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Feller Resolvents

by L.Stoica

Summary

In this paper we consider a sub-Markov resolvent of
kernels (VA/A>O) on a locally compact space E with a countable

base and assume that the following conditions are fulfilled:

O A
1 WG BN dalml: Asl
2° " 1im AV f(x) Elm) o Rel (8 x¢E ,
A >0 £
- Vol is a potential.

In Section 1,we present an improvement of a wellknown

' technlcal result on convex cones of lower semicontinuous functlonr

In Section 2.we associate a Hunt prccess to-the above resolvent.
Section 3.contains an excessiveness criterion. In Section 4, we show
that the proéess associated to the resolvent (VX/X;O) is continuous

if and only if the following relation holds for each open set U,

e = -

. (e v (C_(U))
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FELLER RESOLVENTS
by L.Stoica

1. Convex Cones of Lower Semicontinucus Functions

, In this section we shall prove an improvement of a wellknown
result (see for'example.[qj Propositiohvl P.226). The proof follows
from the original idea:and an_idea,of C.Constantinescu and A.Cornea-
[1] (Lemma from page 160). ' '

4 Let C be a convex cone of lower’ semicontinuous nonnegative
functions on a locally compact space, E, which has a countable base.
Assume that for eachvxEE, there exists a function geC such that
O<c(x) <=, Let us denote by C* the fémily of all numerical nonnegative
universally measurable functions, £, such that p(f)<f(x) for each xcE
and each measure u that satisfies wle)<c{x) forany ecC.

Let f:E-—> R-be a function such that there exists coec with

fsco. We shall use the notation
Rf=inf {ceC*|fgc}

It follows that Rfg0 if the function. f satisfies £50. We denote by D

the family of all functions f ¢ C(E) which have: the following properties:

1° there exists ceC such that 1 £]l<c

2° inf {R(]f]XCK)}K compact set}=0.

Obviously Dis @ vector lattice that contains CC(E) and Rf<e

for each f¢D.
1 Théorem

Let f bé an upper semicontinuous- function such that there is.
geD with f<g. Then for each x<E there exists a nonnegative measure yu

such  that
a) :ule)sclx) for each ceC,
b) RE (x)=p(£).
Proof.

We 'define,. for edch gebh, é(g)=Rg(x). One easily verifies that
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p is sub-liniar on D,
' Let pu:D—>R be a linear functional such that u(g)sp(g) for

each geD. Then for g<0 we have u(g)<p(g)=0 and hence u is nonnegative.

The restriction UYC (E) define a nonnegative measure on E, which we

shall denote by'ﬁ. Now let geD, g0 and choose a sequence {h }CCC(E),
d O

<1 and Lj{h —1} =g, Then dh ,g(l h )ED and
£

such-that\Oshn<h +1

R(g(l—hn)) > 0, as n » ». Therefore u(g(l-hn))sR(g(l—hn))(X) -~ 0, and

hence

3 (@)=Lim T (gh )=lim w(gh)=n(¢)-1im u(g(1-h ))=u(g)

n->o© : n->o n->o©
We conclude that Ti=py on D. On the other hand foriceC, let g eCc(E) be

such that4g5c. Then
u(g)splg)cc(x) .

which leads to u(c)ic(x).

Conversely let v be a nonnegative measure on E such that
llc)=c(x). for each ceC. Then‘u>is'finite'on D and u{g)<plg) for each
QeD. '

Now let us suppose that feD. Then the assertion of the theo-

rem results from the Hahn-Banach theorem applied on the space D.
b If f is upper semicontinuous, let us consider a sequence

{fn}CD such that fn+15fn and f_lpf £ The set B={ue¢D’|u(g)<p(g) for

each geD} 1is a compact set in the topology o(D’,D), because 7
—p(-g)<u(g)<p(g) for each ge€D and each ue¢ B. The functions £, f :B > R

defined by f(u)=u(£f) , fn(u):u(f) for p € B satisfy f=inf fn and fn ;

néN are continuous: on B. Therefore from Lemma 1.2 stated below it

followe

sup f=inf [sup fh]
B n B

From the first part of the proof we know Rfﬁ(x);sup'fn .« Since
: B

Rf(x)stn(x), for. each neN, and F(u)=u(f)sRf(x) for each ue B we get

sup E<Rf(x)sinf | sup fg]
B n B

S e S RS

A I A
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Since f is an uppef¥ semicontinuodus function on a compact spac

there ‘exists u CB such that “@( £ ) =sup £,

126 Lemma_

Let K be a compact space and (f )alower bounded decreasing

sequence of upper semlcontlnuous numerical- functions. :Then the following
equallty holds¢

S (1nf f (%)) =inf (sup fn(x)) T
x<K n n X€K .



2. Feller Resolvents

Let E be a locally compact space with a countable base. In
this section we shall study a sub-Markov resolvent of kernels

{VA/A>O} which has the following property of W.Feller:
VACb(E)k Cb(E)., for each NS 0=
We also assumevthét for each f ¢ CC(E) and each x€E,

(1) : lim XVXf(X)=f(x) .

A>

2.1. Remark. The following fact is wellknownj

let {V.|2>0} be a sub-Markov resolvent of kernels that satisfies pro-

el
perty (1). If £ is a lower semicontinuous nonnegative function such
that kafgf £6t edch - 150, then f is excessive. Endeed if g SCC(E) is
such that ggf then g=lim AV,g<lim AV, f<f. Since f=sup {g= CC(E)Igsf}

; A A >0

it follows £=lim XVAf.
A >

We shall denote by S the family of all excessive functiens.
on' E and by S¢ the subfamily of all continuous excessive functions.

_ For each bounded function f we define

Rk {geS|fza}

Crf=inf {g&Sc|fgg}

. Obviously ngch. G.Mokobodzki proved in Y {see p.220=221)
that the cone of all excessive’functions asSoéiated»to an arbitrary
sub-Markov resolvent is a potential cone. In our . situation this pro-

perty is stated in the following theorem.

2.1’ . Theorenm

TF s ;268 then R(sft)GS and s-R(s-t)e S .
The following three results stated in the theorem from below
"are easy consequences of some results of G.Mokobodzki EY 3. (See Theowren

6 p.212,; p.221, Proposition 8, p.229, Theorem 12, p.236, Proposition
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14, p.232 and Proposition 16, p.233 in [ 4 }. The proof of-2° results
by using Theorem 1.1 instead of Proposition 1 from P+226 in (4.

2.2. Theorem

1o If £ is a bounded lower semicontinuous function,'thén Rf

is also lower semicontinuous.

(o}

2 If g is an upper semicontinuous function .and there exists

d bounded continuous functioh f such that ggf and

(2) inf {R(fXCK)]K compact set CE}=0 ,

then Rg=cRg. Particularly Rg is upper semicontinuous.

3O If f is a bounded continuous function which fulfils
relation (2), then Rf is a continuous function. 3
23 Remark..lo £ f is a bounded lower semicontinuous func-

tion, then from ‘the above theorem and Remark 2.1 it follows that:RE

1s excessive.

2° Tpof is a continuous function with compact support, then
condition 3° of the above theorem is obviously fulfilled. Therefore
one deduces that each lower semicontinuous excessive function is the
limit of an increasing sequence of bounded continuous excessive

functions.

3O

fulfils relation:(2). Then £ fulfils the following condition:

Let f be a bounded continuous excessive function which

inf {cR(fXCK)]K compact set}=0

Endied; let {gh} be a sequence in CC(E) such that Oggnggn+l§1 and

\/{9n=1}=E-AThen R(f(l—gn)), néN are continuous and
n

(o1
VR(fX{gnzo})sR(f(l—gn))sR(fx{gn<1})

o
e ¥

Since each compact set K satisfies KC{gn=1} for some n«N we deduce
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R(fx{gn<l}) =40, swhich ~implies ‘the assertion.

o .

space E. Since Ex[f(xtﬂ -~ f(x), (t » 0) for each x¢tE and each f¢ CC(E),

it follows that the resolvent of the process caticfies relation (1) IE 4

the potential kernel of the process is finite, i.e.
Gl(x)=EX[c]<w ;v feor edel ek,

then from Hunt’s theorem (see [1] p.141) for each compact set K andseach
xeK, it follows ' :

. : : S ; st
inf {s(x)|Gl<s on CK, s excessivel=E LE—TCK] :

= 2
If Kn-is an increasing sequence of compact sets such that KnC:Kn+l 5

&

TCKn -+ ¢, and hence

inf inf {s(k)|Gles en CK_, s excessivel=0
n

In the sequell we want to associate a Hunt process to the given resol-

vent (V,). Therefore from now on ‘we assume.that V. 1. sdtisfies relation
NS

(2).. ; , ‘
= -~ The family-of all excessive functions that satisfy relation
(2) will be denoted by P. Our assumption implies'VOCb+(E)C P. We put

i e CC(E)lthere exist s,;tePDC. (BEY such thaot f=s—t}

b

Obviously T is a vector lattice. We assert that T linearly
separates the points of E, i.e. for each x,y=E there exist £,g¢T such
that 5

f(x)g(y)#£(y)g(x) .

Since CC(E) has this property from condition (I)-and the
relation Vlf=V(f—AVAf) we first deduce that V(Cb(E)) linearly separates

the points of E. Then P/)Cb(E) has the same property, because

~V(Cb+(E))C‘PTC (B

b .
Now let f PNC,_(E). If g¢S, then min(f,g)ePNCy (E) .~ If fgg

et,Pl) be a standard process with state
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on CK for some compact set K then f-min(f,g)¢T, and the assertion
follows on account of Remark_2.3.30.

The Stone-Weierstrass theorem implies T=CO(E). Furtﬁer Theorem

32 60 0.C..Tavtor %] implies the following result:
2.4. Theorem

There exists a standard process (Q,F, Ft,X£, et,PX)’with state

§§Ece=E\§gch that for each x€E, X0 -and fE-BE(E),
EX [ exp(-at)£(X,)dt]=v £ (x)

Let us denote by {Pt} the transition function of the .process

given by the above. theorem.

2.5 Proposition

For each £ éCO(E), lim Ptf=f uni.form on each compact set.
t->0 :

Proof

Let fe¢ Pf\Cb(E). The sequence fn=nan is increasing and

1im.fn=f. Dini’s theorem implies that the convergence is uniform on

each compact: set. Further since

Py Iy =PV (Eonv D) =] P, (£-nv f)at

we get fn—Ptfnst}]f—nan][, and hence P f -~ £ , uniform. The

inequality PtfngPtfsf shows that Ptf > f uniform on each compact

set. Then the same holds for each f& T, and since T is dense in CO(E)
the proposition follows.

In order to show that the semigroup of the process given by
Theorem 2.4 is .in fact a Hunt semigroup we firs£ give the next two

lemmas.



2.6, Lemma

'Let Kl/ﬁ;JQt,Yt,éé,Px) be -a standard process with state space

U R L S

E. Let A be the Alexandrov point if E is noncompact or an additional

isolated point if E is compact and set E,=EU{A} . Assume that for each

A
pair x,yEEA ; X#A there exist two finite excessive functions s,t such
that s-t) 1 on a neighbourhood of x and sétgo on a nelghbourheoeod 'of v.

Then lim Yt exists in EA a.s. : : : = f
trg , =
. < nie ; PR

Proof

Let Ui', Ué be open sets in EA and s,t finite excessive

functions such that s-t:l on ﬁ& and s-t<0 on U,. We are going to prove
that the set : '

- £k

(4) 'M={we Q/there exists two sequenées (tn)’(tﬂ) such that g
‘ by slidy g tle), ¥, (w)eUy, Y., (0)<.U,) ?
n . n
is negligible. : :
| Let ns define T1=TU1 and Tk+l=Tk+TUi; eTk , where i is.

taken such that i=1.1f k is even and i=2 if k is odd. Then

M=OL AP < g, ; : :
ny 1 n _snk) 1
Since Y e U.mand Y & eon T ET <z} we deduce
: T2k+1 1 T2k 2 e 2k T 2k+1 . 3

BT e ot i y=te-t)in® e

T

2k+1 2k
Further we have
o ol
nP” (M) s I E"{(s-t) (¥, et e ol e
k=1 2k+1 2k
VR > X

< "L ety Y=tAY )BT [kl st i)
k= Tok+1 Tox s :

L

because{s(YT 2,{t(YT )} are supermartingales. Thus we deduce P> (M)=0

. n
fOor each xe¢E.

The condition from.the statement allows as to choose a
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countable family {(U?” Ug)} of pairs of open sets in E, and a family

foontoh n :
{(e 93 such.that sn, £, ne N are finite excessive functions

i :
s =t >1 on U? and sn—tn§0 on Ug and for each pair (x,y) € ExE, there
exists neN such that Xc§Ul 7 Y€ UZ. Then denoting by Mn the set defined
by (4) fqr (U?, Ug) wé have

{we | lim Yt(w) do. riot exists in EA}CijMﬁ .

t>z (w) n
: t<z fw) '

and the desired conclusion follows.
2:7. Lemma

Let (Q,F,Ft,Y 78 5P %) pe a standard process with state space

e
Esuch that lim Yt exists in EA a.s. Let {GA§X>O} be its resolvent and
E>r '
E<T

assume that for each feCC(E), lim kGAf=f uniform on each compact subset
: A>®

of E. Then the process is a Hunt process.

Note. In this lemma and in the next corollary F and Ft denote

the canonical o-fields associated to a Markov process.-..
Proof.

Let {Tn} be an increasing sequence of stopping times and

T=lim T . Let L=lim YT and put
n-o n--o n

M={T=r<e and L€ E}

We are g01ng to prove that M is negligible. - First we note that for each

bounded nonnegative universally measurable function £, {e” Vlf(Xt)} is

. a nonnegative supermartingale and

~T ~T A .
EXle: Mv,£(x, )]=E"[e "] f(x.)at] ~E[e Tz(xt)dt]
s .

; -T
Therefore lim e Ny £(x. )=e TVlf(XT) a.s.
5 n-—>-o L n .
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Now let f<ECc(E). From the relation V f=V1(f—(k—l)ka) we deduce that

k

fk=kaf satisfies
T -T_
lim e fk(YT )=e fk(YT) xSy
n->e n

and hence lim fk(YT J=o- a.s. on M. On the.other hand for each we M,
n--o n ;

the set {YT (0) |ne€NIV{L(w)} is compact. Since fk + f uniform on each
n

compact set we deduce lim £(Y; )=0, a.s. on M. But lim £(Y, )=f(L) a.s.

N> n n-—>~ n

an account of the continuity of f, which impliés £(L)=0 a.s. Since £

is arbitrary choosen we conclude that M is negligible.

Fo8 Corollary

The' process (0,F,F,,X. .8 ,Px) given by Theorem 2.4 is a Hunt
J¢ ¥

Eosrteet
process.

Proof

For each feT we have lim kvxf=f<uniform on each compact set.
A >

Since T is dense in CO(E) we deduce lim AV

f=f uniform un each compact
A > .

A

set for each.feECO(E). The corollary follows from the preceding two
lemmas.
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3, Excessive Functions for Feller Resolvents

Let (Q,M,Mt,xt,et,Px) be a standard process with state spaceb
E and supposé that its resolvent {Vxlx>0} has the following property:

VACb(E)CCb(E)’ for each A>0. In this section we are going to prove a

criterion of excessiveness. The proof makes use of the Choquet boundary
associated to a convex cone of lower semicontinuous functions on a

compact topological space. Namely we use Bauer’s minimum principle.

3.1 " Theorem

.\\

Let £ be a bounded continuous nonnegative function on E.
Assume that for each %¢E there exists a base of neighbourhoods of
x; U(%) ;- such sthat

Pcwf(x)gf(x) ~for each W el(x).
Then f is an excessive function.

In ordeér to -sinplify the exposition we first assume that the
potential kernel Vo has also the property VOCb(E)CCb(E). From Remark

2.3, 4%
Let "us denote by g;f—kka,'q=max(0,g), v=max(0,—-g) . Then ka=Vo(f-AVAf)=

one deduces that all results of Section 2:apply for our resolvent.

=VO@-VO(¢). From Remark 2.3, 3° we know that

inf {tSC(E)]t is ‘excessive and Vomst on CK, for some compact

set Ki=0 %

=Therefore, in Qrder to6 show .g>0, it suffices to show gt=0; for each

continuous excessive function t such that Vo@st on CK for some compact

set K. For such a function t let us suppose that a=inf (t+g) <0. Then

KO={X€E/(t+g)Cx)=a}_ is. a compdact' set because Ko must satisfy K6CK.

Also K must satisfy KOCZ{g<O}.
Now let x€K . Choose We¢ll(x) such that Wc{g<0}. Since

19<03N §9>0}=¢ we have
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Tew

E*[ [ (x,)at]=0, which implies

TCW
Since g=f-xvom+xvo¢ we deduce Pcwg(x)sg(x). Further on account of

Py (Vo) (0)=E"[ T o(x)at]=v e(x) .

agttg and PCW(I)(X)sl we .get asPCW(u)(X)sPéW(t+g)(X)gt(x)+g(x)=a f
It follows PCW(t+g;a)(x)=0, which shows PCW(XE\KO)fO' If we denote
by gy the measure on #o defined by ux(f)=PCW(f)(x)'we see that
ux(l)=1, ux(s)<s(x) for each excessive function s, uX(t+g)§(t+g)(x)
and u (%)=O because X G'EW} Px—a.s.
b3 A
CW ;
~ Now we can apply Lemma 1.5 of EE] ' for the space KO
the cone of all lower semicontinuous excessive functions and the
function g+t. We get g+t>0. Finally we conclude fskaf and from
Remark 2.1 deduce that f is excessive.
Now let us treat the general case (where we allow the
potential kernel tO be nonfinite). For A>0 we first deduce
A

Popf (¥) Py

- part of the proof we deduce that £ is A-exXcessive. Since i is

£(x)<f(x) for any Wel(x) and any xeE. Then fromithe first

arbitrary it follows that f is excessive.
The above theorem can be stated in the following more

general form:
3.2, Theoren

Let £ be a continuous bounded function on E such that

inf {R(—fXCK) | K compact :set & E}=0, where
R By mint {t|t is excessive and -fXCKst}

Assume that for each x€E there exists a base U(x) of neighbourhoods
pf x such that

Péwf(x)sf(x) for each Wel(x) .

Then f is nonnegative and excessive.
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Proof

: Let K be a compact set. From Theorem 2.2, 1° we know that
t=R(—fxCK) is lower semicontinuous. Let us suppose that inf (t+£)=a<0.
Then put Ko={erl(t+f)(x)=a}. It follows that L is a compact subSet

of K. Further we apply Lemma 1.5 of [§ 7] and deduce t+f30 just

like in the preceding proof. The assumption from the statement implies

f>0. The theorem results from the preceding one.

3.3. Remark. T.Watanabe in [¢1 proved other excessiveness

criteria for a resolvent satisfying the condition chb(E)CCb(E)’ for

3>0. Our resultsdo not follow from his because we let the family U(x)

to depend on X.
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4. The Local Character

Let E be a locally compact space with a countable base and

(Vlwx;O) a sub-Markov resolvent of kernels on E that satisfdes the

conditions assumed in Section 2. We shall use the notatign from Section

2. Particularly (Q,M,Mt,xt,et,PX) will be a Hunt process such that for

-~

each %é;Cb(E), A>0, x ¢ E the following relation holds:
: b'e :
v, £ (x)=E [Z exp(-1t) £(X Jdt) .

In this section we shall charactérise those resolvents (VA) which:'are

associated to continuous Markov processes. In the sequel we shall use

the following consequence of a result of G.Mokobodzki.

4.1. Theorem
Let'tEEPGC(E). There exists a unigque kernel, G on -E-such

- that Gt1=t and for each fGCb+(E) "

tl

thé POC(E) and
S ] s
R(XAth)_Gt‘ v where A=supp f.
The proof follows from Theorem 3 of Ch.IV in [4 ] and the next lemma.
4.2. Lemma

-Let t be in PAC(E). Then there exists.a sequence {tn} in

PO C(E) sﬁch that t=Ztn and for each neN there exists a compact set
5 :

35, + ‘=-
Kn such that R(“nXKn} Ln s

Proof

Let {gn} be a sequence in CC(E) such that Oggnggn+1 and

(@]
e

U{gn=l}=E. We define‘to=0 and
n

£ SR{t- T &, =R ({(t= 4 &t )(l=g )
n+l k<n k k¢n k i+l

AN et

£ i RN A e ety
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Next we are going to prove by induction that the sequence {tn} has the-

following properties:

Pl o g B S G o T
. k<n

Suppose that the above properties are true. Let us prove them with n+l
instead of n. First we note that

R((t- = tk)(l—gn+l))=t— L ¥, on {gnfl=0} .

. ksn kgn
From Theorem 2.2, 3% and Remark 2.3, £° Ak follows that
R((t- I tk)(l_gn¥l)) is a continuous excessive function. Then the same
k<n : "

arguments imply that t is also a continuous excessive function.

n+1

'From Thieeirem: 2wl it . follows: that t= I tk—tn is also excessive.

+
kg<n l

Further the inequality t <t implies tn €P , and similarly we deduce

n+l1™ +1

k<n+l

Now for each neN we put Kﬁ=supp g, and remark that

).
+1

tn+l=R(tn+1XKn

From the definition of t_,, we deduce o

toe B kot Y e n

gR((ti T )=y
L k 1 k

+
kg<n

n+1

Further t- I t,.<R(t(l-g ))<R(ty 3 s
: k<n+l k hs CKn+l

Since the last term tends to zero we get t= 5 tk .
k=1

4,3. Notation
I t€1W7Cb(E)—and fe Bb(E) we shall use the notation
f.t=th 7

whene @ 'dsigiven by Theorem 4.1.



4.3'. Remark . ' ‘ |
. The unicity of the kernel GV 1 associéted to Vol shows that
‘ o

£.(V 1)=v f for each feB, (E) . A !

4.4, Lemma

. €:E\T):=0 for each xe€ U.

Let U be.an open set such that PX(X
: (€105 .

T

Assume that s,tEPﬂCb(E) are such that s=t on RS uEFNWCb(E) is such

fhaf s-u € P and there exists.a compact set, KCU, such that PKu=u, theh

t-u€ P, : %
Proof

We are going to apply Theorem 3.2 for the function t-u. If
Xe. U we put U(x)={W open !WcU, xeW}. The condition from the statement

implies P (X (%) =P sl P Foreach Wwetl (=)«

t
CW

cw{t—u)(x)=(s—u)(x)—PCW(s—u)(x)zO.

< —:: he
W E\U)_O, and hence P cwW

TE
- Then (t—u)(x)—P

< Ff % € BEU we puk ‘Ulx)=1W open[W(jKé¢, X € W}. Since A i

PKu(x):PCW

\
\

u(x), we have

(£=u) (%) =Py (t-u) ()=t (x) -Pt(x)>0.

&

Then Theorem 3.2 implies that t-u is nonnegative and excessive. Since

t-ugtéP we have t-u€P .

4.5. Proposition

If U, s, t satisfy the requirements of the preceding Lemma,

then £.s=f.t for each féfBb(E) which satisfies f=0 on ENU. ; ;‘

Proof

From the construction of the kernel G_ (see [%] -p-239) ik

follows that for each open set D,
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Xp-S=Sup {ue SNC(E) |s-ue S and R(uxk)=u‘for some compact set Kc D}.

‘A similar relation holds for XD.t, and the equality Xp*S=

=XD't follows from the preced%ng-lemma‘for DC U. Further the monotone

~— class theorem implies the desired conclusion.

4.6. Lemma

Let U be an open and X, € U. Then there exist two functions,
‘Psq € PAC, (E) such that pzq, p-q € C.(U) and p(x )>q(x).

Proof

Put p—V 1::and ‘choose a function géC(E). such that g=0:'on an
open neighbourhood D of X O<9<1 and ¢ =1 on E\U. Then put g= R(Gp)

From Theorem 2.2, 3° we get geC(E). On the other hand we have

: X X
G - -
= T -— H 1
PCDp(Xo)-E L TCD-‘<E L J=pix o)

-

‘Prom Hunt's theorem (see [41 p.141) it follows PCD*(X Ji= R(quD)(x ). Since

R(quD)=q we get q(xo) <p(xo) .

4.7. Lemma g

LaA N T

Let u be a continuous excessive function and K a compact set
such that PKu e STl § is an increasing sequence of continuous excessive
functions which converges to u, then the convergence is uniform.

- Proof

By Dini’s theorem we deduce that for each e>0 there exists

neN such that ugun+g;on K. Then

= + + A
u PKugPK(un s)gun £ on.. B

4.8. Proposition » - . :

Let u be a continuous excessive function and K a compact set

Hh

(L)

such that P U=u. Assume that teRIC(E) and {fn} is a sequence of conti-



nuous functions such that the sequence {fn.t} is increasing and

lim fn.t=u. If geCc(E) is such that 0g<ggl and g=1 on an open set D

>0

With KcD, then lim (gfn).t=u uniform.

N>

Proof - : ; e

"Using Lemma 4.6 we first choosevtﬁo continudus bounded
excessive functions pracPasuch sthat p=q ‘on E\D and'p—q;l'on K. Theh
we can apply the ,ﬁaeﬂms[ Feron Prof)péi tJ:J:”Oi’) 3.4 ind 5} . Thus for
-each x€E we have a positive measure Mo sueh that G

s(x)=ux(s~?Ks) for edch se P which fulfils PE\Ds=s 5 - 3

Furthermore u_(1)<||g||, for each x¢E. Hence s : ' |

l]s[lsc[[s—Pstl for each séP which fulfils P pS=S -

_From Lemma 4.7 we know.that £ -t > u uniform. Then P, (£ .t) > P, (u)

K

-uniform. Since'Pku=u we deduce fn.t~-‘PK(fn.t)<—> 0. Burther' from the

inequality
fn.t—PK(fn.t)=(gfn):t-PK((gfnY.t)+((1—g)fn).t—PK(((l-g)fn).t)

20(1=g) £ ). t=Pp (((1~g) £ ) .t)2(1/c) ((1-g)f ).t
we get ((l—g)fn).t + 0, which implies

(gﬁn).t=fn.t—((1—g)fn).§ > u.

4.9. Remark. If in the preceding proposition we assume K is
closed and CK is relatively compact instead of assuming K is COmpact;
then the conclusioﬁ is still valid with uniform convergence :on each
compact subset of E instead of uniform convergence on the whole space E. .

4.10. Theorem

Let U be a relatively commact open set such that for each
X« CU, PX(XTﬁéU)=O. Then for each open Sek, Ayisuchthat UcA, the

following inclusion holds:



(3

Cc(U)c'Vo(cc(A)),

Proof
Let us define -

T(U)={f£ECC(U)]there exist s,téPDCb(E) such that f=s-t}

From Lemma 4.6 and the Stone-Weierstrass theorem it follows
T(U)=CO(U) 5

Therefore for each fECc(U) and each e£>0 there exist s,tEPﬂCb(E) such
that s-te¢ C_(U) and |s-t-fl<e. Let now geC_(a) be such that 0gggl and.

g=1 on U. From Lemma 4.5 we deduce (l1-g).s=(1l-g).t and hence
gis=g.t=s~t. :

Since g.s is excessive we have lim XV>(g.s)=g.s. If we put
Ao 5

5
i
£
§
¥

i O A £ = - = N : 7 A _;' 2
vp Vol and £ n(g,; nVn(g.s)) we have n\n(g.s) S o Now-we apply
Proposition-4.8 for K=suppg and u=g.s. Let g'e CC(A) be such that
~05g’'<1 and g’=1 on~a neighbourhood of K. Thén®there exists neN such that
|

;(g’fﬁ).p—g;sﬂ<e;‘Putting h=g’anwé'cén writte (gffn).p=h.p=vgh and-

-IVOh?g.s]<e.
~ Similarly we can find h'e C_ () such that ]Voh’—g.t!<e.

Therefore
IVO(h—h’)—fl<3e .and h-h'e C_(A) .

4.11.-Lemma'.

Let A,U be two open sets such that UCA. If-

R e

CC(U)C VO(CC(A)) '

then for each x¢ENA we have PX(XTé U)=0.
A




e Proof 7 5 =

Proof

: ! ST o

If £eC_(A) and x¢EMA, then we have E [ I f(Xt)dtJ=O :

and hence ; :
3 & X'. % “— : o

P Vof(x)—E o f(Xthtj—Vof(x)—O i

A
TA'

The density condition ledds: to PAg(x)=O for each geCC(U), which
implies PX(XT ¢ U)=0.
; Py

4.12. ggrollary

The process (Q,M,Mt,x ,Px) is continuous if and only'if

£%¢

for each open set, U, the following inclusion holds:

() T o TR

e .'If the process is continuoys one ‘uses Theorem 4.10 and get

relation (%) for each open set.

Now let us suppose that relation (x) is valid for each open

set. Let W be-an open set and put U=E\W. From Lemma 4.l11 we get

PX(XT € E\XW)=0 for each XeW .
TE\W : 57

‘Then from té’r& resdlt of ﬁnﬂéxé{;n[}] deduce that the process

is continuous.
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