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1. Introduction. 3tatement of principal results.

The aim of the present paper is to §rbve a Nullstellensatz
over ordered fields which generalizes some results of Dubois [5]
and Stengle [14] « Our results and their proofs are presented in
the spirit of the paper [6:]of Jarden and Roguette on the
Nullstellensatz ovwkf' adically closed fields., The role of the
Kochen ring from the thecry of formallyf7=adic fields is played
in the present situation by the Baer ring of a field extension of
an ordered field. s ‘

This work was elaborated while the author was a Humboldt
fellow at the Univefsity Heidelberg. He would like to thank
Professor Peter Roquette for his warm stimulation.

. We consider the following situation s

\/ an affine variety defined over the ordered field (X,P),
where P denctes the semiring of non-negative elements

X = (xl,...,xn) a generic point of V over K

K[x] its coordinate ring; the elements in K[ﬁ] are regarded as
polynomisl functions defined on b/

K(x) the field of rational functions on V/over X

=
]

c
]

= (Uysee05u;) & finite family of elements in K [XJ‘\{O}V
\/(E) the space- of K-rational points on \/, where (ﬁ;ﬁ} denotes
the real closure of (K,P) »

V (%}“tne subset of \/(K) consisting of those points afE\/(K)
| which satisfy the condition wuy(a)€ P for i= JLRRRES 8
Iy the semiring generated by PL/uL)K[xJ , where K [x:}a =

; zetzeii[x]} Beinye

o » an ideal in K [ ]

ru(gf) the Jﬁ-r”dlcal of & consisting of the elements zé:ﬁ[ ]

2

subject to condition 2 2~ + b€ G for some positive integer,

{ and some beJu



\/uv&(is the sﬁbset of\/u(ﬁs'ccnsisting‘bf those points
’ b é\/u(:ﬁ) with £(b) = O‘ for every fe€a
I(\/u.a(QS) - the ddeal in K {x:]consistihg of those elements
’ £ € K[x | which satisfy the condition £(b) = O for
every b¢ \/u .

¢

Theorem 1.1, If the-variety'\/is"ﬂOnsingular then
I(\/u’g(&)) = r () for every ideal & in K[x:].

Clearly, the nonsingzularity condition is satisfied if‘\/
is the full affine space. In this particular case we obtain
Stengle's Theorem 1 (semialgebraic Nullstellensatz) from"[14] .

The later has ss an immediate consequenceAthe real Nullstellensatz
discoverad by'Dubois[jB] (see also [14] Theéorem 2 and [iO]
Theoren 5.12).

The Nullstellensatz will be supplemented by the following
criterion for \/u(§) tc ccntain a simpie point. Ve assume in
eddition that the multiplicative monoid generated by the family
w is a group. If this condition is satisfied then \/u(ib consists
of the points aé\/(/l}:) with ui(a) 2.0 for i=l,..0,0. AS 10 the
case where the base field isf»-adically closed.[6:]Theorem l.3.,
‘this criterion is of birational nature, rpffering only to the
function field F and not to the particular var*ety\/

Definition. The field extensionxxFJ(K,P) is formally real .

over u if there exists an order T -on- F “such that PU uC T

Theorem 1.2. Suppose that the monoid generated by the fami-

ly. u is a subgroup of the multiplicative group ¥ » Then the
necegsary and sufficient condition for \/ (K) to contain a simple

point is that the field extension P‘(K P) 1is formally real over u,



2. The Raer ring of a field extension of g_g'ordered field.
. Let K “be a Field equipped with an order P , i.e. P+PCP,
PePCP, K=FU=P and PN=P =1{0).Let P be an I
field extension of K and u be a subset of TF. Denote by Ju(F)
the semiring of T generated by Pu uUFz. The following result
is well known. .

Proposition 2.1. The following assertions are equivalent s

) i F‘(K,P) is i‘ormally real over u, i.e. there is an order T
on ¥ . such that PUuC?. .
1i) - 1¢J,(F).

1ii) Ju(F)ifF.

If u is empty then we obtain the notio‘n of a formally real

field extension and the equivalence F! (K4P) is formally real

iff - 1¢J(F) iff J(F)+ F, where J(F) denotes the semiring gene-.

rated by PUT?.

It was Baer [1] who for the first time established and in-
vestigated the connection bétween the orders of a field and related
valuation rings. ¥

If T i1s an order on F which.exténds the ‘order P of ~F
we denote by B(T) the Baer ring of T|P consisting of the finite

elements of F relative to T‘P, i.e. B(T)= aEF}\/xb*raET} JHdere
; bepP™ T

X _
P =P \{O} « Denote by b(T) the Bger ideal in B(T) consisting

of the infinitely small elements, i.e.

b_(T) = {ae Fl A brac T} « B(T) 4is a valuation ring<of T ,
bep* ? !

K CB(T) andjg(T) is the maximal ideal of B(T).
Similarly we define the RBser rinz of ﬁhe 'field extension <t

F|(K,P) to be the ring B:B(F)zzfaEF}.b\é/x b:a€J(F)}, ‘
p?

- of finite elements relative to J(F)‘E and the Baer ideal in B




e e

%o be the ideal bvzlz(F) :%@iEEthp:aé'J(F)j of infinitely small
elements relative to J(F)lP. By definition the Baer ring B 1s
an intermediate ring beﬁwéen K and F. The following result is
immediate.

Proposition 2.2. The field extension ,F](K,P) is formally
real 1ff b#B irf bnk ={o] iz b#¥. |

Remarks. i) If F!(K,P is not formally real then B=TF,

~
The converse is not generally true. For instance, let F = K be

the real closure of (X,?) or more simple let F = K. Then

B(T') =T andb(i“) =0

$1) If FI(K.P is formally real then K|zic|t ‘EJ(F;,:} is
(24 2 1 = t
s subring of B. Indeed 1+t¥0, 1 +vm€J(n), 1-135 = I""+c€ J(F)

for every t€J(F).

. Proposition 2.3. Suppose that Fi(K ?2) is formally real

and let 3 be a place of Fli. Then the following ass ertions are
equivalents .

1) o 1lies over B, i.e. B is contained in the valuation
ring O of the place 3. |

ii) The residue extensiocn T.q‘(K P) 1is formally real

jii) There is an order T on F which extends P and is

compatible with the place 3, i.e. 1+7,CT,

)
Proof. d)=—dd) - Tiet J(F.Q) be the semiring generated by

PU(F.Q)", e have the equality J(F.q)=(J(F)N UQ).:‘:&. TE F.5|(K,B)

 is not formally real, e s =1 EJ(F.Q)» theén 1+te@b for some

£€ J@EXN UQ, toe. g€ U, and nenég B.¢'0Q.

§i)—> iii) There is a bijection from the set of orders T

. on T which extend P and are coﬁéatible with Q dnto the set

of péirs \;,Xl) where 5 is an order on [F.3 which extends P

S X : :
and X is a group morpaism from F%/OQ.(FX)Z to 22722?, £7j] 812
[5] Satz 2.4 '



1ii)—> i) Let a€B, i.e. b+a€ J(F) for some be P~ If
T 1s an order on T which extends P and is compatible with

Q then b+a€T, i.e. |alp<b. If'a¢0 then a"lbé”fll% and

|a~ b|T<l T \alT)b which is absurd. 3.E.D.

‘Theorem 2.4, Suppose that FI(K,P) .1s formally real. Then
the following hold : '

1) B K[i%—t| 17 GJ(F)] =/\B(T) where T ranges cter
the set of all orders on F which extend P.

ii)_}g =\/£=ﬂb(’l‘) where T &ranges over the same sct as
nd., . ) .

iii) Ivery overring R of B in F is a Prifer ring
with F as its field of quotients and the ideal-—cla-ss group C(R)
-is a 2-group.

iv) Aréh (BN Bx.a J(FIN Bx, where

azch (B) ={ac B]be/\ bea € I(P) |

pX
Proof. Let A = K [1-%% \\t €J(F)] « We have to show that

BCA. First let us show that the fizld of quoti ents of A“"d4g - B,

Observe that J(F) 1is contained in the field of quotient.a of A.

Indeed, let +t€J(F). Then 1+teA’l+t =1 = I—--GA and hence
t € Qquot (A). On the other hand F = J(F) - J(F) C Quot(4). Inde=d,
a = ( a+1)2 ( é%—l-)aé J(F) - J(F) for each a<F, Now let us

show that BCA, Let acB, i.e. b*aCJ(F) for some b<P%. Then
l+b+a€ BMNJI(F) and T;%‘;EEACB, i.e. 1+b+a_€E»'x{\J(F) and hesnce

thiere dis 6 P - sueh;, thah Eelebe s €I0) It Sollions: Shits15b+aie

i
+

= f(l+(f-l—-b—a)(1+b+a)"l)"lé i CA and hence a= (l+b+a) =

- (1+b)€ A. Thus we prfoved the equality [ ) 15 GJ(*)J




Now let.us show:that B is a  Priifer rinz. Tet mbe any

meximal 3desl in B. ¥Ye have to prcve that Bm is 3 yaluatiocn rTing
%

cf T. First cbserve that eitasr tEBm or -1

: Bl = g 1
Trdeed, if +€JIJ(EN\ dm then == and 5" Lom e € Bxam

cmB if £€ I(T).

and hence 5e J’é”mﬁ . Let us show that the iutvvral closure 1’n

of Bm fin.. B p A3 ; valuation ring . Let m/be a maximal ideal of
B' such that B /\m’r—ﬂr_n B Given any aclP,since a éJ(F) s
it follows thab eit. en aeé I;m or a"aé Bm . Thus either ac¢ BT:L
oA ¢ 3! and hence B! is a valuation ring of T, Let us

show that _‘Bm = BY; o i ;g B' and | ¢B then a"aémB cm’
which 1is abs;fd. Hence a2é -m if .a éB' . Since the rosidu field

L

/ ; extends X, the characteristic of L ia zero. Let

& c B;n . We have to show that ac¢€ Bm e Since a é B and
o % L lig
()t B, ‘s We conclude that a = (“a)‘a"a =l B, . Thus we

proved that Bm is a valuéticn ringe of 7 for every maximal ideal
ARy S8y i.e.g is a Priifer —ring with F as its field of
quotients.

Now let ds show that B equals the intersection of the

Baer rirgs 3B(T) where T &ranges over the set of orders cn F

which extend the order P on K. The inclusicn B C QP B(T)

is immedjate. Letm be a maximal ideal of R. Since B is a

Priifer ring, Bm is a valuation ring. e show that there is an

—

order T. on P such that P C T :andyB(T) = m « Then

oy B(I)C /\ By, = B =and . hence /\ BET )
PSP m € Max B) ; ) )

Pirst observe that, by Proposition Q.3.-, There exists an order
dis ohienll ssnch.gthaty PG, T and l+mBmCT o 3t fol lows that

B(T)C B, and mBme_(T)- Indeed, 1t a¢mB, and b€ P>, Then



bra = b(1xab )€ FX. (1+mB )CT and hence a €h(T). Thus

., 18 minimal in the ordered

mB c b(T) and B(T)CB,_ . Since B
set of valuation rings extending B we conclude that Bﬁf B(T).

So we proved that B = () B(T). By Priifer criterion for holo-
TP

morphj rings [15} Theoren 1 1t follows that® C(B) 1s a 2-group .
we denote by C(B) the ideal class group of" B, i.e. the factor
group of the finitely generated fractional EnideSIS'modulo the

. principal ones.

The equalities b= //\§l>(T) =\/E— are immediate from
—slET = \

definiticns.

It remains to show that Arch-(B)f\Bx(fJ(F). Let
a€ arch(B)N B, In particular a€B(T)\D(T) for each order TDP
such that =-a€ 7. On the other hand, for each b€ P¥,b+a€ J(F)C T
and hence a¢b(T), which is absurd. We conclude that a €J(F).
Qv B Do '

Remark The particular case K= Q was consideret] by Pejas
[9] and Dress'[4] e A mbre general situation is investigated by
Becker [2] Theorem 3.7,

Thecrem 2.5. There is a canonical bijecticn from the s:t%

of prime ideals of B onto the set of places Q of FIK with

" the property that the residue extension F.Q\(K,P) is formally

real s 3 |
qESpec(B)\—> the place attached to the valdation

ring B

7
A > M NB

This bijection induces an embedding of the set of maximal ideals
of B into the set of orders of T extending P, up to the
equivalence relation s+ two such orders T and 7' are equivalent

d8E B(0) = BT




Proof. This theorem is an immediate conseguence of the fact

thet B 4is a Prifer rinz and of Proposition 2.3. QeBeDe

Remark. The embedding considered in the last part of Theorem
2.5, is not necessarily a bijection. Indecd, there exist situations
of the following type : (K,P) sn ordered fisld, T a fisld sxben-
cion of K, T an order on F extending P such that b(T)N B=0,
B%F, and hence B % not a field and b (2)N B¢ Max (B). Tor
instance, let K =@, F =Q(x), the £ield of rational fuanctions in
an indeterminaue x. Le tx(ﬂ be an enlargemaqt of @@ in Robinson' _
sense [;2] i e t'e(D\Q] be such that t' is jnfinitely small
with respect to the order 7' 4nduced on K(t') Dby the internsl
crdsz *p on$(Q. It is known that B(*Pl/b(*p)Ezﬁz « It follows
that QCm;) $s the valuation ringd@[t{l where r is the prime
iceal in (E[*‘] zenerated by t'. In pé%ticu’afr Q(m')=#(@(t’
end hence B(F)F F. On the cther hand,let t(i(@\~(b be such that
t is finite with respect %o *P, 1.0s T €.B( P), and the standard
part of‘ bt € & modiz(xP), is a transcendental real number c.
Tet T denote the order induced by *p on(ﬁ(t). Then B(T) =l@(t)
.andlz(T) = O, in particular, identifyingQQ(t) with T, we obtain
btmyn =2(F) = 0.

e

Corollary to Thsorem 2.5. Let b be a prime ideal in B. The

set XP {CIE Spec (B)Iq C}y} is lincarly ordered with respect to

the inclusion and the cardinal number of XP equals the rank of the

value group of the valuation ring B§)attaéhed to F .

—

Proof. We have q Cf> S fE PPC B ., The set of overrings of

i
" the valuation ring 32 is linearly O”d red ,and their namber equals
the rank of the value group of BP < QoD

Remark. The previous result remains valid for an arbitrary

overing of BRB.



3. The Riemann space of a field extension of -an ordered

Let (K;?) be an ordered field and T be a field extension
of K. The space of all places Q of F’K, subject to the condi-
tion &+ the residue extension ‘F.QI(K,P) is formally real, is called
the Riemsnn space of Fl(K,P) and is denoted by S(F). In order

to simplify the notetion we shall use the symbol S ‘instead‘of
S(F). It is well known that the necessary and'suffiCiént condition
for FI(K,P) to admit a non-empty Riemann space S is that
F|(E,P) is formally real. ‘

We assume in the following that FI(K,P)A is formally réal.
Let Q Dbe an srbitrary place of FIK. e have shown in Section 2
that "Eo 4ff0 DQ >ling OQ = Bq for somn7C Spec B). In »
addition the Paer ring B ef PI(K P) is the holomorphy ring
) (T of the Riemann space. S. We may identify the Riemann space
gﬁii{th the prime spectrum Spec (B) of the Baer ring B and '
consider on S the Zariski topology admiting as basis of open sets

the family {Df} where Dp = {Q €5 \ f.Qi.O} . Moreover S

fe€3x
has a natural structure of ringed space. The structural sheaf 9f
is given by jf(ij = Bro «/\(7 = the holomorphy ring of D, ..

; . (£) Gep, g
Equipped with‘?ariski‘topoloay, the Riemsnn space .8 1is quasi-
ccmpact,. :

'If x is an arbitrary subset of T we denote by S¥ the

subset of* S consisting of"all places Q€S ‘which lie over fx;ise.

XCiC%. It is easy to see that the family {ij- where X ranges

over the family of finite subsets of F is a basis of open sets
for the Zariski topology on S and.f(b ) is the holomorphy ring

B = N G%’for each finite subset b Gl oo
QeEsT




S

4, Holomorohic functions on the Riemann space.

Let ‘(K,P) be an ordered field and F be a field extension
of K; We sSuppose fhat the extension F!(K,P) is formally real,
i.e, the Riemann space S 1is noﬁ—empty.‘

3£ x .=2nd u ape arbitrary sqbsets efH ﬁe denote by
Si “the.subset 6f . S .consisting. of all places Q- .of LK which
lié over xUu sand satisfy the condition s the residue extension
F.Q\(K,P) is formally real over u.7. In particular if kCiB
‘and ucC P, for instance if x and u are emply, Si coincides
with the whole Riemann spaﬁe S

‘fe denote by F{i = /’\.CZ% the holomorphy ring of Si‘. 1B

gast '

either x or u is empty we denote the corresponding sets and
<

holomorphy rings by S%, S.,H*,H . For xcB and uc P,HX is
: , A a u u

the Baer‘ring B0y iR .
First let us observe that if F](K,P) is formally real over
u then Si is non-empty for every subset x of F. Indeed, in
this case the trivial place lF is contzined in Sz for each
subset x of T. The converse is not generaily true.[j?or instance
let K =¢@ and T =?@ be an enlargement of(@ in Xobinscn'sense
[12] e« et a3+ 0 be an infinitely small element ofs T with res-
pect'fo the internal order jé‘P on F. Let Q denote the place of
FJK whose valuation ring is B(*P), the ring of finite elements
of T with respect to *p, Then QE’Su whére u ={a,-a} but
F\(@Q,P) is not formally real over u ]. If the monoid generated
by u dis a subgroup of the multiplicative  group e s~ dt-ds- a
simple exercise to verify that &, 1s non-empty 36 F](K,é)' ié
formally real OVED U |
The aim of this secticn is to describe the holomorphy rings

F\s for arbitrary sets x and u. As overringsof the Raer ring. B,



all this rings are Prifer rings.

Proposition 4,1. Assume that S; is non-empty. Then H %

is the smallest overring 4 of B[x,u] subject to 1 =+ Ju(A)C A o

s =
where Ju(A) denotes the semiring generated by PuuuA™.

Proof, First let us observe that the intersection A = f\ Ai'

- a8
cf s fémily {f&;j of o#errings of B[x,‘u] subject to
i1 .
1 +J,(4;)C A; satisfies the condition 1 + J (4)C A~ too:
Let A denote the smallest ofrerrina of B[x,u] subject to

1 +J (A)C 2%, Observe. that ACHX . Indeed, let QE-SX_ and Ju(O/Q)

2
be the semiring gengrated bys BU uuovi. it =1 ¢ 3 (G )¢0 then

1€ JuQ.(F.Q) = Ju(o(%) mod m 22 lies R (K,P) is not formally real

over u,.,j, which 1s absurd.

On the other hand A 1is a Prﬁfer. ring with F as its
field of quotients and hence A =/ AP whers P ranges over the
set of maximal ideals of A. For every maximal ldeal p of A let

Q'P be the corresponding plac:. If we show that QPE _S,J; for each
maximal ideal p thenH,_X Ay O Cald) 0 = A and hence A= Hf:.

Q€u pe &sax’eA)

It remains to snow that QPGS for Pé Max(A) . ¥e have

quCG = AP and T. Q =1 A/ uﬂ (s Q) J (.A) ond'F and

P
hence =1 éu eq (I‘.d ) because (1 + j (f))r\P ¥« We conclude

i £
P)

that F.QPI (K,k is formally real over u.} and hence Q€ Su .

Gl D ' =

Coxollar

-
'
i

Remark, JIf: Q. 4s a place of I‘lK sucn that OQDHu’ where
u¢P, this does not imply that J€8,. For instance let K =R ,F=[R
be an enlargement of IR in Reobinson'sense and let aEB(F)m F<o ‘

s



Then Hf33 = B(F), the trivial place Q ='1F lies over Fizag_but
fQéS{ag, i.e. F\K is not formally real over;{aﬁ .

The following proposition describes the holomorphy ring
F{i a5 an inductive limit of certain overrings of #9B [x,u] .

Proposition 4.2. Assume that Si rigxnon~empty.-Then there.

exists an unique sequence (An) :
neN
B [x,u] and?ﬂi satisfying the conditions :

of intermediate rings between

1) A, = B[x,u]
11) =1¢ 3 (4)
133) Apay
the monoid 1 + J,(4.).
In addition F{ﬁ = L/-An‘
nelN

Proof. Tirst we have to show by induction that -léﬁJu(An)

is the ring of fractions of An with respect to

" i :
and A, CHu ‘fo,. each né/N.

For: n'= @, 3if —léiJu(Ao) then F.Q is not formally real.
over u.y for every QE&S§:¢ ¢ , which is sbsurd. "e conclude

that -1¢?Ju(Ao). On the other hand the inclusion A, = B[ﬁ,u]CF4§

is trivial.

Suppose that Anc}4§ and -liédhﬁAn). We have to show that
p'e
o x S :
ApqCH - and -1€3,(4p,). Since 1+ T (aCH Tl and F.q

3s formally real over u.Q for every Qeasﬁm it follows that
o :
4 X X
1l + Ju(An)COQ for every . Qéisu and hence An+lck%u « With the

X
same argument we conclude that 1 + Ju(An+1)C (Hi) , therefore

~1¢3,(Apy

: b'd
Now we have to show that H* =4 = U 4. . By Proposition
. e neN B

441 1% suffices to prove tnat A is minimal with the properties :



B[x,u]c}\ énd 1l + Ju(A)CAX o« First let us show that A satisfies

the later condition. Let téJu(A). We have to show taat 1 + ¢t is

invertible in A. By construction of A, there is ne‘lN suchfhat
i e

teJd (4 ). Since -1¢Ju(An) we conclude that gig €A, ,,C A.

Now let C be an overring of B[x,u] such that 1+Ju(C)C CX.
we have to show that An C. ¢ for every nélN. oy n.= 0, the
inclusion A B [x,u:{CC is trivial. Assume that AnC ¢ faor

some _ne’]l\/. e must show that Apey € Co Since A C C it follows
£
that 1 + Ju(An)C 1+ J.u(C) and hence 1 + Ju(An) C C ., there-

fOI‘e An"‘l C @5 QchDo

5. The Nullstellensatz for holomorphy rings - a weak form.

Let (K,?) be an ordered field and T be a field extension
of K. Assume that F](K,P) is formally resl. iet X and u be
arbitrary subsets of P. Our goal in this section is to give a weak
form of the Nullstellensatz for an arbitrary subring A4 of H;{
which contains B[x,u] g

Definition Given a subset X of sff, leit JTEX); ; boithe
ideal of A consisting of the elements z€ A which vanish on X,
i.es 20 =0 for each Q€ X. Given a subset M of A letW(¥) |
be the set of common zeros Q¢ Sff of elements o . M, jsen 29 =0

for each z€ M,

Definitionl. (Stengle [14] ) et C Be & ,;cdmmutative‘ring,
& an ideal in C, and F a subsemiring of C ’containing all
~sgquares in ‘C. Then the [ - radical of 4a is the subset
rr(\g)._—. gZGC l 220y €@ for some m > 1 and some bér}.

An ldeal is a r;radical ideals . if it+i5 own r-radical. According

to Stengle [14] Provesition 2, rr (g) is ar-radical id=al and

equals the. intersection of all prime r-radical,ideals containing 4 ,




C

‘> Let Ju(A) be the subsemiring of A generated by PL)utJAZQ

If a is an ideal in A we denote by ru(g) = rJu(A)(g) the

Ju(A)— radical of & « It is easy to see that‘%/(M)=WKru@9) where
a is the jdeal in A generated by the subset M of A, and
r (@) C I(W ). |

Proposition 5.1. Assume that E](K,P), is formally real.

Let A be a subring of FIX containing B[x,u] ,~and Q be a
place of F]K. Then QG}% it lies over A and the center .

ngr\A of i Qbmon A 'dsialid (A)—radlcal ideal.
Proof. ¢ 2 €s¥  then OQDHEDA and T.Q|(K,P) is

formally real over u.2. Let z€A Dbe such that z2m+betga Tor
some myl and some b€EJ (A) « Then (z. )2m & Diod = and henge
QF\A, since T“Q)(K P) _is formally real over: u.Q.'

Conversely, we have only to shon that L.Q}(K,P) is for-

70920, deee 260

mally real over u.Je. Since A 1is a Prifer ring(j.;_2 = A where

. e
Pei Anan and TF.Q) is isomorphic to the field of quotientsof

: ;K) R & P S ﬂ\(Y 2Y 4s not, formally real over u.3, i.e.
pleJ (I‘.t), then 2m+ bEP for some zeA\F s Some m 1l and
some bé_J (4) , and hence P is not a J (A)-radical ideal, which
contradicts the hypothesis. NeZeDe

vThe following weak form of Nullstellensatz is an immediate .

consequence of Proposition 5.1, and of Stengle [14] Proposition 2.

Proposition 5.2, 3uppose that F|(K,P) is formally real.

Tet ' A be. a.subring of F{i containing. BEX,@] , M be an arbitra-
ry subset of 4 and a4 be the ideal in 4 ,gencratcd by M. Then
IOWQD) = T,(&).

Corollary tc Proposition 5.2, Suppose that F‘(K,P)‘ is

formally real. Let M be a subset of | * = B[x} and A be the ideal
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inl%x generated by M. Then (W (1)) =\/g: . In particular

T6s") =/ )
Q€S

X/’EQ = Oo

6. The restrictsd Riemann space.

Let (K,P) be an ordered £ield and F be a field extension
of K. We denote by g =£§(F)’ the subspace ﬁf’ﬁhqkﬁiéﬁann space S
consisting of the plaées ek F\K which are rationsl over the
real closure (E,?) of (X,P), i.e. F.Q 1is a subextension of ﬁjK.
It is possible that §/ is empty +hough S is non-empty , i.e.
F\(K,P) is formally real. For instance let K =(D and F =ﬂ2 5
Then RB(T) =ﬁz, S =g:imj}and S is empty. However, if -FlK is
finitely generated it follows by Lang [8] Thecrem 5, p.278, that
F\(K,P) is formally real iff gtF) is non~empty.

We shall assume in the rest of this paper that F\K is
T

\(K,P) is formally real.

ginitelj cenerated and

A
The Zariski topclozy on S 4dnduces a topology on'&' « A

basis of cpen sets for this induced topology is given by the sets

~

X T X ol o
5 =5 NS ={};€S|xc ilj where x ranges over all finite sub-

5 ~
sets of TF. Thers is alsc another topology cnm S induced by the

~

o~ ~
rder P on K. This topolegy adrits as basis the sets Su =

~ ~ A

={‘QE£3L1¢QC£ﬁ3 where u ranges over all finite subsets of T.
: . : T oY ox

%e also ccreider sets of the form Su = Sulﬂ S where u

and x are finite subsets of TF. Any such set will be called a

: w~
basic csubset of S

The following result establishes a non-trivial relation
~
X

‘between the sats ST and Sy .

Proposition 6.1. Let u,x,u’',x' Dbe finite subsets of

/\/x'

e ' % %!
F. If Su C Ou' then SU. C Su' ®

_ : |
Proof. Suppose that Sy ¢ ST, i.e. either the set




S -

ZQ ESi\u'u x'ngQB is non-empty ocr the set {Qesﬂ TRA] CUQ» and
F.Q’ (K,P)' is not formally real over u',Q}'is non-empty. The

proposition is a conseguence of the following two lemmatas

Lemma 6.2. Let u and x be finite subsets of T and =z
‘be ‘an element of T, Then the following assertions are equivalent 3

i) The set {Qésfjl Zed =oo}is non=—-empGye
ii) The set {Qégf: )z.Q = oo}is non-enpty.

?_;gp_f_.@nly t;hé implication 3i)— ii) is non-trivial. 3uppose
that thece is a place R € S¥ such that’ 2.2 =20, i.e. 2 R=0.
' we have to show that the st M ={ Qégu ' z"l.Q = O} is non-empty.
If Mx' is non-em.ty for some finite subset x' of P conbtainine
X, then clearly ‘Mx is also non-empty. Hence we may enlarge x if
convenient by addinzg finitely many elements of T. After a suitable
enlargement we may assume that T = K(x), uu{z"ljcx C&R and, by
Zariski's local uniformizaticn theorzm [15] s XR 1is a sigole
point on the affine model\/ of F}K whose generic point is x,
After a renumbering of the elements xl...v.,xn of xw?nay assuﬁe
That = x, for Wies Jgeeesh, z"l = % & -Ad THEl < O Thas

3 o mt]
there exists an order T on the residue rield F2 which extends
~the order ¢ and xiRéT for 1 = lieeesls In:-addition the pediny
XeR € \V(r.z) is simple and X o1°8 = O : .

we see the affine variety \/ in n-space as being defined
by a finite system of polynoirmial equations ovaer K. Let fl,..'.,
,f € K[ Y] , where X = (Xl,...,Xn) be some polynomials defining
the variety \/ « The condition for*a point to be Slmd13 on V:a.s

that at least one of the nmincrs of order n-dlm\/ of the Jacobian

.
matrix (-—0—-3-{“- does not vanish at this point. Let h¢€ K):XJ be
: J

a proper minor such that h(x«x)¥ 0. Thus the ordered field

(F.2,T) satisfies the following existential sentence in th lan-

Kb )i
guae;e ‘0of ordered f£izlds extending (

//1 & {é é’ 5 Y
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Cs = (I0) i/:1 500 ¢ OANGHTOAX O 1/=\1 mo e

By Robinson [li]@heoram 4.%,5,, the real closure (K{E) of
(K,P) satisfies the sentence ¢ too , i.e. there exists a point
b = (bl,...,b ) 6 F \(, which is rational over K, such that
k(b)# 0. (therefore b is simple), b c P fo da= 1,...,m . and

bm+l

corollary A 2, that the specialization x->b can be Ebonlca
x

o ‘a K-rational place 3 of E\K. We COchude that Qé§ and
; [ , : 5

=0 . Since-the point b 'ds simple on V/it follows, by [6]

z.Q =o0 and hence the set M, is non-emptye 2eEeDe

Lemma 6.3. Let Xx,u and zu' “be finite subsets of E. If

v Pl 11/ 11) I
there is a place Q¢§ such that T.Q\(K,P) is not formelly
u qua'-
real over u'.3 then there is a place RES such that

u'.R(i P.

The proof of this lemma is similar with the proof of Lemma

Corollary to fr0\031ticn 6.d. Iet x'and. u be finite
~X
subsets of F. Thenf; is non-empty iff § is non-empty. In par-
u u

~
ticular the restricted Riemann space S 4is dense in the Riemann

space S with respect to the Zariski topologye.

P« .The Nu]]otelloncatz for holomornhy rincs—a strone form.

Let (X,P) be anordered field and F be a finitely genera=—
ted extension of K such that rl(h P) 4is formally real.

Tirst we give a descripticn of the holomorphy rings H
inﬁterms of holomorphy rings of basic subsets of the restrlctpi

A~
Riemann space S.

Theorem 7.1, Let x and u be finite subsets of I, Then
of the basic subssty Sﬁ of S5 equals

the holcmorpny ring%}u
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e

the holomorphy ring of the basic subset SX —of S i.e HX /\ (9/3
Q€S

Proof."e have to show that 67 C}{x . Let zéSF\}Ji o4
e QesE ‘

there is Qésx such that z.f\ = o0, By lLemma 6.2. there exists a
place R(€ gfl( such that z.R = o and hence zém U o 06BN
' QéSx

Now let us consider an arbitrary su‘bring ofH;{ which con-
‘tains B{x,u]' « Given a subset X of AS/‘}: s deti s (XY e the‘
ideal of A consi:sting of the elenients zZ€ A whlch vanlsh on
Xy 1.0 23 =0 'f,o? each Q€ X. Given a subset Mof A letW(nI) be
the set of common zéros Qégf; of elements in M, i.e.. 2.9 = 0 for
each z € M, Let J,(4) denote the subsemirnié; of A generated by

2

PUiuauAs . IE @ is, an:ddealsdin ¢ At. let ru(ct) = T7 (4) (a) be the
S5 & 3 &

Ju(A) - radical of &,

Theorem 7.2. (Nullstellensatz - a strong form).Let A be

8 subring ofHX which contains Blx,u] . Let M be an arbitrary

finite subset of A and & be the ideai in A generated by M.
= ;
Then I(W(M))= r (&) .

Proof. By Proposition 5.2. , r (&) = I(W(M)): {zEA I z. Q=0
for each QCW(I\;)} s where W) -{ QCS‘ 1 ZeQ Ofor each z€ MJ
Since W(m) W N S we have to show taat I(W( D)c TWEM)) . Tet
£ SN TOUCH)), 1.e. the set {Qésg ! z.Q =0 for each z€EM and -
f.Q?’O} is non-empty. Using a similar argument as in.the proof of
Lemma 6.2. we conclude that the set {Qéé’u‘ ]'z.Q =0 for each z€ M
and f.Q#Oj is non-empty too and hence f(ﬁI(W(M)}. QrBEDs,

Corollary to Theorem 7.2, Let M be a finite subset of



. 2 ~
H B[x] and & be the ldeal in H generated by M, Then I(\X/(M))-
=\/2 , waere W ) ={q€B* ! @.q=0 for each z€ M) and I(W(I"’))-
-{zQB{*{-j\z. = 0 for each QEW(M)} suddin parhcular I(S ) =

= [\’Jxm"\‘ = 05
Q€ S o

8+ _Proof of the results from Sectiph S ih
Fiist Let}us obsesrve that we havé'formulated Theorem le.l.
in such a way that it appears entirely similar to Theorem 7.2. We
shall show in this section that the former can be easily deduced'
from the latter. So let us consider the situation of iheorem l.ljwe
‘uge the notations as intrcduced in Section l. In particular x =
= (X40045%,) 1 a generic point over K of the affine variety
\/and F = K (x) is the functicn field'ofb/,'u = (ul,...,um)- is
a finite family of elements in K[x]\{}DB and & is an ideal in
.K[xj. e consider the restricted Riemann space S of FI(K,P) and
the basic subset B¥ . If Qéfgx then X.Q = (le....,an) is a
specialization of 'x over ﬁfand hence x.q 1is a ﬁirational

point of the variety'V/. If we attach to every Qeégx the point
X.QEV(K) then we obtain the projection maﬁ) 3*> \/(;;{l). It ?é’gx

: ~
then 73 satisfies the non-negativity conditions ujQGEP for

Ji= 1,409 Considering ug = uj(x) as a polynomial expression in

K [x] we observe that uj.Q = uj(x.Q) and hence X;QGWM;(§5. Ccn-
vergsely if X.Qé\/u(?:) it follows in the same way that Qég}é .
We obtained a lemma which is similar with Lemma 2.4. from [6] .

~/

3 ~
Termal B4 . S§ is the inverse inmage of VgﬁK) with respect

5 bl et
to the projection map S‘-—;\/(,{).
By a well known result from algebraic geometry [6] Corollary

A 2 we also have ¢

A
Lemma 8.2. The image of si with respect to the projection
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map X—>\/(K) ccntains at least all simple points of V (K) In
particular, if the variety V is nonsinvular then the projection

map S -9\/ (l{) is surjective.

Prcof of Theorem l.l. |
Let M = {fl,...,fs} be a system of generators of the ideal
TS P
We have ¢
V = o ] o
e, =) b € 7(®) u(b)EP for

@ 4dnj;- K [x] « We consider fi = fi(x) as a polynomial éxpression

lgc‘co’m and

1,-.-,8}

and s :
W ) = { Qegfl‘]fi.g =0 for 1 = 1,.'..,s}

Since\/is by hypothesis nonsingular we conclude by Lemma 82.
that W (IJI) is the inverse image of \/u a (z{) and Vu a(K) is the
1mage of W (M) with respect to the projection map ~>\/ (K) 5

Iet us consider the corresponding ideals in
K[x] and B[x] = B[x,u] * '
I(\/ (K)) = {ge K[x]} g(b) = 0 for every bé\/ (Y)}
{gé K[X]]g ) =0 for every {GW(M)]]

W ) = {acalx]] g.a= 0 2oz every aeilim) .

. It follows that I(\/ (K)) X[x]n I(\)(/(.Ji)) By Theorem 7.2.
IO (1)) is the J(B[x] ) ~ radical of the ideams[x] denoted
by 7y (g [X:D(ga[x])~. It follows that I(\/ 5))

T K[x]{\ ry (T«[:{_D(a' B[x] ). It remains to show that the contraction

of the ideal I (B[] y@B[x]) on }:x] is the J (K[x]) 5

radical r,(2) of the ideal & . The inclusion

r (a)cC K[x]n rJu(B[x] )(gﬁtx]) follows easily from d finitions.

Conversely, let g¢ K[x|\ r,(&). ¥e have to show that



g¢rJu(B[x] )(gB[x] Y. By £11+] Propcsition 2,‘ ru(g) ~is the inter-

section of all prime Ju(Kf:x] ) = radical ideals in X[x] contai~-
'ning @ . It £ollows that there is a prime Ju(K[x] ) = radical 1deal
p containing & such thatb g&?P. Let L = K (x modp ) be the field
5% quotients of the factor rieg K[xl/’ e 2nen L\(i;P) is fcrmal—
ly real over u mod F and X modp is an _I-rational-goint of
the variety\/ + Sinee by hypctheszé V/is'nonsingular, the point
X mod¥> is simple on‘v/. By [6:}Corollary A 2 the specialization
oo ﬁédf can be extended to an I~-rational place "9 "of rlE
such that\-xQ = mod.P and F.Q = L. It follows that the center
my N x[x] of the place 7 on K[x]is the prime ideal p and hence
g ¢1ﬂQ"Oﬂ the other hand, Q € Si and heuce, by Proposition 5.l.,
Q 1lies over B[x] and the center@ggf\ B[ﬁ} of 1 qQ en B[x] ?s a
prime Ju(B[;] ) — radical ideal in B[x] containing the ideal

gLB[x}. we conclude by_[l#} Proposition 2 tnat’gé_rJu(BExl)QgB[i)

ag contendads JeTeDe

Proof of Theorem 1.2

By hypothesis of Theorem 1l.2. the monoid generated by the
family u is a sutgroupd cf the multiplicative group ?><.

First, suppose that Fl(K,P) is not formally real over u.
Then it is easy to'see that’gi is empty. Ve concldda'from Lemna 8.2
that there are no simple points in\/g(g). A

Conversely, assume that F‘(K,P) is formally r=al over u.
Then the trivial place lp 1is contained in s for every family
y of elements in F. It follows by Corollary to Proposition 6.l.
that !éi is ncn-empty for each finite family y of elements in

7. Now let us pbserve that the generic poiht 'x is simple on yﬂ.

Ther~fore, considering a system of defining equaticns for X’ S

AN AP L 94 R
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over K and its Jacobin matrix, it follows that there exists at
least one minorl%éK[XtB of order n - dim (V) such that H (x)s8v
St L Tab v be R iniRE family‘of elements in T which con-
tains the elements Xysees Xy 03! The ses ,EZ is non-em,ty. Let

Q 'be.a place in (gz « The place Q is contained in ’giv and its
projection b = x,3 i3 simple on\/ since}ﬂ(b) =7n.Q'# O; %e conclude

: o 4
by Lemma 8.1, that'VL(K) contains at least one simple pointe).EeD.
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