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Introduction

In our previous paper [6], we dealt with some criteria
for properness for the morphisms of- schemes.
If f:X—>Y is a separated morphism of algebraic schemes

~over & field k, then the following properties are equivalenfz

1) £ is proper.

ii) every closed integral l-dimensional subscheme CeX is

proper over Y.

ek [, comollgry iy,
In general, when f is a separated morphism of finite tvpe
of noetherian schemes, i) is not equivalent with ii), as shows

the following

Example 1 - Let A be a discrete valuation ring, teA a gene-
rator of the maximal ideal of A, A[T} the ring of the polynomials
in one indeterminate and x=(tT-1)the ideal of AfT] generated by
tT-1. Then x is a maximal ideal since AfT}/(tT—l) is isomorphic to

the quotient field A . Denote Y=Spec A[Tq, X=Y—{x} and f:X<-»Y the

=
: canohical open immersion. Since x is a clesed:l-codimensional pointee:
of ¥, dt-ds easy to see that'f satisfiesii), fis not proper-since
it is not surjective. .

In Example 1, X and Y are schemes of finite type over A.

Then it is natural to put the following problem: if S is a

noetherian scheme, which conditions must satisfv S such that for

every separated morphism f:X—=Y of schems of finite type over S,

the above conditions i) and ii) are equivalent ?




In [6] we have shown (see the proofs of Theorem 1 and
Prdpositions 1 and 2, loc.tit.) that the obstructioﬁ for a separa-
ted morphism f:X-—>Y\of finite tybe of noetherian schemes to be
proper (under some "good" conditions) consists‘in the existence -
of sOmé closed integral subschemes X'cX of aimension?>1, which
have closed l-codimensional points.

In connectidn with this remark, in §1 we introduce a

class of noetherian rings, called universally 1—equicodimensional:\\m“

Precisely,a ring A belongs to this class if it is noetherian and
if‘every integral A-algebra of finite type, which has a maximal
l—height.ideal, is 1-dimensional. In an obvious manner one defines
the uniVeréally l-equicodimensional schemes. 4

. In .§2, Theorem 2 a)<=>c), we show that a scheme S has-
the property required in‘'the above problem iff it is universally
1—equicodiménsional. Other characterizations of universally l-equi-
codimensional schemes are given in Theorem 2, some of them being »
pure topological ]see b)) . Theorem 2 appears also in f4l;

In the other thebrems of this paper we eétablish some
general properties of the above class of schemes. The main results
are Theorem 1 and 3.

: In §3, Theorem 3, we point out that the integral universally
1—equicodimensionél schemes which haVé generically some good proper-
ties (more precisely, those which contain an open#non—empty cate-
nary and equicodimensioﬂal scheme) , can be charaéterized by some
stronger properties. From this theorem we may easily deduce that

an integral l-dimensional (resp.Z—dimensional) rdng 'is universal%y__
l—equicodimensiénal iff it is noetherian and Jacobson (resp. Jacobson
universally catenary and equicodimensional) (see alsé Corolilaries

1 and 8).



In [5], we have proved that if a‘subalqebra of an alqgebra
of finite type over a field is universally l-equicodimensional then
it is finitely generated (and conversely). This result is not
contqined in this paver, but it will appear in [7]. This result
can be related in a natural manner with some new solutions for the
known affirmative cases of Hilbert'’s 14th'problem. .

g In él, Theorem 1, we give a class of morphisms of finite
type of scﬁemes, by which the universally l-equicodimensionality
goes down. This class of morohisms, given by topoological proper-
ties, includes the surjective proper mormhisms,the surjective
universally open (in particular, all faithfully flat) morphisms
of finite type and also some morphisms which appear in connection
with the problem of the finite generation of the subalgebras: the
strongly submersive morphisms (of finite type) introduced in IlBX
form Spec A i Apec Aq where G is a (geometrically) reducti&e
group acting rationally on the ring A and AG is the subring of the
invariants . (for details, see. the proofs - of 'Corolaries 2-6 and
Remark 2).

In connection with Theorem 1, we may mention that by a
morphisms f:X —> Y of reduced schemes over a field k, which belongs

to the class of mdrphisms described in Theorem 1, the property to

be algebraic over k goes down (see [7}).

%
Throught this paper we follow in general the terminology
and the notations of EGAI-IV, excepflthe term of "prescheme"

(fesp. "scheme") which is replaced by "scheme" (resp."separated

scheme") .



1. Definition, examples and some general properties

We shall introduce the following:

Definition - A ring A is called universally l-equicodimen-

sional if it is noetherianiand if everv inteqral‘Ajglqebra of finite

- type which has a maximal l-height ideal, is l-dimensional.

A scheme X is called universally l-equicodimensional if

there exists a finite covering (Ui). of X with open affine sub-

iel
sets such that for every ieI, the ring rKUi ,Q%x) is universally
l-eciiicodimensional.

The following Example 2 gives a class of universally

l-equicodimensional rings. This Examples apnears also in EGA IV,

10:671:

Example 2 - An integral ring which is Jacobson, egquicodi-

mensional and universally catenary, is universally l-equicodimen-

-sional.

Indeed, let A be such a ring. It suffices to prove that
evefy polynomial algebra A[Tl,...,Tgl is equicodimehsional. (Since
it is also catenary, it follows that all maximal chains of prime
ideals of A[Tl""'Tﬂ] have the same lenght and so'evefy integral
A-algebra B of finite type ds equicodimensional;ythen,if B has a
maximal l-height ideal, it follows dim B=1).

Since A[Tl,...,Tn] is a Jacobson universally catenary ring
(cf.[2], ch.V, 3, no.4; Th.3),; by induction on n, we may suppose
that n=1. Let QCLA[T] be a maximal ideal. Since A is a Jacobson
ring, it follows that Q=mf\A is a maxiﬁal ideal of A (cf.{Zl, loey:
citi) s The lecal. .xring A[T}m is flat over B w and then let ¥dﬁﬁ.=

=dim A[T] =dim A +dim A[T} feA[T]  =ht n+dim(a[T]/ AlT]) =

=dim A+dim(a/n{T]) =dim A+1.

OLEL D



We have the following consequences of Example 2:

Example 2a - Every artinian ring k is universally

l-equicodimensional. Every k-algebra of finite type (resp. every

—_scheme of finite type) over such a ring k is universally l-equi-

codimensional.

Indeed an integral k-algebra of finite type is a k/m-
algebra, where m is a maximal ideal of k. Then Example 2a follows

from the fact that every field is universally l-equicodimensional.

Example 2b - Every algebra of finite type over an inteqral

noetherian Jacobson l-dimensional ring is universally l-equicodi-

mensional.
T

The ring Z of ‘the integer numbers is universallwy l-equico-~

dimensional.

It follows from Example 2 and Definition, since everv in-
tegral noetherian l-dimensional ring is equicodimensional and

universally catenary (cf. EGA IV, 5.6.3 .and 63T

Example 2c - Every algebra of finite type over a noctherdam

- normal Jacobson ring A, such that for every maximal ideal meA _htm =

=2, is universally l-equicodimensional.

It follows from Example 2, since every normal 2-dimensional
ring is universally catenary. Indeed, for every prime ideal peAl
dim AEé2 and A}2 is a Cohen-Macaulay ring (cf.fZZ];_ch.IV B, Ex.2)
then AE is universally catenary (cf. EGA.IV, 6.3.7) and hence A is

also universally catenary (cf. EGA IV, 5.6.3):

Examplé 2d - Let A be a local integral universally catenary

ring and mcA its maximal ideal. Then Svec A—{m} is an universally

l-equicodimensional scheme.




Indeed, cf. EGA IV, 10.5.9, it follows that X=Spec A-{m}
is a Jacobson scheme. Since for every closed point xeX, the local

ringQD = is universally catenary and din1€& X=dim D=L the

7
assertion follows from Example 2.
Example 2d appears also in EGA IV{ L0k 255

We have the following

Example 3 - A noetherian semilocal ring of dimension >0

is not universally l-equicodimensional.

In fact, let A be such a rinag. Choosinag a prime ideal p<A,:
and replacing A by A/o, we may suppose that A is an integral 1-di-
mensional semilocal ring. Let f€A be a non-zero element such phatv
the quotient ring A§=A[1/fl is‘local and teAYl/fl a ﬁon—zero ele-
ment of the maximal ideal. -Then the principal ideal (tT-1) of the
polynomial algebra A[l/f][T] is maximal and ht(tT-1)=1. It follows
that A[l/flT] is an A-algebra of finite type of dimension 2; having
a maximal l-height ideal.

We shall give some general properties  of ‘the universally

l-equicodimensional schemes.

Proposition 1 - a) An universally l-equicodimensional

scheme is a Jacobson scheme

b) If X is am universally l-equicodimensional scheme, for

every open affine subset UgX, the rinql—(U,QDX) is universally

l-equicodimensional.

c) Every scheme of finite tvpe over an universally

l-equicodimensional scheme is still universally l-equicodimensional.

In particular, every subscheme of such a scheme is universally

l-equicodimensional.




d) A noetherian scheme is universally l-equicodimensional

iff every irreducible component with reduced scheme structure is

universally l-equicodimensional.

= Progf .= d) Bet X:be an univercgally l—equicodimensionai
scheme and let us suppose that X is not a Jacobson scheme. Then -
there‘exists-an open affine subset UcX such that A=YYU,G&)‘is an
universally l-equicodimensional ring, but it is not a Jacobson-
ring. From EGA IV 10.5.2, it follows that there exists a prime
ideal pcA, such that A/p iS$ a semilocal 1l-dimensional ring.-Then
A/p is not universally l-equicodimensional, by Example.B. This
contradicts the fact that A ié universally l—equicodimensional.

b). By definition, it follows “that if A is ansuniwersally

l-equicodimensional ring, then for every feA, the quotient ring
Af is ﬁniversally l—equicodiménsional. Hence an universally
l-equicodimensional scheme has a topological basis (Ui)i such

€Tl

that for every ie€I, Us is affine and Yg(Ui,QDX) is an universally

l-equicodimensional ring. Let UgX be an open affine subset and

i i
r(U,QQX)—algebra of finite type which has a maximal ideal m of

Jelisuch that (U is a covering .of U. If A is an integral

height 1 and ?:Spec A —>» U is the canonical morphism of affine
Schémes, then there exists je3J such thatw$Q3%ﬂ1€[H. Since s Sedcu
an.affine morphism of finite type, it:follows that ?rl(Uj) is.ah..
affine scheme of finite type over Uj(cf. BGLN ALl i1 42 o 1) sand

n e ?-l(Uj) is a maximal l-height ideal in B=YY‘?I(Uj)'<CEDeCA)'

Since B is of finite type over the universally l—equicodimensionai

ring r(Uj,Q%a, it follows that dim ?_1(Uj)=l. Fromwa) , ‘it results

that X is a Jacobson scheme. Then r(U,(bx) is a Jacobson ring



(cf. EGA IV, 10.4.2) and then A 1is still Jacobson. Anplying
Corollary 2-of [6}, to the scheme Spec A and to the l-dimensional

open subset ?—l(Uj) it follows that dim Spec A=1. Hence dim A=1l.

c) and d) are standard.

Corollary 1 - An inteqgral l-dimensional ring.is universa-

lly l-equicodimensional iff it is a noetherian Jacébson ring.

Indeed, an implication follows by Proposition 1 a) and
another by Example 2b). °

In the following Theorem 1 we qive a class of morphisms,
by which the property of universal l-equicodimensionally, goes

down.

Theorem 1 - Let f:X—>Y be a morrnhism of finite type of

noetherian schemes, which satisfies the following nromertv:

(P) For every integral Y-scheme Y’ the canonical morvhism

£ Xy Ml —=+Y" regtricted to the (finite) Unieon et tall

=) Y

irreducible components of~XxYYf which dominate Y’, is surjective.

Then, if X is an universally l-equicodimensional scheme,

Y is also universallv l-equicodimensional.

Proof - Let Y’ be an inteaqral Y-scheme of finite tyne and
~yéY’ a closed point. By the property (P), therevexists an inteqral
scheme X’ of finite tyme over X and a dominant morphisms f’:X’'—> Y’
of finite type such that yef’(X'). Let x € X’ be a closed noint such

5 the canonical homomorvhisms of
Yo v Xpx :

-

that y=f’ (x) and £%, © , — O
local rings. Then f' is injective and if m, is the maximal ideal

of the ring @)Y’y , we have EY(DX,’X#O. It is easy to see that.

there exists a prime ideal pec O '

%oy such that cht p=1 and E#EYCQ'

73X



Let CeX’ be the integral closed subscheme which passes through x
and which corresponds to p. C is of finite type over X and

SR Sy

\\\din\ @) =dim GD z //=1. If UsC is an open affine neighbourhood
: C,x DG TAip) :
of x, TKU,(EE) is universally l-equicodimensional since C is an
univérsally l-equicodimensional scheme .and because of Proposition,
1b) . The maximal ideal ECYYU,Q%Q corresponding to-xelC ds of.hetqht~
1. Then dim U=dim rYU; ¢£)=I{ Sirce C ig a Jacobsoh scheme, it » _
follows that dim C=1, by Corollary. 2 of [6] . We deduce that
f’(C);{y}, since E#gy Q&’,x'
Therefore we have proved that there exists a closed‘ihteoral
1;dimensional subscheme CeX’ such that f’(C)Dgy} and C is a
X-scheme of finite type.
. Using this remark, we may prove that Y is a Jacobson scheme.
Indeed, let us suppose that ¥ is not Jacobson. Then there exists
an open affine subset UeX such that the ring a=1(1, QD is not
Jacobson. By EGA IV, 10.5.2, it follows that there exists a prime
ideal pcA such that A/E is a semilocal 1l-dimensional ring. Let\be
Y’'=Spec A/p and let yeY’ bhe a closod point.
By above remark, there exists a;motphism of finite tvoe

¥Y:c —> Y’, such that C is an integral l-dimensional scheme of

flnlte typne overX and'f(c):>§vﬁ Then P is dominant, since .
\f(C):'){y% and, Coc\\.m %yﬁ I Let 'vléY be she generic point; 5\'*\7;

i s repen - dn ‘Y and so M- - q) is an openwnonempty subset of C.

1

Sirde “HC s (yh) s @ finite set; by Zarlskl Main Theorem it follows

that U= XQC\X fisk Lsplated dnie ?(x)% is an open nonempty subset
in C. Hence C’=~?l(q)ﬂU is nonempty subset of C.

I £ el sathen %%x)=”1 aﬁd Xd8 isolated in T-l(nfiwﬁut"
*;l(n) is irreducible of dimension 1, since C is a Jacobson scheme,

by Proposition la.This is a contradiction.

Now we shall prove that Y is a wuniversally l-equicodimen-



sional scheme. Let UsY be an open affine subset and A an integral
r(U,CQ)—algebra of finite type which has a maximal ideal of height
1. Then Y’'=Spec A is an integral Y-scheme of finite type and has

a closed l-codimensional point yeY’. By the remark made above,
there exists a closed integral 1-dimensional subscheme CeX’ and a

“morphism of finite type ¥:€-~»Y' such that.ﬁy%kfgiﬁ). Since §y§

is closed of codimension 1 in ¥', we have ‘f(C)=y" and so ¥ is
dominant,'f is tﬁen quasi-finite and hence it is easy to see that
1t s genérically a finite morphism, via Zariski Main Theorem
(BEGA ITII, 4.4.5). Let,UgY’ be an affine nonempty open subset such
that ¥| | ¢ Y1) — U is finite. We have dim U=dim ¥ ' (U)=1,
since C*;s(gg integral Jacobson l-dimensional scheme. Y’ beina of
finite type over the Jacobson scheme Y, it is also Jacobson. By
Gorellary 2 of [6}, it follows dim '¥'=l. Hence ‘dima=1 and ¥ is
a universally l-equicodimensional scheme.
Q.E.DB.

Remark 1 - In Theorem 1, it suffices to assume that f is
a.mqrphism of finite type: of noetherian schemes which satisfies
the following weaker property:

(P’) for everv affine integral Y-scheme Y’ of finite type

and for every closed point .yeY¥’, there exists an integral comnonent

Y

XLof xx X' such that the canonical morphism £7:X'-—> V' is dominent

dnid. v e & it

The proof remains unchanged.

We don’t know whether in Theorem 1 VY is noetherian if X
is universally l-equicodimensional, even under some additional
conditions. In some particular cases this:?act>1§ true.

For instance, in (7}, oﬁe proves that the answer to the

above question is affirmative if X is an algebraic scheme over a




field (more precisely if f:X —» Y is a morphism of -reduced k-schemes
over a field k,‘where Xiis ialgebraic: over ik and f satisfies ithe
property (P) of Theorem 1, then Y is also algebraic over k).

We shall present some particular cases of Theorem 1.

-Corollary 2 -~ Let f£:X —Y be a morphism of schemes, where e~njs«

© X is universally l-equicodimensional and Y is-noethewdans If fiis

either proper surjective or a universally open surjective morphism

Oof finite type, “then Y is universally l-equicodimensional.

—

Indeed, it is easy to see that a proper surjective mornhism
or a universally open surjective morphism of finite type has the

property  (P) of Theorem 1. Then Corollary 2 follows by Theorem 1.
; Q. E D
Corollary 3 - Let f:X —Y be a faithfully flat morphism of

finite type of schemes, where X is universally l-equicodimensional.

Then Y is universally l-equicodimensional.

Indeed, by the hypothesis -of Corollary.3, it follows.that ¥
is a noetherian schemes and f is universally‘open and surjective.:

Corollary 3 is then a consequence of Corollary 2.

Corollary 4 - Let X be an affine universally l-equicodimen-

sional scheme over a field k, G a linearly reductive algebraic groun

over k and 0:G x X —> X an action of G on X,-Sunbése that the cano-.

‘nical ‘morphism X =% X/G of X to the categoxdcal quotient X/6 .of X:dbyic-

G (which exists by Munford’s Theorem (cf. Tidl, cnip 82, Tho1.1)) aic ;

of finite type. Then X/G is a universally l-equicodimensional scheme.’

Proof - We shall follow the first part of the proof of
Mumford’s Theorem (cf. [14\, loc.cit. ).
Denote A=0(x,0) and by @ :a —>T(G,0,) ® A the dual action

indueced by g . Let Ao=gxeA\8‘(x)=1 @ x}g__ R be the k-subalgebra of



Ll

invariants dfa', Y=Spec AO and f:X —> Y the canonical morphism

the
induced byYinclusion A S A.

In the proof of Mumford’s Theorem the following facts are
proved:
T)e g BO is an Ao—algebra then the ring df-invériants of

the dual action induced by" & on A®A B, is B~
¢ &

:ﬂ~'é) 14 (gi jeT is a set of invariant ideals of A then

A2 adna =% ta.Nr)
e e

3) Y=X/G and it is noetherian.
Corollary 4 follows from Theorem 1 if we prove that ¥:X —Y
has the property (P) of Theorem 1.

Let Y" be an integral Y-scheme and yveY ' From 1 )e-amdee 30

applied to the action of G on the scheme Xx

v Spec ©Y§y e v fol Tows

that Spec COY“ I's: a~categorical quotient: of this actioni Bwv 2),

7

applied also to this action, it follows that for every set (gl_i)i

: eI
of 1nvar§.ant ideals of the ring A®AO@Y7Y we have
(2 ii)n(OY’y: Z (iin@Yﬁy) -« If \\):XXYSpeC COny —2> Spec CO‘Yiy is

ieT eoriel
the canonical morphism, then this equality of ideals implies that

for every family (Wi).

jey Of closed invariant subsets of Xx,Spec B,

Y,y

we have Y( Mw, )‘= -mY(W. Yo tm
er T ier -

Let us denote by X!,.. .,X;'l the irreducible components of

17
the scheme XXYSpec @Y’y which dominate Spec @
7

n
Yiy® Then lI;Jlxi is a

closed invariant subset of Xx Specco +__. Since \\’—l(y) is also a

Y Y,y g
closed invariant subset of XXYSpec@ 'y (v being indetified with
14

the closed point of Spec @Y,y) , we have:
3 14




‘.V(Y—l (Y)Q(CJX;_) )=§y%ﬂ?(&x;)=gy} nYr=§y}
: i=1 i=1 :

n
If y¢YLlJxy), then ¥~ Lyrn (LJx") =@, and so {y%{=9, which
i=1

i= l
is not possible.

Thus - ye ¥ L_)X") L_J*WX") ‘There exists an irreducible compo—:
i=1 = el :

14

nent X; of XxYSpec(Oy,y + Which dominates Y¥’, such that yefY(xg)

Then the closure of the image of' the natural map Xi-—»XxYX' is a
closed irreducible subset X' of Xx Y’, which dominates Y’ and such
that y is in the image of the appllcatlon X' —=3¥ % Choosing an

1rreduc1b¢e component ZC-Xx V! Wthh contains X', it is clear that

Z dominates Y’ and y is in the image of the application 7 s—avl:

Corollary 5 - Let A be a universally l—equicodimensional“‘ww

algebra over an algebraically closed field k and G a linearly reduc-

~tive group over k which acts rationally on A. If A is of finite type

over : the subring AG of invariants, then AG is a universally l-equi-

codimensional ring.

Indeed, Corol lary 5 . follows From Corollary 4, since it
is known that the rational action of G on A corersponds to an action
of G on X=Spec A, such that X/G=Spec AC

- Remark 2 - The fact that in Corollary 4, the morphism

X —>» X/G has thetproperty (P), is more general: let A be an algebra. - .

over an algebraically closed field k and G a (geometrically) reduc-

tive group owver k acting rationally on A. If A dis of Cinite type over

the subring of invariants AG then the cannonical morphism Spec A

=2 5pe@ AG satisfies the condition (P) of Theorem.l.

" We don’t prove this fact here. The proof uses the known



lemmas of Nagata (see [17I oY [20] pag.54) " in"a more general . version
(seé [7]). ‘
Recall that a homomorphism f:A —>A’ of rings is called

strongly submersive if for every minimal prime ideal.E<:A and for

every valuation subring V2A#/p of the quotienf field of A/p, there
exist a valuation ring W dominating V and a homomorfism A'—> W

~such that the following diagram

Al ——> W

ol o]

A e N

is commutative. (cf. (18\, p.193-194).
In a natural manner, one defines the notion of strongly

submersive morphism of affine schemes.

Corollary 6 - Let f:A —>A’ be a strongly submersive homomor-

phism of rings, such that A is noetherian and A’ is an A-algebra of

finite type. Then A is universally l-equicodimensipnal if a'is

universally l-equicodimensional.

Proof -+ We 'shall prove “that. thevmorphism ¥:x =spec A'>Y=
=Spec A, iﬁducéd by £, has the property (P) of, Theorem 1. Then Corol-
lary 6.follows from Theoreml. S P

Let Y" be an affine integral Y-scheme and yeY'. By {181,

Theorem 1,. 1t follows that T :Xx,Y'—Y' is strongly submersive.

(¥r) 0
Then if V is a waluation subring of the field K(Y') of rational
functions on Y’,.such that vV dominates O

]

valuation ring W dominating V and a morphism \V:Spec W ~+~XXYY’ such

yiy * then there exist a
7 2

that the diagram



= s

v
XxYY' €  Spec W

i g

Y/ 4——— Spec V

is commutative. Then X"=Y(Spec W)< XXYY’ is an. integral. closed sub-
scheme .dominating Y’ such-that yéiqu,)(X“). If - X'+1d an irrediheible
component of XXYY’ containing X", then X’ dominates Y’ and yea*uy,)(xf);

Now it is clear that the property (P) of Theorem 1 is fulfilled

by b

Remark 3 - Let f:A —> A’ be a homomorphism of Tings. 1t is
easy to show that the converse of the assertion made in the proof of

. Corollary 6 is true, i.e. if the morphism Spec A’— Spec A has the

property (P) of Theorem 1, then f is srongly submersive.

Q.E.D.

2. Some characterizations of universally l-eguicodimensional

schemes

In the foliowing Theorem 2, we shall prove that the universally
l-equiéodimen;ional schemesiare-thessolution.of the iproblem.putiin
Introduction (see a) &>c)). The assertion b) .of this Theorem gives a
topological characterization,for the universally d—equicodimensionalai i

schemes.

Theorem 2 - Let S be a noetherian scheme. The following asser-

tions are equivalent:

a) S is universally l-equicodimensional.’

b) for every irreducible scheme X of finite type over S of

dimension > 0 and for every closed point xeX; the: set of all closed

points x’e X, such that there exists a closed irreducible (resp.connected)



RS

1-dimensional subset of X passing through x and x'’, is dense in X.

c) for every separated morphism f:X —s Y of S-schemes X,Y

of finite type over S, the following assertions are equivalent:

iy £ is proper

ii) every closed integral l-dimensional subscheme C <X is

proper over Y.

d) for every separatéd morphism f:X ~»Y of S=schemes X, Y

of finite type over S, the following assertions are equivalent:

1) £.4s5 finite

ii) every closed integral l-dimensional subscheme C&X is

finite over Y.

e) S is a Jacobson scheme and every integral scheme X, which

is finite over S and has a closed l-codimensional point, is l-dimen-

sional.

f) S is Jacobson and every closed integral subscheme S'eS

such that its normalization has a closed l-codimensional point, is.

l1-dimensional.

Proof=~ a)::§ b) We proceed by noetherian induction on X.
Since for dim X=1, b) is clear, we may assume that dim X>1 and every
closed irreducible subscheme X’c X has the property given in b). If
X does not satiéfy b), then there exists a closedipoint xeX such
that the subset YeX of the closed points x‘¢e X which can be "joined"
with x, by a closed irreducible l-dimensional subset of X, is not
dense in X. Let UeX be an .open nonempty subset( suph that UnY=@.
It is clear that X¥U and every closed intégral subscheme X'cX
passing through x does not meet U. As in e pr&bé of Lemma 1 of
[61, it follows that dim@jx’x=l. Hence x is a closed l-codimensional
point of X.. . Let VQS and V¢ X be two open affine subséts, such Elait

V' is a V-scheme and xeV'’. Then T(V’,(bx) is an integral r(V,@% =




-algebra of finite type, which has a maximal l1-height ideal. Aplyinc
PfOposition 1b) to V¢S, it follows that dim V'=1. By Corollary 2 ‘
of [6] and from the fact that S and X are Jacobson schemes (cEu
Proposition la)), we deduce that dim X=1..This contradiets the
assumption dim X»>1. .

. b)Y = a)’ Tict ‘ves be an open affine subset and A an_  inte-..
gral r(U,Cg)—algebra of finite type which'has a maximal l—height
ideal. | |

Then X=Spec A is an integral S-scheme of finite type which
has a clpsed l-codimensional point xeX. Since every closed connec-
ted subseheme passing through x is either§ x} or X, it follows thas
the subset YeX of ell-closed points of X which can be joined with
X by a connected closed 1-dimensional subset of X is either {x} or
chfx'lx'clOSed inxt. 1f v={x}, then from b) it follows that {x}.
is dense in X and thus A is a field; but this.is not possible. TE
Y=Xc(, thep dim X=1; hence dim A=1, which proves.that T(U,(bsj
a universally l-equicodimensional ring.

b) =>c) We may assume that X and Y are integral.

If dim X=Q, then X=§x% and x is closed.

Since f:X—Y is a morphism of finite type of Jacobson schemes,
y=f(x) is closed in Y and the extension of thelresidue fields
k(y)C~>k(x) is finite Gak . [21 Ch.V, §3 n°4, Th.3). Then it is
easy to .see that f is proper.

If dim X>0, let us suppose that f is not proper. Let

£f:X ~3Y be a (dense) compactification of f(cf.[lGl; [8]).

X L——*—‘
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and x¢X-X a closed point. From b) it follows that -there exists a
connected cloéed l-dimensional subscheme CsX such that xeT and C=C NX#
#@. Since C is proper over Y, C is closed in C. Hence C=C and so
xeCcX, which is not possible. ‘

and &) of 4) : SR
c) => d) From c)¥% we have that f:X —> .Y is proper. Let

yeY be a closed point. If«dim f_l(y)>0, then there -exists a
closed integral l-dimensional subscheme Csf—l(y); hehce € “IFswa
closed integral l-dimensional subscheme of X, which is not finite
over Y; this fact contradicts the hypothesi§$%f‘d).

Therefore, for every closed point yef(X), dim f_l(y)=0.

For every closed point xeX, x is then isolated in f_lf(x).
By Zariski’s Main Theorem, the subset X’=§xex\x isolated 5] f_l(x)}
is open in X. |

Since X' contains all closed ?oints of.X, it is easy to
see that X'=X. Therefore every x€X is isoléted i f_lf(x) and so,
for every'yef(X)} f_l(y)'is finite.iBy BEGA ITI,; 4.4.2 it follows
that f is finite. ok o

d) =pa)y . lE S is not universally l-equicodimensional then
there exist an open affine subset U&S and an integral TYU,Q%)—‘
3 lgebra A of finite type.of dimension >1, which has a maximal idealM
tof "height 1. Léf be Y=Spec A, X=Y—§m§ and f:X €Y. the natural open
immersion. Then X and Y are of finite type ever S and it is easy
to see that for every closed integral subschémeccx of dimension 1,
£(C) is closed in. Y. Therefore f satisfies (iiféélﬁ f is not finite,

since it is not surjective.
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a) =»e) From Proposition la), S is a Jacobson scheme. If
xeX is a closed l-codimensional point, then let VeS and UeX be
open affine subsets such that xeU and Ulis a V—écheme. Hence
T(U,Q&) is an integral r(V,Gg)—alqebra of finite type with maximal
l—height:idgals; By Proposition 1b), applied to U¢S, r'ﬁf,QDS),ts:uw
an universally l-equicodimensional ring and then dim TYU,@&)=L.
Since X is a Jacobson secheme, by Corollary 2.of [6], we héve
dim X=1.

e) = a) Let UsS be an open affine subset, A an integral
rYU,Qg)-algebra of finite type 'with a maximal l=height ideal men
and f:X=Spec A —>S the canonical morphism: It is’clear that mis
isolated in f_lf(g) and by Zariski’s Main Theorem (cf.EGA III,
4.4.5), there exisés an open neighbourhood U of m in X and an open
dense immersion U c¢.-sY, with Y a finite integral S-scheme. Since .
S is a Jacobson scheme, the closed point m_of U is closed in Y
(cf.[2], Ch.Y, §3, no.4,.Th.3). Heﬁce s édntains a closed l-codi-
mensional point. By e), we deduce dim Y¥1 and then dim U=1.. Vias:
Corollary 2 of [6}, it follows dim X=dim A=1, since X is a Jacobson .
scheme. Therefore r(U,(DS) is universally l-equicodimensional and
by definition & follows ). |

e) = f) Let gt be the normaliza?ion scheme of S'cS and
xes'N 3 closed: l-codimensional point. If p:S'—>»S’ is the norma-

lization morphism and U€S’ is an open affine subset containing -~

p(x), then p

p_l(U) factors in the following manner:

s &P

p (U) ——> X
p} p 1) \ /r

U



where W is a finite morphism and '“? is a dominant inteqgral morphism
with the property that -\;x}= :él‘(’(x) . Indeed, D-I(U) is 'an open affine

subset and B=r(p_l(U) ' @S,ﬂ_\? is ‘the ‘Integral closure of Ethe

noetherian ring A=r(U, @S,) - IfE ncB corresponds to xeS’N, then

n is a maximal l-height ideal. Let be m=n NA and denote n_=n,

1
Dyre.. Dy the prime ideals.of B lying over m. For every i, 1&igk

we may choose Oﬂ.en.\Un. .. ‘Then X=Spec~AtoL ook sy O 1 is a finite
i =a j7qj 1 oo k

‘U-scheme and p_l(U) is a 'scheme which is inteqral and dominant

over X. Since- for every i#j we have giﬂA [okl, R ,0(}3 #gjf\A [o&l,;.,dk']

it follows that n, is the unique prime ideal of B lying over

p_inA[oil,...,o(k]  for every i, 14ik. Via Cohen - Seidenbera Theorem,

we deduce ht(n A [04'1, e ,Okkl )=1, and so Y¥(x) is a closed l-codi-
mensional point in X. From e) =3 a) and Proposition 1b), we get
that U is universally l-equicodimensional and so dim X=1. Then

N=l

dim p_l(U)=l and from Corbllary 2 of [6]; we deducé dim S’ ;
since 'Y is.a Jacobson scheme (cf.{ﬂ, ChV; .%3, no. 4, Prop.5) .
Therefore dim S'=1.

f) =) If X is an integral finite S-scheme and 8.8

is the closed integral image of X in S, consider the followina

commutative diagram:

X _pr X
2N £
S 14 N ps : S 7
———— >

where Py and p are the normaldizZation merohisms: If xe€X is a

_.S’

closed l-codimensional point, Py (X) is a set of closed l-codimen-

=,

X (x) are closed of

sional points and hence the points of fﬂp




codimensicn 1 in S’N since S’N is normal and fN ismintearail,

Q.E.D.
Corollary 7 - Let f:X —>Y be an integral morphism of

noetherian schemes. If Y is universally l-equicodimensional, then

Y is universally l-equicodimensional. Conversely, if f is surjec-

tive and X is universally l-equicodimensional, then Y is univer-

~sally l-equicodimensional.

Proof - Suppose that Y is ﬁniversally l-equicodimensional.
'Then Y is a Jacobson scheme, by Proposition lb)._Hence X is Jacob-
son, via [2], ChaV, §3, NoWd o Tha 3 s Let‘X’ be a closed integral
subscheme of X and Y'=f(X’) with the reduced scheme structure.
We have the commutative diagram:

D
- XIN ‘-X, XI

4 e

pYr
s el L L

Y’N
where pX,'and Pyr are the normalization morphisms and Y is
integral and surjective. If xE;X’N is a closed l-codimensional
point, then ?(x) is closed in Y’N and of codimension one, by

Cohen—Seidenberg Theorem. By Theorem 2 (a) =»f)) dim Y’=1. Hence

dim X'=1. Via Theorem 2 (f) =ra)) it follows that X is univer-iGiiae
sally l-equicodimensional.
Conversely, suppose that f is surjective and X is univer-

sally l-equicodiménsional. Then Y is Jacobson, via Cohen-Seidenberqg

Theorem. Let Y' be an integral scheme, which is finite over Y and
has a closed l-codimensional point y. Since the canonical morphism
XXYY’-~>Y’ is inteqral and surjective, there exists an inteqral

component X'¢ XxYY’ sueh that £:X'—= YY" ig integral and surjectiver



Let be x € X' such that f’(x)=y and ECIDX’X a prime ideal such that
cht p=1 and E;&m © ;, .#0 (m_is the maximal ideal of the local
i R S =¥

ring Q)Y’ V)f If CeX’ is the closed integral subscheme passing ?

r2

through x and corresponding to p, then diHl@% X=din1¢&, /p=1y
E 7

14

Therefore dim C=1, since x:is a closed l-codimensional pvoint of C
and C is of finite type over X. Moreover, f'(C);%%y% and so

4 ciC —sy'ofigtdominant i iSince c is integral, it follows

NSO S

that dim Y'=dim C=1. By Theorem 2, e) =ra), Y is universally

l-equicodimensional.

Corollarvy 8 - An integral 2-dimensional ring is universally

l-equicodimensional iff it is a Jacobson, universally catenary and

equicodimensional ring.

Proof - An implication follows from Example 2. Conversely,
let A be an integral 2-dimensional ring, which is universally

l-equicodimensional and meA a maximal ideal. By a Theorem of Mori-

-Nagata (cf.'IISX, Th.33.12) ;" the integral closure B Sop Al

noetherian, since dim A=2. By Corollary 7 it follows that AN is

universally l-equicodimensional. Since dim AN=2,,we have that AN
is equicodimensional. Therefore every maximal ideal of the integral

closure (A.m)N of A i's "ofheight 2. ‘By a result - of'Ratliff" (cf. [21],

Cor: 3.4 (1)) it follows that Am is universally catenary. Thus A

is universally catenary and equicodimensional. A is Jacobson by

Propesition~1"ay.



3. Universally 1- equicodimensional schemes, generically

catenary and equicodimensional

In Example 2 we have shown tha£ every integral Jacobson,
universally catenary and equicodimeﬁsional ring is universally
l-equicodimensional. Corollaries 1 and 8 .show that for the inte=
gral rings df dimension 42} the converse of the above assertion
is still trué. We don’t know if this converse is true for the
integral rings of dimension 2>3.

Iﬁ Theorem 3 below, we shall give a class of iﬁteqf&l
univefsally l-equicodimensional rings, which are Jacobson, uni-
versally caéenary and equicodimensionél. This class céntains all
integral universally l-equicodimensidnal rings of dimension £ 2

and thus Theorem 3 is a generalization of Corollaries 1 and 8.

Theorem 3 - Let S be an intearal scheme. The following

assertions -are equivalent:

i) S is a universally l-eguicodimensional scheme, which

generically is catenary and equicodimensional.

ii) 8- is a Jacobson, universally catenary and equicodimen-

sional scheme.

iii) S is noetherian and for every integral S-scheme X of

finite type, all maximal chains of closed irreductible subsets

have the same length.

Proof - 1) =»di) By Prepesitieon la), it Follows that's is
Jacobson. el
First we shall prove that S is catenary and equicodimen-

sional. It is easy to see that this is equivalent with the fact

that all maximal chains of closed irreducible subsets of S have



the same length.

Let Sx}=sdsle...csn=s be such a chain and U<S an open |
nonemptylsubSet, which is catenary and equi;odimensional. We sﬁéil.
prove by induction on dim U that n=dim U. e

If dim U4l, Corollaries 1 and 2 of [6] imply that dim S&1.
Then S ?s catenary and equicodimensional, 2
Suppose that dim U>1. Then n32, since otherwise, x would

be a élosed l-codimensional point - in S; then -from i) would follow

dim S=1, which is not pdssible. The local ring(bé S is noetherian
"“n-2

of dimension >2. Lef,g:gso the saturated chain of prime ideals of

© corresponding to the saturated chain of closed irreducible
n=2

c c : ori aas
subsets Sn—2‘sn—1 Sn , and El,...,gﬂ‘the prime }deals of GDS

’Sn—2

corresponding to the irreducible components of S-U, containing

Sn—2' From a' result of Ratliff-McAdam (cf.[lB}, Prop.l), ' there

exist infinitely many maximal chains of prime ideals in(b% S
i 14
n

of length 2. Then we may find a saturated chain m2p’>0 such

~2

thaﬁ‘g’#gi » fOr every i, 14148, Let Sé—l be the closed irreducible
subset of S, which contain Sn—2 ; éorrespondinq to the prime ideal

{ 1 — 7 4 o
EZCQ%,S . Then the chgln {X}—SS:SIC TG Sn—ZCZSn—lcsnls maximal

n-2

and Sé_an#¢. The scheme S;-l is universally l-equicodimensional
and Uf\SA_l is an open nonvoid catenary and equicodimensional
subscheme. Since dim (Uf\S£_1)<dim U, we may apply the inductive

hypothesis to Sé—l and to the maximal chain SL£S5,€...€8 cs’ .

1 n=2--n-1

We have n-1=dim (UnSA_

l). Since U is catenary and equicodimensional

Y=

and Sé—l is l-codimensional in S, it follows that dim (UnSI’l_1

=dim U-1. Hence n-1=dim U-1 and so n=dim U.
It remains to show that S is universally catenary. This fact

follows from the following.



Lemma 1 - An universally l-equicodimensional scheme which

is catenary is universally catenary.

First let us do the following.

Remark 4 - In [211, p-517, Ratliff proves the following
Theorem:

Let R be an integral noetherian local ring. The following

assertions are equivalent:

(1) R is universally catenary.

(2) R is quasi-unmixed (i.e. the completion‘ﬁ of R in the

radical topology is equidimensional).
‘ In [21], loc.cit., one proves that (2).=»(1) and Non (2)
= Non (1) . In the proof of Non (2) => Non (1), one shows in
[211, that Non (2) =3 either R is. not caténary, or R is.catenary
and there exists an integral finite R-algebra D of dimension >l
which has a maximal ideal of height 1.

We may complete the theorem of Ratliff by adding the
following equivalent property.

(3) R is catenary and every integral R-algebra which is

finite and has a maximal ideal of height 1vis Oof @imensdion 1.

Indeed, by the above remark we have Non (2) —» Non (3)
angiEn, 3] == '

. (1) = (3) Let A be an integral R-algebra which is finite® =’
and which has a maximal ideal mcA of height 1. Denote pcR, the
prime ideal such that A2R/p=R’ and Eig(\R;. Then R’ is universallv
catenary, ADR’ is a finite extension of rings and n . is the maximali
ddealsof R'.. By EGA T3, -5.6..10, applied to A2R’, it results _

1=dim Am:dim Rl Zhen.dim A=dim R=1.

Proof of Lemma 1 - Let X be a catenary universally l-equi-

- codimensional scheme. We may assume that X is inteqgral and It



suffices to prove that for every closed noint xeX, the local ring

(OX o is universally catenary. Since @X & is catenary, by the
4 7 s

above Theorem of Ratliff it is sufficient to nrove that every in-

tegral- (OX X-—algebra A which is finite and has a maximal ideal mcA
x :

of height 1, is l-dimensional. In fact, let pc@. e asprime

and §5i,-0-.5n] aset of qenc\r‘d;i,o‘rs of the
ideal such that AD@X X/,_Qf,q,.. ~module A. Tor every. i, l&ign; fi
@ 12 : e

" A
n, risedl:
il

satisfies an equation fil+alif kA Fiba =0 T wath

‘ i ni—l,i ni,i
ajie @X X/Q P X'e % 3e the Cloced intearal subscheme corresponding
s :

to p, we have xeX'’ and ©X x/E: @ F
- ’

ik sk Uie. X beianiopen affine
. .

neighbourhood of x such ’;hat aji€B=r(U, ©X’) . Ffortevery 1,3 THen

B[fl,...,fn] is a subring of A finite over B. If mcB is the maximal
. d = . f =
ideal corresponding to X, we have Bn @X,X/E and so B[fl, S n.lh_

—

~=A, The ideal g=m f\B[fl,...,nt is maximal in B Xfl""fn} and

B[fl,...,fn]%=A'm. Since dim A:m=l, we have htg=1l. By Proposition 1c)
and 1b), B is universally l-equicodimensionral. Thus dim B[Sh—--ﬁn}"-
=1 and then 1=dim B=dim B_=dim @ Jo=dim’ A

R XpX >~

Q.E.D.

Proof of Theorem 3

ii) = iii) Let V&S and UeX be two open affine subsets
such that U is a V-scheme. Then V' (v, (OS) RS Jacqbsoﬁ', univer-
sally catenary and equicodimensional and ..V(U,_‘ C()X)_ Invan integral
= &y (’)S)—algebra of finite type. As in Example 2, one shows that
P, (OS) is catenary and equicodimensiona'l.

Therefore there exists a covering (Ui)ieI of X with omen
affine subsets, which are catenary and equicodimensioﬁal. Then it
is easy to see thaﬁ X is catenary and equicodimensional.

iii) =» i) Let V€S be an open affine subhset and A an in-

tegral [ (v, @S)—alqebra of finite type. Then X=S_r$ec A is




. equicodimensional. Hence, if A has a maximal l-height ideal
then dim A=1. Therefore TYV,@%) is univefsally l-equicodimensional.

Q.E.D.

Corollary 9 - Let f:X — Y be a - -dominant morphism of finite

type of integral schemes, such that X is regqular and equicodimen-

sional. Then Y is universally l-equicodimensional iff it is a

Jacobson, universally catenary and equicodimensional scheme.

Proof - We shall prove that if ¥ is vhiversally l—eéuico—
dimensidhal, there it is Jacobson, universally catenary and equico-
dimensional. Via Theorem 3, it suffices to prove that Y is qéheri—
cally catenary and equicodimensional.

Since f(X) is constructible and dense in: Y, we_may choose
an sopen- nonempty subset UecY, such that U <eTImf. By restricting I,
we may .assume that flf—l(U):f—l(U)—e-U is flat and surjective.

Let yeU be a closed point and xef-l(U) a closed pointvsuch

that f(x)=y. Since QJX %

r

is regqular, it follows that QDY is

4

regular (cf. EGA IV, 6.5.2) We have dim Gj =dim 69 -
Yy X%

-dim( ® k(y))(cf.EGA IV; 6.1.2). -8ince ¥etgva Jacobsen
X, % (_OY v
7 i i
scheme, by Proposition la), X is Jacobson and hence x is closed

in X. Thus dim QD

X,x:dim X . On-the other: hand. dim@z&,X<:)€j k(y9=

Y,y
=dim Xf_lf(x)=dim f-l(q), where 1 is the generic point of Y
fef. BER TV i13:2.2 and 13.2.3). Theretore ddm COY y=dim X-dim £ 1 (y)
r

Thus for all closed points yeU, the local rings QDY 5 are

regular of the same dimension. Since evefy reqular ring is_(univer-
sally) catenary, it follows that U is a catenary eqﬁicodimensional

scheme.



As a consequence of Corollary 9 we have

Corollary 10 — Let A be a subrinq‘of an integral qéneri—

célly reqular and equicodimensional ring B such that B is an

A-algebra of finite tvpe. Then A is universally l-equicodimensional

" iff it is Jacobson, universally catenarv and equicodimensioanal

Indeed, if fe€eB is a non-zero element such that Bf i
e . % . reqular and equicodimensional,
then Corollary 10 results from Corollary 9 avplied to the natural' -

morphism Spec Bf ~—>» Spec A.

Remark 5 - In [5]. Proposition 1, we have proved that an

_integral subalgebra B of an algebra A of finite type over a field

ke s finitely qenerated iff B is an universally l-equicodimensio-

nal ring. (It is easy to show that we may suppose in this assertion

that B is an arbitrary subalgebra of an algebra A of finite tyne

;over a field). A proof for this result can be obtained usina

Corollary 10 in connection with some properties of k-schemes

generically algebraic over k (see [7X).
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