = daim(ed /8(2) + (mQ(Z)k)G)p )
‘ then
o) 282y o pov-an(ETH GO Pl « F) DR
(where m = mQ(z)>°
We have equality if mk = 0, so for instance for stable jets
(because of k 2 p + 1, but aim(q(z)? / 6(z) + (mk)(:)p ) s P
By Vk(n,p) C.Jk(n,p) we denote the closed subset of contact classes
of codimension >1n .

Proposition 18  Let C be the contact class of a jet ‘7 on

Jk(n'p)n ‘ 9,

(&) . Iif cz) s p-n, then z is a closed embedding,
hence CN Hk(n,p) _:k'(i)

(3) If p=n and o(z) =1, then € AT (n,p) = ¢

: : ol 300

and 2z 1is equivalent to (x,I ’X2""’Xn)

() 1t elz) 2 n, then
codim, (cn Hk n,p)) = max(0,p - p(z) +:1)

Proof: If 2z 1is stable, then




*p 2 u(z) and c(z) = p(z) - p + dim A(z) / m A(Z)

<

i

n; this proves (1).
It cl(z) = p - n, then, because of
6(2) 2 ain(3, (n,p) / n Az) + 1) PP+ B OP) = (o) (nor)
(if r=rk(z)), we get

.p SHE (p=r) (n-r) 2 (p-n) (n-r),
Nehice oo —ib 1, hence r = n , this proves ().
Bf ez )= and p‘= n, we get by the same argument r = n - 1, hence
Zz is equivalent to

5 n

z = (x1, + 122 X W x2,...,xn)
and 2x1 ¥ O, hence 2z 1is stable, hence equivalent to (xf,xz,...,xn).
Now we will introduce the following notation:
If e £ n, we denote by

/\k(n,b)e @ Jk(n,p) A
the subspace of all jets of the form

G (21”"’zp—n+e’:e+1

1
Hh
—~
ta

-
L]
>
v
+
M
s
=

e

.
~
e
~r
[e)
=
2
~
H

e ;
~ ,
iV
N
(W]
B
au

where =z,
i
ord (wij) 1 (unfoldings of jets from Jk(e,p -0+ e))
Each contact class meets exactly one /\k(n,p)e (e is the embedding
dimension of the corresponding algebra) .
' By Jk(n,p)e I denote the locally closed subspace of Jk(p,p) of jets
of rank n - e and by Ak the group of k-jets of automorphisms of the
germ (An,O). Then A acts on Jk(n,p)e (transformation of the

coeondinates)y A.(ny;p) is a closed subspace of J.(n,p) and the
k N k e

action of Ak”défines a-smooth morphism

A k(n,p)e X Ak --ﬁ» Jk(n,p)e /

which has local sections. e

If X is.any ek(n,p)~stab}e subset of Jk(n,p)e, then



X open (closed, irreducible) == X f\Ak(n,p)e
| G open (closed, irreducible)
in '/\k(n,p)e

codin (X) = codim (xn A (H‘,P) )
o d el Ne(mip ) k =
holds true. .

If Il denotes the morphism

n-e

(n,p) — J.(e,p -'n + &) X J (eyp. - n + e) —
RSP k 67 i o
- dz! : ;
zH(Z';X,l,oac,xe'g)" _a_;{_e—“,‘ (xf]”'.'xe'g)’f“’

ozt

'—a.;n X,],... ,xe,.o_))

A

o R

(where z = (z',xe+a,...,xn)),;' . .
then by proposition 14 we get that the closed subset Hk(n,p) n
Ak(n,p)e is the preimage of the closed subset of all points

] v . oo
(ZO’“’I""’wn—e)e V such that the projection

Kw

: : : N+
4 oot Ko —>J,_(e,p =+ e)/a(z)) + B R

=,Tz(')

is not surjective.

Fixing 2z, hence z!, the codimension of this set (in {;26} x

Jk;q(e,p - n + e)69 1-€ 3y is then equal to the codimension of
_CIW~Hk(ngp) in C. So the result follows from the following

Lemma? let E—T be an epimorphism of vector spaces and r a
positive infeger. Then the closed subset A CEiC)I‘ of all r-tupels
‘whose image in T does not generate T has codim equal to max(0,r -
dimT + 1 ).

To brove the leﬁma we can divide by the kérnel F of E—T (A is
stable us ,.,*“ggslations froxxF‘GDr),.hence_we may assume E = T,

T — .

_ N s 5 ;
Th thic“%cace ‘the lemma s easye—— 1
: o e e e

SRS s

e ey g P e A e St
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§ 12 Simple contact classes

LIt coﬁnected algebraic group G acts algebraically on an algebraic

variety X, there may be G-stable non-empty open sets which contain
only finite many orbits. The orbits of the largest of such open sets

are called the simple orbits of G in'X,

By Wk(n,p) we will denote the closed subset of Jk(n,p) of non-simple

ek(n,p)—orbits.

Proposition 19 (1) If codim W, (n,p) * n, then W, (n,p) C vk(n,p);

hence Wk(n,p) (& nk(n:P}-

If for the finite many simplé contact classes C(zq),--..c(zs) which
meet Hk(n,p) - Vk(n,p) dim . ((z) / mA(z)) = n holds, then

codim Hk(n,p) > ni§’ toos i

(2) If codim Wk(n;p) S n, then also _codim Hi(n,p) Son:

Proof: Let V be a component of Wk(n,p), then V contains no simple
orbits, hence no orbits which are opeﬁ in V, hence codimC > codimV
for any orbit C in V. Thus we have ¥ C Vk(n,p) if codim Wk(n,p) >n,
i.e. W (n,p) €V, (n,p). |

IfC = C(z). is a simple orbit meeting Hk(n,p)‘~Vk(n,p) and if
dim(A(z) / mh(z)) = n, then

codim(C n Hk(n;p)) max(c(z), c(z) + p - p(z) + 1)

1

v

max(c(z), n + 1)

hence codim Hk(q,p) Zoe 4 1, which proves (1).

If a component of wk(n,p) of codimensien £ n is contained in
Hk(n,p), then codim Hk(n,p) pae

If there is no such component and if codim Wk(n,p) = n, there is a

<
component V of Wk(p,p) of codimension m - n and there are contact
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classes C = C(z) of codimension ¢ =% (othefwise v C;Vk(n,p)SE
Hk(n,p)) and ¢ >m (since V contains n§ open orﬁits) in V o
Then codim (Hk(n,p)) S ety f\Hk(n,p))
. = codim V + codimV(V:ﬁ Hk(n,p))
S codim V + codimC(C f)ﬂk(n,p))}
= max(m, m + p - p(z) + 1) ‘
Ir ¢ I (n,p), then
' | u(z) - p + ain(A(2) / wA(z))

n<c=c(z)

g p(z) = p +n

hence m +.p - u(z) < n, hence codim'ﬂk(n,p) = in this case.
If cell k(n,p), then codimc(Cf\ Uk‘n,p))-z 0, hence
codim(ﬂk(n,p)} Somi< c_i n q.e.d,'

That is why we have to determine the codimension of Wk(n;p){ the

simple contact classes meeting Hk(n,p) N Vk(n,p) if codim Wk(n,p) >n

and to check dim(4(z) / mA(z)) = n in this case.

We add some general remarks before we determine the simple contact
classes.

Lemma 1 va G: is a connected algebraic group and j ¢+ X — Y s
an open morphism such that G acts equivariantly on X and Y, then |
j—q(W(Y))c: W(X), where W(X) and W(Y) denote the closed suﬁspaces of
non-simple orbits of X énd Yo :

Rrooif: The set X N\ W(X) is open, G-stable, and bontains only finite
many orbits; hence j(X - W(X)) is open, G-stable, and contains only
finite many orbits, hence j(X - W(X))& ¥ - w(Y).

By this lemma we have Wk(n,p)QQ j—q(wl(n,p)) i Y <tkipand

Je Jk(n,p)-—é Jl(n,p) is the truncation map.

Iemma 2 #alictys hyes (hildds dusn G ) 1 S k, be a sequence of positive

integers and let Jk(n,p)h be the subset of "all jevs af such that,  for
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the corresponding local algesra Q, dim(m(z)Y / m(z)v+1‘= h(v) holds.
Then Jk(n,p)h is locally closed, fL(n,é) stable, and for k z 184 f.n,
we have ;
. codim Jk(n,p)e = e(p -~ n + e).
Eore I = 2 we have
I ( £ (8 [eq+]
% n’p)(e1,e2) £ 0 alitag maXiO,(22)~ (pfn)}é_ez < ( 5 )
and  codim Jy(n,p) (o oy = (e1+92)(p_n)+e12+62(62_ (i;))
L2

1E it Se net emphy.,

‘Proof: Only the last assertion may not be obvious, so we will give a

proof for it, Let /A be:the subspace AZ(n’p)e s which was considered in

; 4
the last section. Then
codim Jk(n,p)(e

)x& codim J2(n,p)e + qodi?A (A fj J2(n,p)(éq’e )).

G 1
The jets of A n Jg(n’p)(é1,e2) are determined by
i) p~-n+ e quadratic forms fi(x1,..,,xe ) generating a subspace
. A ; )
of codimension e, in the space of all quadratic forms

i) (p =~ n = e1) (na= e1) arbitrary linear forms wij(x).

If S is a vector space of dimension N, U C SCDI. the space of all

-tupels spannlng a subspace of codimension ey then

- + 1
codim U = e2(r + e2,- N). InourGase r =p =n + ey N = ( A )

ea(p ~aD ey ( . A))'

: e, +1
(p—n+e ) + e (p ~n+e e~ ( ) )

1l

which gives codim, (A n Ja(n,p)(eq’e y)
Therefore

dim J =
codim k(n,p)(eq’ez)

-/ €
Ceiedpn) 4 0,2 + ollez-i g) B

H
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8 43 Local algebras with din(n*/n’) = 1

e o > < i >
If e, s, t are integers, s =2, 2 = t = e, e = 2, we denote by

Q (e) the local K-algebra
s,t

K [[x11/1,
Where x = (xq,...,xn)_ and I is the ideal generated by
Bt 2 5 o s 2 2
x4 ’ x2 + x,1 y eewy X + x1 ’ xt+1 "'f’xe and
X%, K B
_ : : v +1 2 2
By Qs’q(e) we denote the algebra defined by qu = o oo S
.: < ). X
xixj 0 (i<j)
Proposition 20 If Q is a local Artinian K-algebra such that’
dim(m / m2) = e >4 and dim(m?,/ ms) = 1, then q is isomorphiévto .
exactly one of the algebras Qg t(e). We have
9
dim Qs,t(e) ze+s _
(;) if ¢ =1
i(qg. (e)) =
S, t -
(2>- 14if t > 1
aim(d /Am ) = e
' é%y~4 Ho1 =
glq_ .(e)) =
s, t

e(es® t + 19 +(§)+ Sl Sl )
Proof: The calculation of the invariants is easy. Now assume :
dim(m / m2) =e>1 and dim(m2 / m3) =l

132 x265 m3 for all x & m, then m2 = 0, which contradicts dim(m2 /'mB) = 1.

Hence thefe is an X4 € m and xqeeé'mB,mtﬁg?efore n' = xqv Qs = 2
by Nakayamas Lemma. ‘
o Nt = 0, then xqs 4 0, x15+1 = 0,
Furthermore
dim(O:xq) = dim Q - dim x,Q

i

dim (Q / x,Q)




e

dim (Q / e X’IQ) (since mzé-xqu g—x,]Q)

€.

-

Let x S, % ,..};X' be a base of (0 : x,) and consider
Tl 2 e : )
@R=saE/ X2Q tooot er, then a multiplication by X, yields a surjection

Q_—>Qx1

= : 2 2 — - 2 :
and qu is mapped onto Qx1 = ,iihenee o §: /. x1Q - Qx1 / oo K, d.Jes
m = x1Q + sz +oeet er. .

S A
If there is a v =« 2 and xixjea mv, but not all of them are in mv+1
e ’

for 1i,j = 2, then we get a non-zero quadratic form on the vector space

Kx, +eoot Kxe by

2

> X y mod mv+1.

Ee))

. ; i v+1 ; :
We can diagonalize it, hence we can assume xixj € m fong i # Je
2 v : ' v+1

If X0 =0 X, n € Q*, then multiplyiag by X, we get X, =20
; >.
_hence v = s and normalizing the xv, Ve = Pome o i We ek & o 2
-(the rankeofi the ‘quadratic form) such that
2 s 2 s 25, '
Xy = XgTyeees¥ 0 =X, XS G, (u=t), sand

'x,x. = 0 (i$j), hence Q is isomorphic to Q t(e).
p b}

13

CIf all x;x; = 0, e s i conopbic o q_ 4Ce).
% 9

: i (n,p)
Remark: If Cs,t(e) denotes the contact class of Qs,t(e) in J t0p) ,
the boundary of Cslt(e) consists of all contact classes Cy B(e), where

?
Ge>chiion e alan B b

Proof: The jeat (x;s+1, x22 + x,ls,...,xs2 + x1s, X8, 1 + ) x1 yieree

2 25 2 2 le : . .
RS +) X4 s ngq yeeesX s Xixj’ i<j ) is contained in Cs’t(e) for

)f 0 and specializes to Cs g for A= 0.
b
I =i, B > t,-consider the jet

2 o
(x_,] ,x +Ax ,I,...,x +Ax +x1,x ot Xy

t+1
2 (o4 2 : N
sera Xg hXg s XggTeeee, X, xixj, i

It is contained in C_ ,(e) if A f O and specializes to C_ .(e) for
S,‘t 2 G,B

) =0,

§o00
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If Ca 8 (e) is a specialization of CS t(e),'then, necessarily,
9 9
= <
dim Q t(-e) s Q B(e) = e + «, hence s - «o If s = &, then
$ e <o
because of u (QS t(e)) = p n(Qa B(e)) we must have
g(Q t(e)) = dim g(Q B(e)), hence t = B geeode

Corollary 1 Assume Q is'a local Henséilan K-algebra and dim(m / m ) >

dim(mz'/ m3) e 4,dim (@) = » .Then Q contains an algebra isomorphic to

: — 2 2
_theetgebra K{Xqpenes %) Lexs s X, s XgEpreees XX oo XoXago oo

Sy X2xe""’ xe xe) and both have the same completion.

Proof: Qi/ n°" " is isomorphic to Qg t(e), hence for any integer s the
9 3

system of equations

x1U2 S X1Ue =0

has a solution modulo ms.*.’l which together with X4 forms a:base of me
For s = 2e — 1 we can apply Newton's lemma, hence there exists a base

sine
1Xj” Qfefior = T =ties

X ,..;,x of m such that x
1 e
>
2t xixj % 0 for some i,j = 2, then we would have Xixj :,uxqv, u € 9%,

which would imply x1v+1 =0y en m\H',1 = 0, hence a contradiction.

s

PHIMRBSTR L 2
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§ 14 Non-simple contact classes of Jk(n,p)c, e = L

Proposition 21 For k 2 2 and e =y we have

A <
Jk(n,p.)e if p-n = C;) =
Jieeailn,p)iDae 5 L _
k e los o Jals.5) if p-n 2 e) =
k 1P7(e,2) p 2

.(kan:pi(e,g) means' the Zariske closure in Jk(n,p)e).‘
Broofis - ‘It iisisuftilcilent toupreofwthis for k = & %
< fe - : ]
If p-n - (é) =i then‘ Jz(n,p)(e’q) = 4) fors g =70 jandzl. by lemmal 2
of § 12,
Therefore we have to show (by Hroposition 20) that
' : P >
s =
J2(n,p)(e’q) C Wz(n,p) for q _2.
Consider the map
7 4% : | 2 Y -
A2(n’p)e N Jz(n,p)(e’q) —5 Grass(a, S (Kx1 tooot Kxe)) =@
- (subspaces of codimension q) which associates, to z, the kernel of the
"multiplication
‘SE(KX1 tooot Kxe) — m(z)2
£ (8% meams) the' second symmetric power),
'This is a morphism and the contact classes correspond to the PGl(e)—orbitsb
oftGre
. But. dim G = q((e;1) - q),

dim PG1(@) = e2 =i

and thevsmallest value of q, for which Jz(n,p)(e’q) 3 ¢ LS
e : : : :

Q= max: (0} (2) - (p-n)), in this case J2(n’p)(e,q) is dense in J2(n,p)e.
So it is sufficient to prove:
If gq = max(2, (S) -~ (p-n)), then
*) 2 e+ |

e‘~‘1<qo((2)-q°),
because then there are no open contact classes, hence no simple contact

. . 3 . o >
classeso If q = 2, then (*) is true because of e = &,



=rqees

Assume q_ = (g) - (p=n) > 2, then we have to prove, by putting

p-n = r, that S W eeT
reeyed BUS) <s10(]") - (Gt e
) 89 35100 + b oyb00g
e I e R '

But £(0) = (e) e - e2 > 9~£%:zl >0

1]

e A e 2
£( (2> = 3) =t3fc%y (2) - 3] -e
: _ e 3e ; S
B R 9> if e = 4,
hence f(r) >0 gq.e.do :
For the following sections $ake ‘into consideration that*ﬂ'égz Jk(n,p)e
is closed in Jk(n,p), hence contact classes which are simple in

Jk(n,p)° @] Jk(n’p)1 U Jk(n,pzéaq Jk(nfp?3 are simple in Jk(n,p), too.
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§ 15 Non-simple contact classes of Jk(n’p)B——

The same calculation as in § 14 with e = 3 yields
BBz 5y U I (P (5 4y VI (00D 5 5y U T, (0,0)5 ¢

< Wk(n,p).

Hence the only case left is that of Jk(n,p)<3,2), D>

. There must be 4 equations with linear independent quadratic initial forms

in x,y,2, hence the first step is to classify 3-dimensional linear
systems of conics in'Pz. If the conics are given by 4 linear independent
symmetric (3 x 3)-matrices 51,32,33,54 s We can consi@er the space of
all symmetric (3x3)-matrices S satisfying
Tr($,8) = Tr(8.8) = Tr(S%S) = Tr(§,8) = 0
which gives a dualify between 3-dimensional systems of conics and pencils
of conics inTPz. Choosing a suitable base in thé pencil we have &
possibilities féf the discriminant
det(X51 + usz) = A(A, 1)
of the generic member of the conic
(1) 80w) = 0
(I1)  8Chp) = A2
(1I1) A, p) = AR
(Iv) A, p) = Ap+p)

"To each root of A(A,p) a degenerate conic corresponds, i.e. a line pair

or a double line. To a simple root there never corresponds a double line

000

because if we consider a double line given by Sﬁ = (100) ; then
' 000

5 2 :
| det(s,l+,\82)(e1Ae2Ae3) = A ((e1+/\§2e1)/\ Sye, A 5263) ‘
(eq,ez,ej) denotes the columns of the unit matrix), hence ) is a double
root. Indicating the number of double lines corresponding to A= 0 we

get the following possibilities



- 18 -

& I —_— 1

I2 4 lo
111 - AN
o

TTIESE =i

Iv

(The arrow A—B indicates that A lies on the boundary of B)
(In case I we consider {2X 2)=minors, too. )
If we write out the matricesiand change over to dual systems, we get

the following possibilities for the quadratic initial forms:

2 51,2 OF i i,
(z ,xy,yz,xz) "e-———(y s 2 !Xz!yz) S Gy 52 tyz) _

22
(x“4y2,7 41Xy 3%x2) |—> (G gz zagy we )

P2 20 K08 2
(g x2yz) L S,y 2 Xty

Y

2 L2 42
(x4 2" xy,x2,52)

The contact classes corresponding to Is I, 111, . (the last
 column) do not split in Jk(n,p), hence we found 4 simple contact classes,
and 4 remain to be investigated;

Let C12 = C be the contact class in Jz(n,p) corresponding'to I

i e 3—1(012) (z € Jk(n,p),n a2 304 and IF wQi= Q(z)' is the
Qorresponding algebra,‘then n = XVQ + va | (v g 2) and we can choose

2 ' %
x mod m ¢ y mod m2 in such a way that xy = O (consider the equation
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XY = 0 in @ and use Newton's lemma),

IThwile = 5. thento e n specialization of

IRl il / (xy,z?-tox3—t1y3,kz-tgy3,yz-t3x3) + (x,y,z)4'.
IE &, £2, ty = 0, this algebra is isomorphic to

(o)
Q = Klilxvozld / (xy,zL—XB-tyB,xz-y33yz—x3).0ne easily checks that

o ta + g e 2 1
Qtﬁ = th i t1 = t2, this means:

=1
7)€ W np)
and therefore also

.= C'/
(because CI lies on the boundary of C. ).
1 ’ Te
So only the cases II
|
(

4 2nd III, are lett, -

If 2ue 55 CII1)’- Q = Q(z), then m’ = 2’q for v : 3 , and using
- Newton's lemma we can choose Xy ¥ such that

x2 e VA o 0- .
(consider the equation zX 2 0 and then the equation zY + = 0).
Hence Q is defined by x2 + &z % xz = 0 and by at least two further
‘equatiOns with the initial forms y2 and xy.

a+1 a+1 a+1

L IE Cxyae n N\ m » then the multiplication by z yields m

il
N
O
H

hence
: a
XY= toz .

If y265 mb \ mb+1, then , because of yzz = —x2y — -xtoza;z 0, we get

zb+1 = O, hence b = a, y2 = tqza.We can always normalize in such a way
that to =0or 1 and t1 = 0 or 1. Thus we get that Q is isomorphic to

- one of the following algebras K[[x,y,z]] / I
_ : 4

AP 2 +1
Qa,o,o: I = (x"4y2,x2,x7,5 ,2°" ") . ae 2
; 2 2 ' >
Qé’o’1: Iz +tYZyX2,y +Zasxy) ’ a=73
2 ; 2 a >
Qa;1,0: I = (X +yz,x2,y ,xy$z") ’ a =3

2 a 2 a
a, 1,4 T = (Cayzpxz,xyez ,y742) a~3
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But Qa,1,1 is isomorphic to Qa,0,1'
They are all of dimension a.+ 4 and

g(Qa,O,O) =a+ 8
,g(Qa,o,1)

!

a+ 6

g<Qa,1,o) =a+ @
(by direct calculation).
"Similarly we treat the case 1111. By using Newton's lemma we may assume
that

xz = yz.2 0
a+1

and if ma.# 0, m = 0, we get & cases

2 a2 a _at+i
xT =42,y =tz 2 =0, t sty € {0,1},

but because of symmetry withrrespect to X,y we get for each a 3 algebras

Q' = K[[x,y,2]1] / I of dimension a + b

252 4 >
Q'a o ¢ T = Crysyzex 4y ,za+ ) ac 2yelg)y=a+7
) R
Pee 2 >
Q'a’,1 sl = (X2, Y2s% »¥ +2%) as3yelR) =a+6 :
2 2 > i
Q'a o ¢ I =y +Za, y +za) a = Zep.gl@) = a + 5.
9

Hence we got

o =1 :
Pr 4 22y g { W 2 5
roposition k\n,p)3 o) ft(n,p) J (Clg) U Jk(n’p)(B,B)

5 : >
(closure in Jk(n’P)j) for k = 3% and the contact classes of

L=l R T e y : 5
Jk(n,p)3 N (CI2) ) Jk(n’p)(3,3)? are given by the following

-

List
Table 23
Generators of I dim(Q) | () i(Q).
s+1 2 2 ,
CS;1(3) X 1Y 92 3YZ9XZy Xy Sk - s+8 3 s=diffdan  k
2 2
CS,E(B) p/ +XS:Z 1Y ZyX2, Xy S s+6 2
‘ - 2 2 5:2’000 k
’




Sl

Generators of I -dim(Q) g(qQ) i(g)

g x2,y%,25,yz 6 11

: 2 2 '
CIIO XTHYZyXZyY 9% 6 9
Crrr xz,yz,zz,xz+yz 6 8

: s o0
CIV X +Y +2 9XY9XZ,¥2 6 7
)

Q 22+yz,xz,xy,y2,za+1 a+h a+8 e . e
a,0,0
Q x +yz,xz,xy+za,y2 a+h a+d

3,1,0 : a=3 co.k
Q x2+yz K2 kY. y2+za a+h a+6 i ’
2,044 1 X2y XY 9
Q'a 0 xz,yz,xz,yz,za+1 a+h a+? =2, ¢ ouigk

: :

Q' xz,yz,x?y2+za a+h a+b

ayl w3 Kk

a2 a2l g K

Qf XZ,YZoX +2Z o,y *2 a+h a+b
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Q- 16 Non—éimple contact classes in Jk(p,p)e, e <

Jk(ﬁ,p)o is an open orbit and Jk(n,p_),l consists of finite many simple
orbit§. It Fenaing o investigate Jk(n,p)(g;a) and Jk(n’p)(2,3)'
If z € J3(n,p)(é’3ﬂz)f\ AB(n,p)z,_then it is,up to contact equivalence,
uniquely determined by the multiplication SB(KX + Ky)—> m(z)B. Hence
associating the kernel of this multiplication to z we get a' morphism

Jk(n,p)(z’s’v)l\ /\B(h,p)2 B s Grasslvy SB(Kx +‘Ky)),

and the contact classes cbrrespond to the PGl(Zj—orbits.
Because of dimPG1(2) = 3, dim Grass(v, SS(Kx + Ky)) = v(& - v) there
are no open confact classes and hénce no simple contact classes in

: : =N : ,
JB(n’p)(E,},Z), lo€Ce Wk(n,p)-.-— Jk(n’p)(2,3,2) ) Jk(n’p)(E,B;B) (@]

Jk(n,p)(2;3’4) (x s 3)e JBCn’p)(z,B,O)COHSiStS of “exactly one orbit
corresponding to the algebra- Q = K[[x,yl] / (x,y)3, which does not split
~in Jk(n,p), k 2 3, hence it is a simple orbit in Jk<n’p)(2,3)°
J3(n,P)(2’3’q)consists of eiactly 3 orbits corresponding to
Z-dimensionél linear systems of degree 3,on.m1, i.e. to morphisms
Pq———a PZ given by 3 cubic forms;
Case 1 (fixed cémponent)

&(0) 1 § = KIlx,y1] / GPypmtay®) + (x1) ‘
Case 2 (no fixed component, the image of Pq in P2 has -a cusp)

c1(0) & q = KL[%,57] / (252 xy™), din@) = 7 , &(Q) = 10
Case 3 ‘(no fixed component, the image of P1 inYIP2 has a node)

cvi(e) : q = K[[x,y1] / (xyz,xay,x3+y3>, dim(Q) = 7, é:(Q) =3,
The classes corresponding to case 2 and 3 do not split in Jk(n,p) and
the contact class cdrresponding to case 1 splité in Jk(ﬁ;p), k 2 3,
into finite many élasses corresponding to C(0):Q = K[tx,y]] /i

(Xa+,]9X2y9XY2:y3)’ & = Byeswnks, GuND = aiardy g(Q) = a + 8,
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Now we consider contact élasses in Jk(n,p)(2,2). If k = 2,

then one quadratic form in x,y must vanish, i. e. for a

suitable choice of coordinates x,y: if Q = Q(z), z € Jk(n,p)(z’z)
elther - Xy € m3 or y2 € m3 .

In the first case we can use Newton’s lemma (cf. D11§ for

the eduation' Y= 10« and We infere, that gy can be choosen

in such a way that xy= O. Hence we get up to isomorphism

the foliowing algebras: :
C(1)a’c: 9 = Bz, yll/itzy, > =5") c a2
C(Z)a,éé Q K[[x,y]]/(xy,xa+1,y°+1) c=2a=?2

2

&

€ mg , then m’*' = xn’ and Aim(0:x) = 4im(Q/xQ) = 2.

Let ch+1 # 0:y but ch‘= O, then Q is a quotient of
Q(a,e) = K[Tx,51]/(5°-x%,2%,2%"") 34 a £ ot

Nowwi £y

We consider the following cases:
case! (1): h =5 (2, wnai2)and. e 2 25 d.en dim(m®) o= 2,
Then we have
C(B)a c:i Q.= Qlasc) 34 a% c+l
9 : ;
cage (1i): K= (23+..52;%)and ¢ 2 33 ice. dim(n®) = 1,

but dim(mc-1/m°) Lo

C —
a,C
c~-1

'y and s‘# o and 't ¥_ 0.

Of course we have Q = Q(a,¢)/(f), f E€nm

Suppose. f = sx® + tx

il
o

‘Using the following subsﬁtutions we get t = o -or- -8
481 step: X t= X - EETW o bhen 0= K[[x,y]]/(yz—xag1+xa'1y82,x°)
» ¢; are unites from k[rxl1]. | |
o gbepe iy =tm f%xa'k?z , then Q = KE[x,i]]/(yQ—xaE,xc) ;
€a u'nite . :

Brd Step: X g X0 7 a suitable unite.
Hence we have the follbwing algebras: -

0(4), of WQk=oki 511/ 22,5 3 faboe

_ s . B |
e [EcualAUAGGE i LR DR SN

i

il

C(S)a,c: Q
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Caee ) (o Gt b end Se 2 diciel

[t
-
®

: dim(mc"z/mc_1) = 2 and dim(mc‘1/mc) = dim (mc)

We have again Q = Q(a,c)/(f) , but f-e; mes gt

8, C 8,C
c-1 c-1 Cc=2
8,C

= Kx'  + KX? K Y+ Kx°'1y. If we agsume = -
s txc'zy +uxc'1y , we get

xc;1(1 wigx —uy )= txc"zy

c=2 C=2 c-1

y(1 + ex + uy) = tx "y + stx y

—‘sty) = txc'gy

xc-j = tx

el

2o a ey sty)txc"iy = txcdﬁy .

But then we obtain the relation

c c-1 2 c -2 2 t2Kc~-2+a

X = X i t yo o= , hence

x® = 0 and zc 1y = 0 , which is a contradiction

becauge of n® £ O,

Therefore there remains only the case

c-2 c c-1

p:d Vo= EE X oy
‘xc"zy(1 L otx)=2 x°
xc"zy = sx%(1 + tx) = sx°

Jf s =0 we get
0(6)3,0: Kﬁ?x,yi}/(y -X ,xc 2y,xc+1)
B2 n), e Cs ay¥¢i<:+4
( for a = 3 Xc+1é- (y2 B,chzy)-)
if g #0 and a = 3+)or ¢ = 4 the following transformation
reduces Q to the case s = O -
Y= ¥y sx2 T X s e aiunite.
If s £0 apd 4 = a dc the contact classes
C::(t): Q, K[ :c,ﬂ]/(-yZ-XA‘,Xc"zy-—txc,xc+1 Jsfaen 25

are not simple, because @t 2 Q- iff 32 - t’2 .

i

All other contact classes are contained in the closure bf

+) for a = 3 the trans iormatlon has the form
= }HB;y s yi= y+€x +¢'xy, AEK , EEE_K}IXJ&




%}Cg(t) :

Jk(n’p)(Z,..,2,1,1)= 0(6)3’0 U (

Sigls

L) G%65) dogsnscidas
t

Since g(Q,) = 2¢c + 2 we get codim( L/Cg(t)) = 8(n-p)+11.
i t

Eroposition 23:

Te(msP)p N (3,0) = (0, 0) (5 5y U RVIETO)

( closure in J; (n,p), ) for k > 5,

The contact classes of the complement of Wk(n,p)

Jk(n,p)é are given by the following list. :
codim(Jk(n,p)2 N W (n,p)) = codim Jk(n’p)(2,3,2) = T(p-n)+10.
., Table 3: _
Generators of I dm(Q) | g(Q) i(Q)
& 2(2) xy,y2+xs 842 s+2 0 82 2
H
Gy 4 (2) xy,y2, x5 842 8+3 15%8)g & 4
C(O)a xa+1,x2y,xy?,y3 a+4 f a+8 2 ad e
¢’ (0) x2,y°,xy° 7 . 10 1
gEsl@) x3+y3,xy2,x2y‘ o -9 1
C<1)a,c xy,xa-yc a+c a+c§) 0 c2ay»?2
GlE). . s k] G a+c+1 a+c+2 libose 2a>2
e
C(B)a,c y2-xa,xcy,xc+1 2¢c+1 2c+a 1 34a<ct]
0(4)a,c ye-xa,xc 2¢ 2era-2®) | o 3£ at ¢
gLy y2-xB,x 1y, 50 2¢ Begacd | 1 Cmg sy
’ | . 3<c
C(6)5 y2-x3, %2y 2¢-1 2¢ 0 c>4
C(G)a,4 yz-xa.xz_v.x5 7 a+5 1 a = 4,5

X} mot for all values of chariK
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§ 17  The codimension of Wk(n,p)

In eachA‘Jk(n,p)e we have now determined a f%(n,p)—stable subset which con-
-sists of non—simple'ofbits only and whose complement contains only finite
many orbits. Therefore the union of these sets is dense in Wk(n,p) and
we can use it for computing the codimension of Wk(n,p)°
For e-f 1 we got the empty set, for e = 2 we got a set of codimension
"ﬁfﬁ?ﬁ?ﬁ@,.for e = 3 we got the sets j"q(CIZ)\J Jk(n’p)(B,B) (where .
012 was the contact class in Jz(n,p) given by @Q = K[[x,y11 /
S aEe ,xy,yz,xz,xB,yB)) which are of codimension 6(p-n)+11 and
5{p-n)+9 respectively, and for e Z 4 we got the set Jk(n,p)e it
e > e & el < - : A
(2) Z p-n+2 and _Jk(n?p)(e,Z) 3 (2) - p-n+1, hence the codimension
of this set is ' : : §
: 2 |
e(p-n+e) if p-n - (g) -2
(e+2)(p-n) + e2 + 2[2—(2)] = (e+t2)(p-n) + e + &

2

>
if p-n Z e) A
The codimension of Wk(n,p) is the minimum of all these integers , that
is why the result is

Proposition 24

codim Wk(n,p) 6(p-n)+9 , p-n

v

codim wy(n,p) 6(p-n)+8 , p-n

it
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§418 Stable equivalence classes in the nice range

The nice range is characterized By n = 6(p-n)+8 or n = 6(p-n)+7,
p-n 2 4; We have wk(n,p)‘g Vk(n,p)fg.ﬂk(n,p) in this range by
proposiﬁion 19.Thus,: a.contact: class not contained in Hk(n,p) must be
simple, if it is-represented byian algebra Q, we must have
*) ?2p-n)8 Zp 2 (@) = dim (8) (p-n) + g(Q)

vénd i(q) e p—n:-'
If we want to détérmine all of these algebras, we can use the results of
the preceeding seﬁtions.
For dim (Q)vf 6 tﬁe inequality (*) yields no restriction, but we must
have e B 5 and we can use proposition 20 and 22 to determine all of these
contact classes, For e = 2 thé Hilbert-function of the corresponding
algebra must be one of the following sequences h = (h(1),h(2),...)
(2s3h00, (2,2,1), (AT, 2,00, (2,1,1), (2,1,0Y and (2,0),
for e = 3 we have the possibidities (35,2,9), 105,14, 10 (3,180 ¢ ,10,50)
and for e = 4 we have the possibilities (4,1) and (4,0).
. For dim (Q) = 7 the.inequality (*) yields the restriction g(q) R
by proposition 20 we infere that in this case we have e 3 3 as.a
necessary condition., For the Hilbert-function we have, if e = 2, the
possibiskittiiesai(2 o) (252 0 (202 4. 4), cand, (2,4, 45%,1); and. A
e =3, (3,2,1) and (3,1,1,1),
For dim (Q) > 7 we get the’restrictiog

(aim (@) - 7)i(Q) + (@) = 8,

Checkihg the list in proposition 20, 22, and 23 we get as a necessary
condition é > 2. By inspecting the list of the algébrasfof proposition
25 with Hilb;;i;fun;tioﬁ (22 dn i, oioe ) and (2,2,2,1,1,...) we see .
that none of these aigebras satisfies this rgsﬁfiction . Hence for

e =2 the Hilbert-function must be one of the following
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(2,2,2,4,0) or e a5ty ereds
The.resulting contact classes are given in the following theorem.
Theorem: In the ﬁice range, n S 6(p-n)+8 or n s 6(p-n)+7, p-n 4 L,
the following algebras described by the ideal of relations can appear
as fibres of stable mapping germs (4\“,0)*~45(Axp,0):
@y 1t P > 1, all algebras of table 1
“(2) It p =n, there can appear those 15'algebras of table 1¥tor

which 1(Q) = O and still the following 4 algebras:

Hilbert-sequence Generators of I ; daim(Q) | =(Q) i(Q)
(1, BOIRE 0 9 8 0
2 .6
(2r4s1:1:1’1:0) Yy X Yy . 8 8 0
€225 1 101, 0) xy,x5+y3 8 8 o
: | ; 7 :
(2. 2,2,1,0) xy,x4+y 8 8 0
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§ 418 Application to generic projections

We consider smooth projective varieties‘ V< PN of dimension n and
‘p'+ 1 forms of the same degree d, LFO,..., LPp’ then we get a rational
map

?z(ﬁﬂo:...:iﬁ):VﬁPp.

4 If pe>in. -and <f sisiaioy y’ are suff1c1ently general, then 30 dis a finite
birational morphism, hence V-—*(f(V) is a normalization map.

We want to show

Theorem. If (p,p-n) is in the nice range, there exists a nonempty
Zariski open subset U of Grassr(p,' é%(d)] ), d > p, such that for each
A& Urthe corresponding map ?% :'V--—»)Pp has the following properties

E1) P is a finite birati§nal morphism, :

(2) For each x € V the germ (f“: (V,x) = (PP, f(x)) is stable
: (hence up to'equi#alence therg.are only 48 of such genms).

(3) The branches of K ¢/ are crossing normally,

:=By condition (3) we:mean the following prépertY?
> aliet v_lﬁ~>w be a mdrphismcof smooth varieties, then xq,...,xr~e {Prq(Y)'-

- and (f& : (V,xi)-—?(w,y) the germ induced by ¢ .

Consider the map T((?i) : ev { e (y:* O ) and the natural map
3% 1
sl *®
s ew,y g ((fi gw)xi 3

Then let T G T (W) Dbe the subspace

*
(T(cfi) (ev, i) + m (c( e, ) )/ w8y
< .
1oe T, (¢) (T () Ty(w)
o : cross:Lng normally
We say that the branches of cf are if for any finite set
= A -
-1 : % ;
{ XgseeerX, } @ ?7 (y) codim ( f£1 Ti )= i§1 - codim T.l ( the

codimension in Ty(W)) holidse If p = dim (W)i>n = dim (V), this implies

4F<f_q(y) s 523 and moreover, if all ((i are stable, this implies



LB

dim Q (t{?)S -p—’_};l-

where @ ((f) is the semilocal algebra
d v 2
< > ;
For the proof observe dim Ti - n, hence p = codim (fg Ti) =
g dim T Z r(p-1), hence T g Furthermore, if each is
129 codim Fr rip-1/, e o Pem o ’ %&

stable, then one shows by using the characterization of stable mapping

B . h
_ perms and property (3) and by replacing V by Spec ((ﬂv y), W by

9
- h h
) © = L0 bt
deSpec( V,y) 1l spec ( W’Xi> that
* gD ; *
¢ B =l & E D) (BV) + my(q7 @W)o .
) <
- As in the case of mapping germs we get from this ¢ (p-njdim Q(f7) =

hence

dim Q(L@)f 5-%1—.

As in the case of mapping germs one also gets that contact-equivalence
~coincides with equivalence; hence we have

Corollafx. 1f (p,p-n) is in the nice range and A e U, then the
;ingularities ofsz(V) are up to etal equivalence uniquely determined

by the Artinian algebras

Q_y((f/\) = (‘FA *(pv)y / my(c‘o* WV) °
If p >en, %y\ is a closed embedding.

ek g B

i
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§19 The jet bundle

Wé want to give an algebraic éonétruction of a bundle Jk(V,W)-—av »* W,
where'V, W are smooth algebraic varieties. such that the fibre over
(x,y)€ Vx W i; the variety of k-jets Jk((V,x), (W,y)) and such that
any morphism ¢f ¢ V—W inducesia VQmorphism

3ly) 2 v — g, (VW) |
which associates the k-jet of ¢ 3 (V,x)-—b(w,cf(x)) to x € V. More

-

generally, let T be abschemé and V> T, W —=>T be T-schemes, We want to
show that the cofunctor on the category of VXTW—schemes which associates
to each \{Jo s U—)VXTW the set

9, (0) = {q, € Homv(qk(V/T)va, vxTw)H) /U = }

is representable,

Here & K (V/T) denotes the "} infinitesimal neighbourhood of the

diagonal 4 € VxTV, j.e., if A is defined by the sheaf of ideals
2j ¢ QVxTV’ then Ak(V/T) is defined by the sheaf gk”. We ideritify

Vowith 4 C 4 (V/T), then 4, (V/T)x,U D Ax,U =1U . U is the pull

Ay

nrbéck with resp. to the first projection Ak~—’ V. If especially U-—?VXTW‘

factors through a point (x,y)‘€ VXTW over t & T, then we get, because

of 8, (W/Dx, { 1)} = (amd x {y] Gmere (V30 = Speclay o )
x,y)(U) = {L#.é Hom((Xt,x) x U,Y IR ({x}x'U) = {y} }

for the fibre (Jk)(x,y) oyer (x,y), hence (J )( i J ((Xt’X)k’(Yt’y) Yo

G

R -t Ve s E T-morphism, we get a V-morphism
: ' pr, ?
3,(¢) = fopr, : A (W/T)xyV = 4, (V/T) >V W

(where we consider V as a Vx W-scheme,by ' __iiiLi;L>vx W) which gives -
for each x € V the k-jet Jk(%7) e J ((Vt,x) (W ¢(x)))s For k' >k
we haveli (V/T) ﬁSk,(V/T), hence by restrlctlon we also get a natural
transformation which associates to each k'-jet the corresponding k-jet.

The representability of Jk is a consequence of the following lemma



s

applie@ to W' = WxTV, Vi = Ak(V/T) under the condition that V is smoqth
over T (hence Ak(V/?)-n——B£1—+ V is flat and ‘projective) and
W~—T is smooth and'quasi-projective;

Lemma, Let V be a noetherian scheme, V'—s V a flat, projective morphism,
Yt s V a flat quasiuprbjective morphism. Then the éofunctor on the
categbry of V-schemes,

e Ul——a—HomV(V'x U,‘W'),

v

is representable by a V-scheme J — V and a universal V-morphism
V'Xv e Y!', The connected components of M are quasi-projective over
Vi; if V' is finite, over ¥V, thean J is quasi—projective over V. Further-
more, (J, ¢) has the following properties:

i = . e
(1) For each morphism V:—> V the couple (VxVJ, vaql) isse

g ~ Aligy ~ A~

representation of the cofunctor (U—>V) > HomV(V'xVU,V)

~ ~on ~
G = Vi V, W' = W'xVV),

(2) If W!'' ¢ W' is an open subscheme and J'!' =.J \ pr (q;‘q(w'\.w")),

>

then (J",ql/V'xVJ“) is a representation of cofunctor (U—V)I—>

HomV(V'x U,wre).

v

(3) If V¥ —V has a section o , then®J 'has a natural structure

as a W'-scheme described by p and given as follows:

BOBICE S .

Cloopfia)d

J
$
If furthermore V' — V is finite, then J —t» W' is affine.
Remark: In our application the section o will be the diagonal embedding,

Proof of the lemma: Let W' ¢ W' be a projeéctive closure of W' over

§ i L] ] —l 5 3 3
Ty then HQmV(V x U, W Ve HomU(V x U, W va)° It is well known that thls

functor (U-—*V)*“—f*HomU(V'xVU,Q?xVU) is representable by a V-scheme
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‘HomV(V',W') (a subscheme of the Hilbert scheme of V'XVW' over V) =

2 : Tom P ot —
1 J ! ! § !
.(see[FGA]) and a universal morphlsm v waomv(V JW') > W xVHomV(V oW ),

I£F =W -~ W' and if" M'c HomV(V',W') denotes the image of
e

: 1 W < { : 1 e
i (vaHomV(V W) e v xVHomv(V SWt)
pr
| HomV(V',W');
then M is closed in‘HomV(V',ﬁ'), hence J = HomV(V',W') NM is.an open

subscheme of HémV(V',ﬁu), and Q-/ V'xVJ factors through W'x J, hence

'}
yields a J-morphism

° f : ]
such that_(J,LP) represents the functor which we consider, The remaining
assertion of the lemma immediately follows from the properties of the

Hilbert scheme or directly by the construction , except perhaps the last

assertion;
To prove that J-4>VXTW is an affine morphism if V'—sV is finite and

. has a section o,we will describe the construction explicitely in the
following two remarks: _

(i) Assume V, V', W' are affine with coordinate rings ) F(V'),
M (W'), assume V!'—V is fihite and flat and has a section corresponding
to‘a decomposition (V') = [(V) ® I, where we assume that the ideal I

. considered as a [7 (V)-module is free with generators WaseoesW (which

N

is always true after localization).
Let W' be defined by polynomials over (V) :
R EGRY o, 1 T/ Kot D

We choose new indeterminates Za i o= R BENE S o 1,.4.,r
. . :

and consider s
' N
Fi(T'l e §2&1wa”7"Tr'+ ézarwa)a=ﬁzo giB(Z)wB

-
=

(where we put s 1), where giF(Z) are pélynomials over I(u),
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J - = :
Let J ¢ W' x mr“ be the closed subscheme defined by
ng(Z) Z;O 9 i 31,0-.’5; E =o,oon;No & ke
Then the universal morphism ¢ is described by

Do T D
i 3 o=0 ol «

(Gl et a2 :‘V—%\/ is a morphism, there is a canénical (G%TW)—morphism
Vx J, (V/T, W/T) —> /T, W/T) .
BE f is etal, this is an isomorphism (because of & (VnT) s VxVAk(V/T)
i) 1t o8 :.ﬁ-—* W is a morphism, there is a canonical (VXTW)—
morphism
J, v/, /1) —> J, v/, w/T)xww :
1t f is ‘ettady fthigdis agaln an isomorphism, because we can 1ift any P

of the diagram below to a morphism ?

~
U - W
:1
~nS
L g (U a VxTW—scheme)
A

XU /—————~—~——>W

k™V

Using these remarks we get a rather explicite description of Jk(V/T, W/T).




=35 -

§ 20 Global description of everywhere stable morphisms

Consider p S L iy :‘JK(V/T, W/T), where V, W are smooth

k

quasi-projective T-schemes, We construct a coherent sheaf 32 on Jk

which gives the coherent sheaf T on the fibres (Jk)(x ) such that
9

Supp (Té) is the set of nonstable jets.

Then Dk(V/T,H/T) = supp (¥¢) is a closed subset of J, consisting

preciselyiof those jets which are not stable., More precisely, for each

(VXTW)—morphisﬁ' @ : U-—>Jk(V/T,W/T), i.e. for each U-morphism

¢y Ak(V/T)va*+—>waU (corresponsing to ¢ by the functorial des=-
(51’52)
e

isua VxTWpscheme. Consider the embedding i : U— ix,0, ﬁ-—?(sz(u),u),

cription of J, ) we will construct ¢*3, on U, where U

the projection DA Ak(V/T)xVU——»U and the closed subschemes

Z

i

Ker(y ,i.p) ¢ 8 (V/D)xU, 2z, = 20 (8 LV/T)x, V).
We define ’

: 1
coker(Som(s

) . "l"“ i Y o= (D
= 8%, 0/U° 2, ) “*b°m(9"(ZWxTU/U’ Zg )

and . = ps & . Then ﬂ7~is -a coherent sheaf on U and the construction
commutes, with base change, U'— U (since p is affine and <.

; ,WxTU/U
is locally free).

Since ? and i.p coincide on ZL" there is a canonical morphism

-1 -1
io =5 D
Bgltard - Sy iy = Cuxgu/v
, 0 W o ®
(induced by ewaU/U"*~5°m(+’*lexTU/U'EEC )= Clix /U “ﬁkxvu

Since i is a closed embedding, this morphism factors through a

morphism

i —
1‘QWxTU/U~ e

and we define ?)‘32' as the cokernel of this morphism.

This construction commutes with. base change U'—> U, taking U = {(x,y)}

(DZ ).



e
o

=~
N

e =

we get the sheaf we considered in § 8. Hence'supp(?Z) =vﬂk(V/T,W/T)
is fhe set of nonstable jets, = : oot

Propesition 25. If V, W are projective algebraic varieties, if T is

a smooth algebraic variety and ¢ ¢ VX T—=>VW a family of morphisms
of V in W, then
(i) The set T' = {t emll: %%a:-V~9&# is stable everywhere} is open .
(31) Let jlp) : Vx T—4J =J, (V,W) be the corresponding morphism :
in the jet bundle, k >p = dim W (projection of -"j((q?,prT)) _:
| vV % T—*—Jk(\i X T/T, ¥ ¥ T/T) = Jk(v,w) X T :‘onte J'). Then TV g
if for each x € V the induced morph;smitl-+j(q0(x,t) g
is smooth and coﬁim(ﬂk<n,p),Jk(n,p)) >0 = damiaVe
Proof, Obviously T' = T N\ prT(j(qﬁ—1 Hk(n,p)), hence- T! isxopen;

Now consider the commutative:diagram

PTy

The morphisms pry and J >V are smooth, hence if J(¢) induces -
smooth maps on the fibres {x} x T—>J_, then i) is smooth.
This implies 5
dim V + dim T - dim j(q)—q(ﬂ).: codime (T =
codim (Hk(n,p), Jk(n,p)) oI = ain G
hence dim(T) > dim j(?)-1 (II) and therefore -};>1‘T(j(<{’)"'1 ¢19) ;;T;
We consider now a smooth projective variety V, an‘embedding Ve WN’
and the subspace T € Grass (p,IOV(d) ) of subspaces spanned by d-forms
TB"“’Y% which have no common zero on V,

Then we get a family of morphisms

P s Vx TP




o

If x € V, consider j(@) (x,-) : T J (where J denotes the bundle
of k-jets over V X Pp, k> D) -

Eropositions 26, & If ;4 = k, then j(¢) (x,-) 3 T—>J_ is smooth,

Corollary: If (p,p-n) is in the nice range, there exists a nonempty
‘ Zariski;open set  T'.¢ T such that for' Nie 2% the morphism
Pp V—éle. is stable everywhere,

Proof of the proposition: Let x be the point,.3(4:0:...:0) and let

-

XgreeesXy be inhomogenous coordinates on WN such that dx1,...,dxn
are linear indepéndent at x. Let A be spanned by forums «yo,..., (Pp
such that ((0(1,0,...,0) =1 LFi(’],O,.,.,) =0 for i >0, Then

j(?)(x,—)~is (locally) given by

T o[ ¥ $q(x) :
[(FO""’HUPJH(LPOCX) :...:tfm(x), (Jx(‘f’o - L{Jo(xf) it

S plxd |
Jx<‘f’i : \Po(x) e u g am) ed,

where UO C Pp i's thieopen set of all points- (4-: Yo :...:yp) and

' jx denotes the k-jet of a-function at x. We can also write this map as

; s il Y
[(Po’-u., \Pp]}—-—» (Jx(’—q)‘o_),coo"]x(\fjo) ]
If t is a parameter and if Ao""’ Ap are arbitrary d-forms, and if

we identify d-forms g w{th the function _-gia- on PN, then
- 0

3,8 3, AP = 3.5 )
W) (1,7

geve

j((‘O)(X,(PO + -kko,...,(fp-tt)\p) = (

k
+1).

2
in U
ees) mod t° (in vox ! Sy

Smoothness of 5(?)(x,—) means that to each tupel of k-jets (z1,...,zp)

: (Zi,e ¢% = /vmvf;1‘) the?e_§XiSt d-forms Ao,...,kp such that
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3.05,09.) = 3,09,03,0)

B 3 :
S 4 2 k, these equations have solutions. By putting -Ao = 0 and-if
' g %4 “n
3 (¢ 2 = @ 2 . ciqu eo X
then the d-forms
ke an . s d"“'qu ...x'nan U EMERS

du = Iﬁdik 1€ O

satisfy the equétions.
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§ 24 Normal crossing of pranches

For positive integers d > p and for é smooth projective variety
Ve PN of dimension n < p, such that (p = n,p) 1is in the nice range,
ihere is a nonempty Zariski-open subset T in Grass(p,|0 PN(d) ) such
that for A € T the projection %: v— P? i-s defined everywhere, S i
finite, birational onto its image and has stable gernms (V,x)~—#(PP,?%(x)) |
everywhere. Now we want to show that T'contains a nonempty Zariski-open
subset such that ¢, has nc- branches everywhere; with other
words, for any point y & ¢, (V) and any finite suﬁset { x1,..,xm} C
b -1(.‘{) the multi-gern induced by ¢

(V,z,) 1L st (V,xm)"——>(Wp,y)
is stable (i.e. has only tfivial unfoldings),

We will generalize the construction of the last section to multi-jets,

~ < i
Consider positive integers p - 1 <k, a family of morphisms

v L e

Ny

S

* where V[S is a smooth family of varieties of dimension n, W|S 1is a
smooth famiiy of varieties of dimension p > n, and ;consider‘the
bundle J = J, (VIS, WIS). By (Jm)w I will denote the m-fold fibre

: product of J over W, If V" denotes the m-fold product of V over ¥,

then (Jm)w.is a bundle over V"

(51,...,sm,s)

x Wy and for any (Vmﬁy)~scheme

U

2yl : . m
f-V xSW en G xSW)—morphlsm @ U—>(J )W is

given by an m-tupel ((P1""’q)m) of U-morphisms,

P, oD xsu"U — W oxgU, g U= (s, ddyde

For each Wui we use the construction of the last section to get a

i » i S . : % i g
coherent sheaf fDu on U and a morphism 1 aw %rU‘U == ih s Where
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i U—>W %TU is the embedding u —>(s(u),u).

By @'3} we denote the cokernel of the diagonal‘embgdding

This construction is compatible with base change U'— U, and thus we
~ gel @ coherent sheaf Gti on (Jm)w such that supp 52 dgfgkm (Ulm. wiv)
is the set of m-tuples of k=jets which are not stable or not ne: - .
e o denotes the m=fold product of‘J over ¥, then ‘(Jm)wti Jm, and
codin (Jm)w = {m - 1)p, hence Hi (v|®, Wl®)c J™ has the Codiikncion
(m - 1)p + codim ‘Hﬁ (oopdsin s _ .
‘e will prove (in the following section) that codim ﬁi (n,p) >m - (m-1)p
if (p-n,p) 1is in the nice range, hence
codim HE VX, WIE) S,
As in the latter section we get the féllowing analogue of proposition 25,

Proposition 27. If V, W are smooth projective varieties of dimension

n and p, n <p and if g i VxT—>W is a family of morphisms of V
in W such that the corresponding morphism j(¢) : V x T-—ka(V,W) =d
has the property that for any =x € V the morphiém Mgt F—*j(ft)(x),
is smboth,then there exists a nonempty Zariski-open set T!' & T such
tha@ the morphism c(t, t € T' is stable everywhere and has crossjing normally
branches.
As a corollary we get the theorem stated in § 18,
Jnr the proof of proposition 27 we consider, for all positive integers
Sa D

me —=— + 1, the morphisms
p-n '

m

. i@ x..x i@

x 0
\

<<‘-———c_4

m
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The morphism j(*) X.0.x () is smooth, hence
codim (,]((f)) Heloat J(CP))-1 (Hm (V,W)) =
mn+ dim T - dlm(a(yﬁx. o ox Jlg)” (ﬁi (V,¥)) >m n,

hence dim T > dim(j(@)x...x 3(%%)"1 (ﬂ? (v,W)) s vl
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§ 22 Calculation of codim Hi(n,p)

We say that subspaces T1""’Tm of a vector space T are in geqeral
position if

codim(T, A vee NT ) = codim T, +eeo+ codim T .
1 mn m

1

This condition is equivalent to the property that for any p <m

T -
(‘1,l g ATu) + Tp+1 =1,

If Zﬁ(n,p) (o Jk(n,p)m is the set of m-tupels of k-jets such that the
" images of the tangent spaces TH = To(z(“))(To(/@n)) €T = To(/Ap)
(w) ) ‘

(where z denotes the p~th component of m-tupel z) are not in general

position, then Zg(n,p) ¢ Hﬁ(n,p), and we estimate codim Zi(n,p) and
codim(Hi(n,p) = Zg(n,p)j.
Furthermore, we will derive 'normal forms' for multi-jets of
Jk(n,p)m = Ei(n,p) and Jk(n,p)m = Hi(n,p) -
Lemmé 1 . The subset Ei(n,p) is closéd and of codimensioﬁ
nn- (n-1)p + 1.
For the proof we only have to consider 1—jets,_i¢e..m—tupels of

(1)

(pxn)-matrices (z ,...,z(m)). The space J,(n,p)" is the union of
1

the locally closed subsets
Jq(n,p)(r(1),...,r(m) = { 2 ; rk(z(u)) = r(p)’ u:= 1’..”m'f 3

By Tu = TH(Z) we denote the subspace of To(/@p) = kP generated by the co-
(p) :

lumns of the matrix =z s then Tu is the image of the tangent.space

10( A"Y under z(u); By z - (Tq(z),...,Tm(z)) we get a surjective

Jq(n’p)(r(1),...,r(m)) =

morphism m 3 Grass(r(1),p) x...x Grass(r(m),p)

whose fibres are of dimension n(r(1) +...+ r{(m)). If
g (= e ‘
Z(r(1),...,r(m)) 3 ( 10 ,Tm) Grass(r(1),p)x..ex Grass(r(m),p)
Tﬂ""'Tm are -not in general position

then Z(r(ﬂ)j.;.,r(m)) is closed and

L pln,p) A J1(n’p)(r(1)ya..,r(m) ey s
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i
&
2

A =

: m
If Tjoee.,T are in general position, then mp - “21 i) =

codim(T, M ... nT.) = p. Therefore

z(r(1)sceosrlmd) | Grass(r(1>,p) XeooX Grass(r(m),p) if

(2(1)yeee,r(m)) DO

. .
(m=1)p > H§1 r(p), and dinm Z = Héﬂ r(p)(p-ru)).

e O g k " :
Now assume (m-1)p - u§1 r(p), then H§1 Blp) = (k21)p " Tobd K 2.2, .0sm,

If the subspaces T,,...,T are not in general position, there exists an
1 m

integer k ¢ [1,m - 1] such that TysovesT

. are in general-pbéifioﬁ but

T1,...;T T are not,

k' “k+1
If S = {-Tk+1 € Grass(r(k+1),p) ; T

1""’Tk+1 not in general position} ’

= & s i N =
S, = i Tk+1 Grass(r(k+1),p) ; codlm((T1 e 1D Tk) + Tk+1) v } .

then S =#(JS ,  and by
=g

SRR R (T1 o SRR Tk)
we get a morphism S - Grass(d,T), where T =T/ (T1/1 cee N Tk) and
dokp=(ll)s oo r(k) + v) . The fibres are open sets in

Grass(¥(k+1),p - v) and not empty if and only if

v 2 max(k p - (r(1) + «o. + v(k+1)),1). Hence

dim S v(kp = (r(1) +eeet+ r(k) +v)) + r(k+1)(p-r(k+1) = v)

r(k+1){p-r(k+1)) = V(Vk p + (1) +eest+ (k+1))s

Because of k p~5 r(1) +...+ r(k+1) we have dim S, > dim S5 >...

hence

dim S = r(x+1)(p - r(k+1)) = (1 + r(1) +...+ r(k+1) - k p)

TR e

and p§1 rp) (p - r(p)) -

(1 + (1) +e0et r(m) - (n=1)p)

a1m<zﬁ(n,p> n J1(n’p)(r(1),...,r(m))

m
(n=1)(r(1) +eue+ r(m) + p§1 r(p)(p-r(p)) + (g-1)p=-1

m(n-1)n + mn(p-n) + (mw-1)p-1

mn(p=1) + (m-1)p=1
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= din (Zf(‘(n,p)f) Jq(n,pj(n""’n))
codim Zﬁ(n,p) =mn - (m=1)p + 1 gee.d,
Now we will describe normal forms of multi-jets. Assume‘Tq,...,Tm are
subspaces in genéral position of a vector space T, we define
r(k) = dim Tpos a(0) = p = dim T, a(1) = r(1), a(2) = r(1) + r(2) -
Proeeesalk) = (1) + r(2) +oeet r(k) = (k-1)p, k = Vit st
~Then we can find a base e1,,..;ep of T such that for k = 1,...,m-j
(i)  the vectors eqreeo18 (k) form a base of T1 Aeen 0 Tk
(3i)  the §ectors € (k)+17 " Calk-1) are contained in the
subspace (’1‘,l Biwia il Tk-ﬂ) N (Tk+1 0 e fle) and they
form a base of (T, Neee NT, ) mod (Tﬂlﬂw..rﬁT#)
(observe that (T1’1¢..r\Tk_1) n,(Tk+4tﬁ...n Tm) + Tk = T, hence

om0 T ) OFCT

1 Kl kel A

~ Consequently, any multi-jet of multi-rank (r(1),eesyr(m)) which is not

= N N Moo 5
(T,ln... f ATm) + (T,l = nTk))

contained in Z i(n,p) is equivalent to a multi-jet such that (if we

write the components z(u) as a row vector at the moment)

é(u) (w) - (w) v (w) (w)
a 1

= (X,‘ gecey geeey wa(p_-’\)-é(p-) ’

() (w)
X e s

where j1(wa(u)) = 0, We write w(u) for the vector with the

components  w (u). We refer to such multi-jets as multi-jets in 'normél

form!, The image of the module A(Z(U)) in Qk_q(u)p .contains the vectors

o o)
(w) A () T
+ - e
ej ajw ip. a(p) apd el ajw Sl a(p)<j-r(p)
0 : 0
where 0, = ~—§z—j and the index o indicates that we substitute
: J b :
J

(w) (u) : (u)

%, = X, = oeee = xr(p) = 0, Thus we get




N T e S A

AL ey

. 2 AT g, ) D
If'eq,...,em denote the idempotents of Qk T then the base vector
= . : -
ej = ugq Euej is mapped under this isomorphism to the image of the vector
| | s <
Vj = - 21 “ if" 3 Sea(n)
) ke , 1-1
=) DN RERR R (1) S g ()
' 3 TR T T e J—p+r(u) b
" if a(i) < j < a(i-1),
where v.(u) = a.w(“) ; v
o J o

The following lemma is an immediate consequence of the definition.
Lemma 2, The multi-germ z is stable if and only if the vectors

Vq,...,V (defined by (*)) generate the vector space

><‘(Q’k(p~) p"r(p’) /A(W(

"If the jet w'(u)
(w)

& Jk(n4r(u)r p-r(p)) is contained in the contact

class of w 5 for y = 1,...,m and if we choose vectors vq,...,vp' in-

the form (*) , where vjﬁl)e Jk_ﬂ(n-r(p), p-r(y)), we get a multi-jet
() (n)

in normal form of the same size as z by putting w! = w!

r(t)

3 CiEaiGek ¢ GG
Jed = J

if the multl-get z! is contact equivalent with 2z and has normal form,

<p> :

+
o
and z' is contact equivalent with z. Conversely,
then the correspondlng jets w'(p‘)° are contact equivalent with w

If C( ) denotes the contact class of a jet or multi-jet, we con-

sequently get a surjective morphism

C(z) A { normal forms I®) >

&) g Cm) rp)
C(w O) Ko o X0 0w o) X >f% Jk 4 (n-r(p), p—r(g)) s
As an abbreviation we shall denote the variety on the right hand side
by X.
Lemma 3. If z is a multi-jet and if C(z) denotes its contact class,

thens



R

(1) C(BYedl(np) fr. preil - (ey(2))

(ii) codim ) (c(z) n Hi(n,p) - Zt(n,p)) = max(O,P“Pp_n(Q) +11)

C(z

where Q = Q (z) 1is the corresponding Artinian algebra and
k

b (@) = dim (g __° / B(z)).

p=-n
The proof is analogous to that of proposition 18. It is sufficient to

consider multi-jets in noxmal form. de denote this space by

Y(I‘(’l),...r(m)). Then C(Z) n H (n’p) A Y(r(’l)’.'.r(m)) : is the inverse

-— o

_ image of all elements of X for which the vectors Vq,...,Vp in
m
72 4 (Qk 1(p),n»r(p) i A(w(u) ) do not generate this space. Observe that

a(m)+q,...,vp are always linearly independent and (K V4_+ e e bl Va(m))

n KV P etk Vé) =0, 2dF b= _an) - p+ alm) = 1, we

a(m)+1 :
can choose b of the vectors V,...., ) arbitrarily and the remaining
pp n(Q) + p + 1 vectors in the subspace generated by .these b vectors

and by A(wo). Hence we get for the codimension ¢ of non-stable jets in

a contact class:
n

m .
¢ = a(m) dinl X 9y (a-r(w)y p-rD] + 2, (aG-1) - a(i)).”

> dim[;éﬁs Jk_q(n-r(u), p-r(p))]

m ¥
- b dain[ ﬁ§% Jy_qCo-r (), per(e))] - (alw) - b) (b + dim ACw ))

m ;
il 255 Jgeatnmr @)y p=r())]

e > 9 5
=p + _up*icg)g 1F p = up_n(Q). . Otherwise C(z) $ ng(n,p), qee.d.

Exactly as in § 12 one derives.from this result

Lemma & If ‘wﬁ(n,p) c Jk(n,p) = Zm(n,p) denotes the set of non;
simple contact ciasses, then codim d (n,p) >p = m(p»n) if and only if
codim (H:(n,p) — Zi(n,p)) > p - m(p=-n).

But the contact class 2z is determined by the isomorphism class of
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the correspondlng Artinian algebra Q(z) = Q(z(1)7 Lol Q(z(m))
f (p-n,r) is in the nice range, we have codim Wk(n,p)
>n2p - (p-n)m then, hence codim (Ty(n,p) —Zg(n,p))
>p - m(p-n). Together with lemma 1 we get
Temma 5: If (p-n,p). is imithe nice range, then

codlmTT (n,p) > mn - (m-1)p. o

Immedlately from 1emma 2 we get the follow1ng result about

normal forms:

Pr0p051t10n 28¢ Given an Artinian algebra Q = Q(1) XeooX Q{m)

where Q(1) e Q(m) are the local factors, there exists
a stable multi-germ )o— (\f(” ..,?(m)) in J(n,p)m such
that = Q(P) iR and onlyLif

(1) pn?r 1(Q(k)), k—‘l,...,m

(2) p2p S 1»{’—:1 (p-n)aimg ¥4 gy |

e ‘defimes dpy = (p-n)dimQ(k)+ g(Q(k)), n, = Dy~ (p-n) and
; : n

S =p - 2P =D - Py (@ Lot Py: (A k,0) —> (4,0

be a stable germ to Q(k) in normal form, and let ﬁf(k)

denote the germ
‘ k-1 p. n ' ' :

n o5 J k o S :

@700 = (K &) x 4R ( 2, AP9) xA%,0)
m. D
—> (X, 47 x4%,0) = (&7,0)

which is the direct product of the identical maps on the
factors m?j (j#k)‘ and A® with the germ e on the kbl T =
faetor. [hen &a: (TK1),...,T4m)MZis a stable multi-germ
with 40 = Q(f).
Example: Q = Q(1) % Q(2), 'Q(1) = K[[X:B/(Xz),
Q(z) = K[[&,é]]/ﬂyz,y2+z2). The smallest integer n such
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that Q has a stable representative in dimension n is

n=10 and p = 11. A stable representation for Q(1) L

given by the germ

2

My X, ux )y g : h S

and a stable representation for Q(z) by

G =y 2 2 2
av1,...,vagz,yn+;,+v1yfv2z;v3y+v4z+v5y )s

: SiEs o

Hence a stable representation for Q is given by ;9=(; e

(1)
f

= (ui,a..,u6,u7,u8,u9,x2,u1x)

2 e 2.« . 2 3
f( e (v1,...,v6,yz,y2+z FVGYHV 3%,V ) THV 24V Y ,v7,v8).

Finelly proposition 28 immediatly yilelds

Proposition 29: If (p-n,p)~ is in the nice range and

£f: VPP is a generic projection of a non-singular
: projective n-dimensional variety into the p-dimensional

Qy(f) = Q}’

ig locally closed and of diménsion 1) —’AP_H or empty.

projective space, the locus S(Q) = { y € £(V)
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