INSTITUTUL DE MATEMATICA PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250-3638

ON AMPLE DIVISORS

by

Lucian BADESCU

PREPRINT SERIES IN MATHEMATICS No.17/1980

SESE-0250 MEBI

CH AMPLE DIVISORS

Vel

Lucian BADESCU

PREPRINT SPRIES IN MATHEMATICS

ITEGRUOUS

ON AMPLE DIVISORS.

by

Lucian BADESCU*)

April 1980

^{*)} The National Institute for Scientific and Technical Creation, Bdul Pacii 220,77538 Bucharest - Romania

DA PARECE DIVISORS DA PROCESCU*)

0891 33.mgA

eline unternat Tratitude for Scientific and Technical Creations, Both Books Packs Creations

ON AMPLE DIVISORS

Lucian Badescu

Introduction

In this paper we are dealing with the following problem: determine all normal (or smooth) projective varieties X over an algebraically closed field k supporting a given variety Y as an ample Cartier divisor. In §1 we assume $Y = P^{n-1}$ with n > 3 and show that such a normal variety X is isomorphic to the projective cone over vg(Y), where s>o is the integer determined by the equality $O_X(Y) \otimes O_Y = O(s)$ and $V_s: P^{n-1} \longrightarrow P^{n-1} (N = \binom{n+s-1}{n-4})$ is the sth Veronese embedding of P^{n-1} . A similar result is valid for $Y = P \times P^{t}$ with s, t>2. In the second section we prove the following generalization of a re sult of Sommese ([13]). If Y = H(d) is a hypersurface of prime degree d in such that either n > 3, or else char(k) = o and H(d) is a generic surface in P3 with d>5, then Y can be contained in a smooth projective variety A as an ample divisor only in one of the following two cases: i) X is P and the inclusion YCX is just the inclusion $H(d) \subset P^{n+1}$, or ii) X is a smooth hypersurface of degree d in P and Y is the intersection of X with a hyperplane. In the last section we determine all smooth projective threefolds X with p^2 (resp. $p^1 \times p^1$) as an ample divisor. Note that if char(k) = 0 the proofs are not so complicated (in the case of Y = P the result being (well known and) contained in (1) because one applies the result of [2]. However, by the method of lifting to characteristic zero we show that in our situation we can apply [2] in positive characteristic as well.

The proofs of these results require Lefschetz type theorems in Grothendieck's form ([7],[8],[2]). Throughout this paper k will be an algebraically closed field of arbitrary characteristic and the notations and terminology will be standard, unless otherwise specified.

§1. Normal projective varieties containing p^{n-1} $(n \ge 3)$ or $p^8 \times p^t$ $(e+t \ge 3)$ as an ample Cartier divisor

Let Y be an arbitrary connected smooth projective variety over k and choose a projectively normal embedding i:Y \longrightarrow P of Y (by a theorem of Serre such an embedding always exists). Denote by C(Y,i) the projective cone in P over i(Y). Then C(Y,i) is a normal projective variety containing i(Y) as an ample Cartier divisor.

Examples. 1) Take $Y = p^{n-1}$ with $n \ge 2$ and for every s > 0 consider the s^{th} Veronese embedding $v_s: p^{n-1} \longrightarrow p^{N-1}$ with $N = \binom{n+s-4}{n-1}$. Then v_s is projectively normal and hence p^{n-1} is an ample Cartier divisor in the normal variety $X_s^n = C(p^{n-1}, v_s)$ such that the normal sheaf N_{p^{n-1}, X_s^n} is $O(s) = O_{p^{n-1}}(s)$. Moreover, $X_1^n = p^n$.

2) Take $Y = P^S \times P^t$ with s > 0, t > 0, $s + t \geqslant 3$ and for every a > 0, b > 0 consider the Segre-Veronese embedding $i_{a,b}: P^S \times P^t \longrightarrow P^{N-1}$ with $N = \binom{s+a}{s}\binom{t+b}{b}$. Then $i_{a,b}$ is projectively normal and hence Y is an ample Cartier divisor on the cone $C(P^S \times P^t, i_{a,b}) = X^{S,t}_{a,b}$ such that the respective normal sheaf if $O(a,b) = p_1^*(O_{P^S}(a)) \otimes p_2^*(O_{P^t}(b))$, p_1 and p_2 being the canonical projections of $P^S \times P^t$.

Theorem 1. Assume that $n \ge 4$ and that $Y = P^{n-4}$ is an ample Cartier divisor on the normal projective variety X. Then if the normal sheaf $N_{Y,X}$ is isomorphic to O(s) (necessarily s > 0), X is isomorphic to X_S^n and Y is contained in X as in

example 1 above. If n = 3 the same conclusion holds provided that char(k) = 0.

In particular, X is smooth if and only if s = 1, i.e. $X = P^n$.

<u>Proof.</u> Let Sing(X) be the singular locus of X and set U = X-Sing(X). Since Y is a smooth Cartier divisor on X, YCU, and since Y is ample, $\dim(Sing(X)) \le 0$, i.e. Sing(X) consists of at most a finite set of closed points $\{x_1, \ldots, x_n\}$.

By [7], expose X, example 2.2 the pair (X,Y) satisfies the effective Lefschetz condition, Leff(X,Y). Since this condition is local along Y we have also Leff(U,Y). If $n\geqslant 4$ we have $H^1(O_X(-mY)/O_X(-(m+4)Y))=H^1(O(-mS))=0$ for i=1,2 and for every m>0. Hence by [7], expose XI, theorems 3.12 the natural map of restriction $\alpha: Pic(U) \longrightarrow Pic(Y) \cong \mathbb{Z}$ is an isomorphism. If instead n=3 and char(k)=0 we have $H^1(O_X(-mY)/O_X(-(m+1)Y))=H^1(O(-mS))=0$ for every m>0, and then apply the theorem of [2] (in a slightly modified form) to deduce that α is injective and $Coker(\alpha)$ is torsion-free. Since $Pic(U) \neq 0$ $(O_X(Y)/U \neq O_Y)$ and $Pic(Y) \cong \mathbb{Z}$ this yields that α is also an isomorphism.

Therefore in both cases there is an invertible 0—module L such that $L\otimes 0_Y=0(1)$. For every $m\in \mathbb{Z}$ put $F^{(m)}=j_*(\stackrel{\otimes m}{L})$, where $j:U\longrightarrow X$ is the canonical open immersion. The following statements hold:

a) $F^{(m)}$ is a coherent 0_{X} -module and $depth_{0_{X_{i}}}((F^{(m)})_{X_{i}}) \geqslant 2$ for every $m \in \mathbb{Z}$.

Indeed, the coherence of $F^{(m)}$ comes from [7], expose VIII, corollary VIII-II-3. On the other hand, the canonical map $F^{(m)} \longrightarrow j_*j^*(F^{(m)})$ is (by the very definition of $F^{(m)}$) an isomorphism, and the second affirmation follows from the exact sequence

the exact sequence
$$0 \longrightarrow \bigoplus_{i=1}^{h} H_{\mathbf{x}_{i}}^{0}((\mathbf{F}^{(m)})_{\mathbf{x}_{i}}) \longrightarrow \mathbf{F}^{(m)} \longrightarrow \mathbf{j}_{\mathbf{x}} \mathbf{j}^{*}(\mathbf{F}^{(m)}) \longrightarrow \bigoplus_{i=1}^{h} H_{\mathbf{x}_{i}}^{1}((\mathbf{F}^{(m)})_{\mathbf{x}_{i}}) \longrightarrow 0.$$

b) $F^{(ms)} \cong O_{\mathbf{x}}(mY)$ for every $m \in \mathbb{Z}$.

Indeed, $L \cong O_X(mY)/U$ because $O_X(mY) \otimes O_Y = O(ms)$ and the map ∞ is injective. Applying j_* to this isomorphism and taking into account that $depth(O_X) \geqslant 2$ O_X is normal of dimension $\geqslant 2$) we get the conclusion.

c) $H^1(F^{(m)}) = 0$ for every $m \ll 0$.

First choose t big enough so that $O_X(tY)$ is very ample and consider the embedding i:X \longrightarrow P = P($\Gamma(X,O_X(tY))$) such that $i^*O_P(1) \cong O_X(tY)$.

Claim. For every coherent 0_X -module G such that depth 0_X 0_X 2 for every closed point $x \in X$, $H^1(G \otimes O_X(qY)) = 0$ for every q << 0.

Proof of the claim. Set $G' = i_x(G)$. For every closed point $y \in P-i(X)$ we have clearly $H_y^1(G_y') = 0$. If $y \in i(X)$ is a closed point, by [5], corollary 5.6 we have $H_y^1(G_y') = H_y^1(G_y)$, and recalling the hypothesis the last group is zero. Thus we may apply [7], éxposé XII, corollary 1.3 and deduce that $H^1(X,G \otimes O_X(q'tY)) = H^1(P,G' \otimes O_P(q')) = 0$ for every q' << 0. Also, denoting by $G_x = G \otimes O_X(rY)$, r = 0,1,...,t-1 ($G_x = G$), then $H^1(X,G \otimes O_X(q'tY)) = 0$ for q' << 0 (because for every closed point $x \in X$ depth($(G_x)_x > 2$). Now let q be arbitrary and divide q = q't + r, with $0 \le r \le t-1$. The equality $G \otimes O_X(qY) = G_x \otimes O_Y(q'tY)$ and the above discussion proves the claim.

Now in order to prove c) write m = qs + r, with $0 \le r \le s-1$. Since $O_X(Y)$ is invertible on X, b) and projection formula yield

$$F^{(m)} = j_{x}(L^{\otimes r} \otimes L^{\otimes q_{B}}) = j_{x}(L^{\otimes r} \otimes j^{*}(O_{X}(qY))) \cong j_{x}(L^{r}) \otimes O_{X}(qY) = F^{(r)} \otimes O_{X}(qY).$$

The statement of c) follows applying the claim to $G = F^{(r)}$, r = 0, 1, ..., s-1 and taking into account a).

d) Let $\mathfrak{S}\in \Gamma(X,F^{(s)})\cong \Gamma(X,0_X(Y))$ be such that $\operatorname{div}_X(\mathfrak{S})=Y$. Then for every $m\in\mathbb{Z}$ there is the exact sequence on X.

$$(1) \qquad \circ \longrightarrow_{\mathbb{F}}^{(m-s)} \xrightarrow{G} \xrightarrow{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}}^{(m)} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{F}^{(m)}} \longrightarrow_{\mathbb{$$

where the first map is multiplication by 6.

Indeed, the exact sequence $0 \longrightarrow 0_{X}(-Y) \xrightarrow{6} 0_{X} \longrightarrow 0_{Y} \longrightarrow 0$ tensorized by $F^{(m)}$ yields the exact sequence

$$F^{(m)} \otimes O_{Y}(-Y) \cong F^{(m-s)} \xrightarrow{G} F^{(m)} \longrightarrow O(m) \longrightarrow 0.$$

Since $F^{(m)}$ is invertible on U the map G/U is injective, and since $G(x_i) \neq 0$.

for every i = 1, ..., h, G is injective everywhere.

Now (1) yields the exact sequence of cohomology $(m \in \mathbb{Z})$

$$0 \longrightarrow \Gamma(X,F^{(m-s)}) \xrightarrow{G} \Gamma(X,F^{(m)}) \longrightarrow \Gamma(Y,O(m)) \longrightarrow$$

$$\longrightarrow H^{1}(X,F^{(m-s)}) \xrightarrow{\psi_{m}} H^{1}(X,F^{(m)}) \longrightarrow H^{1}(Y,O(m)) = 0.$$

Thus for every $m \in \mathbb{Z}$ the map ψ_m is surjective. Thus from c) and induction on m it follows that $H^1(X,F^{(m)}) = 0$ for every $m \in \mathbb{Z}$. Thus for every m one gets the exact sequence

(2)
$$\circ \longrightarrow \Gamma(X,F^{(m-s)}) \xrightarrow{6} \Gamma(X,F^{(m)}) \xrightarrow{} \Gamma(Y,O(m)) \xrightarrow{} \circ \circ$$

Set $S = \bigoplus_{m=0}^{\infty} \Gamma(X,F^{(m)}) = \bigoplus_{m=0}^{\infty} \Gamma(U,L^{(m)})$. Then S is a graded k-algebra, $6 \in S_{S}$

and (2) yields the isomorphism of graded k-algebras

 $S/6S \cong \bigoplus_{m=0}^{\infty} \lceil (Y,O(m)) \cong k[T,...,T_n]$ (polynomial ring in n variables). Set $S' = S^{(S)}$, where $S'_t = S_{st}$ for every $t \in \mathbb{Z}$. Then $6 \in S'_1$ and $S'/6S' = k[T_1,...,T_n]^{(S)}$.

Choose $t \in S_1$ such that $t \mod GS = T_1$ and set G_1, \dots, i_n in G satisfy the G well known Veronese equations

(3)
$$\delta_{i_1,...,i_n} \delta_{j_1,...,j_n} - \delta_{e_1,...,e_n} \delta_{f_1,...,f_n} = 0$$
,

where $i_m + j_m = e_m + f_m$, $m = 1,...,n$.

Furthermore the images of $\{6i_1,...,i_n\}$ in S'/6S' generate the graded k-algebra S'/6S', and since $6\in S_4'$, it follows that 6 and $\{6i_1,...,i_n\}$ generate S' as a graded k-algebra.

In particular, $S' = \bigoplus_{m=0}^{\infty} \Gamma(X, O_X(mY))$ is generated by its part of degree one. Since Y is ample on X, $O_{\chi}(Y)$ results then very ample. Thus the canonical map $\varphi_{\mathbf{v}}: \mathbf{X} \longrightarrow \mathbf{P}(\Gamma(\mathbf{X}, \mathbf{O}_{\mathbf{X}}(\mathbf{Y})))$ (such that $\varphi_{\mathbf{Y}}^{*}(\mathbf{O}(1)) \cong \mathbf{O}_{\mathbf{X}}(\mathbf{Y})$) is a closed immersion. If in (2) we take m = s we get $\dim \Gamma(X, O_X(Y)) = \dim \Gamma(X, O_X) + \dim \Gamma(Y, O(s)) = N+1$, where N = $\binom{n+s-4}{n-4}$. Thus $\varphi_Y(X) \subset P^N$ and φ_Y restricted to Y is precisely the Veronese embedding v. In particular, Y is the intersection of X with the hyperplane PN-1. It remaines to be proved that $\varphi_{Y}(X)$ is isomorphic to the cone X_{S}^{n} . Set $S'' = k[T_1, ..., T_n]^{(g)}$, grade the polynomial k-algebra S''[T] so that if a \in S" is an arbitrary homogeneous element then deg(aT") = deg(a) + m, and define the homomorphism of graded k-algebras $\psi:S''[T] \longrightarrow S'$ by $\psi(T) = 6$ and $\psi(T_1, ..., T_n) = 6$, where i > 0 and $i_1 + ... + i_n = 6$. The equations (3) ensure us that this definition is correct. Since 5 and 6 generate S' as a k-algebra, Y is surjective. Also, the dimension of S"[T] and S' are the same (namely n+1) and these graded algebras are integral domains. Therefore ψ is an isomorphism, which proves that $\varphi_{\gamma}(x) \cong x^n$.

Exactly in the same way one can prove the following theorem.

Theorem 2. Assume that $Y = P \times P$ (with $s \ge 2$, $t \ge 2$ and $t \ge 2$) is an ample divisor on the normal projective variety X. Then if the normal sheaf $N_{Y,X}$ is isomorphic to O(a,b) (necessarily a > 0 and b > 0), X is isomorphic to the cone $X_{a,b}^{s,t}$ (from example 2 above). In particular, $P \times P$ (cannot be contained in a smooth projective variety as an ample divisor.

Remark. The assumption about the normality of X in theorem 1 or theorem 2 cannot be dropped. Indeed, consider the Veronese embedding $v_2:P^2 \longrightarrow P^5$ and take the generic projection Y' of $v_2(P^2)$ into P^4 , i.e. the Veronese surface in P^4 . Then Y' is isomorphic to P^2 , Y' is an ample Cartier divisor on the cone $C(Y') \subset P^5$ over Y', but since Y' is the projection of $v_2(P^2)$ into P^4 , the ver-

tex of C(Y') is not a normal point. Thus C(Y') cannot be isomorphic to any X_S^3 .

Corollary 1. i) Assume that $Y = P^{n-1}$ is an effective Cartier divisor on the normal complete variety X such that $N_{Y,X} = O(S)$ with S > C, and assume moreover that either $n \ge 4$, or else n = 3 and char(k) = 0. Then there is a birational morphism $f: X \longrightarrow X_S^n$ such that f is an isomorphism in a neighbourhood of Y and $f(Y) = V_S(P^{n-1})$.

ii) Assume that $Y = p^{S} \times p^{t}$ ($s \ge 2$, $t \ge 2$) is a effective Cartier divisor on the normal complete variety X such that $N_{Y,X} = O(a,b)$ with a > 0 and b > 0. Then there is a birational morphism $f:X \longrightarrow X_{a,b}^{S,t}$ such that f is an isomorphism in a neighbourhood of Y and $f(Y) = i_{a,b}(p^{S} \times p^{t})$.

<u>Proof.</u> Let us prove for example i). By [8], chapter III, theorem 4.2 there is a birational morphism $f:X \longrightarrow X'$ such that f is an isomorphism in a neighbourhood of Y and Y' = f(Y) is an ample Cartier divisor on X'. Since X is normal, we may assume that X' is also normal. Then by theorem 1 X' \cong Xⁿ such that Y' corresponds to $V_g(P^{n-1})$. Q.E.D.

Corollary 2. Assume that Y is as in corollary 1 i) or ii), and let $Y \subset X_1$.

(i = 1,2) two closed immersions such that X_1 and X_2 are smooth varieties of dimension equal to $\dim(Y) + 1$ and $M_{Y,X_1} \cong M_{Y,X_2}$ is ample. Then there is a birational map $u: X_1 \longrightarrow X_2$ which is an isomorphism on an open neighbourhood of Y in X and induces identity on Y.

§2. A generalization of a result of Sommese

First we need the following extension to arbitrary characteristic of a result of Kobayashi-Ochiai (see [4]). For the intersection theory of line bundles needed in this section we send to [40].

Theorem 3. (Kobayashi-Ochiai) Let V be a complete Cohen-Macaulay algebraic scheme of pure dimension t>o over k and L an ample invertible 0_V -module such that $(L^{\circ t})_V = 1$ and $\dim \Gamma(V,L) > t+1$. Then $\dim \Gamma(V,L) = t+1$ and the canonical map $\varphi_L: V \longrightarrow P(\Gamma(V,L)) \cong P^t$ is a biregular isomorphism.

Proof. First we prove that V is integral. Let V₁,..., V_n be the irreducible components of V naturally regarded as closed subschemes of V (see [lo], page 298). Then by loc. cit. proposition 5 and corollary 1 one has

 $(L^{\circ t})_{V} = (L^{\circ t})_{V_1} + \cdots + (L^{\circ t})_{V_n}$, where $L_i = L \otimes 0_{V_i}$.

Since every V_i has dimension t and L_i is ample on V_i , $(L^{\circ t}_i)_{V_i} > 0$ for every $i = 1, \dots, n$. Thus if V were reducible the above equality would imply

Thus V is irreducible. By loc. cit. proposition 5 and corollary 2 (page 298) one haz

 $(L^{*t})_{V} = length(o_{V,\xi}) \cdot (M^{*t})_{V}$

(L.t), > 2, a contradiction.

where M = L \otimes 0 and ξ is the generic point of V. Thus length(0, ξ) = 1, i.e. Y is generically reduced. Now since V is Cohen-Macaulay and generically reduced, [1], chap. VII, proposition 2.2 shows that V is reduced everywhere. Thus V is integral.

Let now s_1, \dots, s_{t+1} be t+1 linearly independent sections (over k) from $\Gamma(V, L)$ and $D_i = \text{div}_V(s_i)$. Define the sequence of closed subsets of V

$$V = V_t \supseteq V_{t-1} \supseteq \dots \supseteq V_o \supseteq V_{-1}$$

by $V_{t-i} = D_1 \cap \ldots \cap D_t$ for $i = 1, \ldots, t+1$. V_{t-i} can be naturally endowed with a structure of closed subscheme of V, $i = 1, \ldots, t+1$. Then one can easily prove as before that each V_{t-i} is an integral Cohen-Macaulay scheme of dimension t-i and that there is a natural exact sequence

$$\circ \longrightarrow (s_1, \ldots, s_i) \longrightarrow \Gamma(V, L) \longrightarrow \Gamma(V_{t-i}, L \otimes o_{V_{t-i}}),$$

where $(s_1, ..., s_i)$ is the subspace of $\Gamma(V, L)$ generated by $s_1, ..., s_i$ (see [4] for details). From this point one gets the conclusion exactly as in [4]. Q.E.D.

Theorem 4. Let Y = H(d) be a hypersurface of P^{n+1} (i.e. a complete intersection of codimension one in P^{n+1} , not necessarily smooth) of degree d with d prime. Assume that one of the following conditions holds:

- a) $n \geqslant 3$, or
- b) char(k) = o and Y is a generic surface in P³ with d≥5.

Assume further that Y is embedded as an ample divisor in the projective smooth variety X. Then one has one of the following possibilities:

- 1) X is isomorphic to P^{n+1} and the inclusion YCX is just $H(d) \subset P^{n+1}$.
- ii) X is isomorphic to a smooth hypersurface of degree d in P and Y is the intersection of X with a hyperplane.

Proof. In case a) by Lefschetz's theorem we have $\operatorname{Pic}(Y) = \mathbb{Z}[O_Y(1)]$. Also, since Y = H(d) and $\dim(Y) = n \geqslant 3$, $H^1(O_Y(s)) = 0$ for i = 1, 2 and for every $s \in \mathbb{Z}$; in particular, $H^1(O_X(-mY)/O_X(-(m+1)Y)) = 0$ for i = 1, 2 and for every $m \geqslant 1$. Thus we may apply Lefschetz's theorem to (X,Y) and get that the map $\alpha: \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(Y)$ is an isomorphism.

In case b) we may apply Noether's theorem (see [8], page 182) and also deduce that $\operatorname{Pic}(Y) = \mathbb{Z}[O_Y(1)]$. By [2] α is injective and $\operatorname{Coker}(\alpha)$ is torsion-free. Hence α turns out to be also an isomorphism.

Therefore in both cases there is an invertible 0_X -module L such that $L\otimes 0_Y = 0_Y(1)$. Further there is an integer r > 0 such that $0_X(Y) \cong L^{\otimes r}$. Let $6 \in \Gamma(X, 0_X(Y)) \cong \Gamma(X, L^{\otimes r})$ be a section such that $\operatorname{div}_X(6) = Y$. We have $(4) \quad (L^{\circ (n+1)})_X = \frac{1}{r} \cdot (L^{\circ n} \cdot L^{\otimes r})_X = \frac{1}{r} \cdot (L^{\circ n} \cdot Y)_X = \frac{1}{r} \cdot (L^{\circ n})_Y = \frac{1}{r} \cdot (0_Y(1)^{\circ n})_Y = d/r$, where $L_Y = L\otimes 0_Y$

- 10

In particular r divides d, and since d is prime one has two possibilities.

1)
$$r = d$$
, i.e. $0_X(Y) = L^{\otimes d}$.

Then (4) gives $(L^{\cdot (n+1)})_{X} = 1$. On the other hand, exactly as in the proof of theorem 1 one shows that the sequence

$$\circ \longrightarrow \Gamma(L^{\otimes(1-d)}) \xrightarrow{G} \Gamma(L) \longrightarrow \Gamma(O_{\mathbf{Y}}(1)) \xrightarrow{} \circ$$

is exact. Since d > 1 and L is ample $\Gamma(L) = 0$. Thus $\dim \Gamma(L) = n+2$. Now theorem 3 applied to V = X leads to case i).

2)
$$r = 1$$
, i.e. $L \cong O_X(Y)$.

Again one deduces the exact sequence (for every $m \in \mathbb{Z}$)

$$(5) \quad \circ \longrightarrow \Gamma(\stackrel{\otimes}{L}^{(m-1)}) \longrightarrow \Gamma(\stackrel{\otimes}{L}^{m}) \longrightarrow \Gamma(o_{\gamma}(m)) \longrightarrow \circ .$$

Denoting by S the graded k-algebra $\bigoplus_{m=0}^{\infty} \lceil (X,L^{\otimes m}), \delta \in S_4$ and by (5) S/ $\delta S \cong \bigoplus_{m=0}^{\infty} \lceil (Y,O_Y(m))$. Recalling that Y is a hypersurface in P^{n+1} , this last algebra is generated by its homogeneous part of degree one. Hence S itself is generated by $S_4 = \lceil (L)$, and in particular L is very ample on X.

If in (5) we take x = 1 we get $\dim \Gamma(L) = \dim \Gamma(0_X) + \dim \Gamma(0_Y(1)) = n+3$.

Therefore the canonical map $\varphi = \varphi_L: X \longrightarrow P(\Gamma(L)) = P^{n+2}$ is a closed immersion. Since $\varphi'(0(1)) \cong L$ (taking into account that r = 1 and (4)) $\deg \varphi(X) = (0(1)^{\circ} \binom{n+1}{2} \cdot \varphi(X))_{D^{n+2}} = (L^{\circ} \binom{n+1}{2})_X = d.$

The fact that $\varphi(Y)$ is the intersection of $\varphi(X)$ with a hyperplane of P^{n+2} is now clear. Thus case 2) leads to case ii). Q.E.D.

Corollary. Let Y be a hyperquadric in P^{n+1} with $n \ge 3$. Then Y can be an ample divisor on the smooth projective variety X if and only if either X is isomorphic to P^{n+1} , or to a smooth hyperquadric in P^{n+2} .

Remark. If k = C the above corollary has been previously obtained by Sommese in [13].

§3. Lifting to characteristic zero

Let k be an algebraically closed field of characteristic p>0 and A=W(k) the ring of Witt vectors on k, which is a complete discrete valuation ring of characteristic zero, with residue field k and such that p generates its maximal ideal. Let X be a projective smooth variety over k. One says that X has a lifting to characteristic zero if there is a projective smooth morphism f: $\mathfrak{X} \longrightarrow \operatorname{Spec}(A)$ whose closed fibre is isomorphic to X. Then the generic fibre X' of f is a projective smooth variety over the quotient field k' of A.

Grothendieck proved in [6], expose III, theorems 7.3 that a sufficient condition for the existence of a lifting to characteristic zero of X is the following " $H^2(T_X) = H^2(O_X) = 0$ ", where $T_X = (\Omega_{X/k}^{1})^{\times}$ is the tangent sheaf of X.

Let now k be a field (not necessarily algebraically closed) and X a smooth projective variety of dimension 3 over k. Let L be an ample invertible 0_X -module and $6 \in \Gamma(X,L)$ a section such that $Y = \operatorname{div}_X(6)$ is smooth over k. Then we have the following result which follows from [2].

Proposition 1. Assume char(k) = 0. Then the natural map $Pic(X) \longrightarrow Pic(Y)$ is injective and its cokernel is torsion-free.

Lemma 1. Let k be an algebraically closed field of characteristic p > o and X, L, G, and Y as above. Assume moreover:

- i) X has a lifting to characteristic zero.
- ii) $H^{i}(O_{X}) = O \quad \text{for } i = 1, 2.$
- ii) $H^{i}(O_{Y}) = 0$ for i = 1, 2.
- iv) H1(L) = 0.

Then the map of restriction $Pic(X) \longrightarrow Pic(Y)$ is injective with cokernel a torsion-free group.

is fibre of g_{s} then $Y' = \operatorname{div}_{g,s}(\mathbb{S}/_{\mathbb{A}})$

wition I the map Pic(X') ----

Proof. Let $f\colon \mathcal{X} \longrightarrow \operatorname{Spec}(A)$ be a lifting to characteristic zero of X. First we prove that the natural map of restriction $\operatorname{Pic}(\mathcal{X}) \longrightarrow \operatorname{Pic}(X)$ is an isomorphism. Indeed, let $\widehat{\mathcal{X}}$ be the formal completion of \mathcal{X} along X. Then by $\operatorname{Crothendieck's}$ existence theorem (see [3], chap. III 5.4.1) the natural map $\operatorname{Pic}(\widehat{\mathcal{X}}) \longrightarrow \operatorname{Pic}(\widehat{\mathcal{X}})$ is an isomorphism. It will be therefore sufficient to show that the map of restriction $\operatorname{Pic}(\widehat{\mathcal{X}}) \longrightarrow \operatorname{Pic}(X)$ is also an isomorphism. Let \mathcal{X}_n be the closed subscheme of \mathcal{X} defined by the sheaf of ideals $\operatorname{P}^0_{\mathcal{X}}$. In particular $\mathcal{X}_i = X$. An invertible 0 module is nothing but a sequence $(L_n)_{n \geqslant 1}$, where L_n in an invertible 0 module, plus isomorphisms $L_n \otimes 0$ $\mathcal{X}_n \cong L_n$. Then the map $\operatorname{Pic}(\widehat{\mathcal{X}}) \longrightarrow \operatorname{Pic}(X)$ is precisely $(L_n)_{n \geqslant 1} \longrightarrow L_1$. In order to see that this map is an isomorphism it will be sufficient to show that for each $n \geqslant 1$ the map of restriction $\operatorname{Pic}(\widehat{\mathcal{X}}_{n+1}) \longrightarrow \operatorname{Pic}(\widehat{\mathcal{X}}_n)$ is an isomorphism. But this follows from the standard exact sequence

$$0 \longrightarrow p^{n} 0_{\mathcal{X}}/p^{n+1} 0_{\mathcal{X}} = 0_{\chi} \longrightarrow 0_{\mathcal{X}_{n+1}}^{*} \longrightarrow 0_{\mathcal{X}_{n}}^{*} \longrightarrow 1,$$

which together with hypothesis ii) yields the assertion.

In particular there exists an invertible $0_{\mathfrak{X}}$ -module \mathfrak{L} such that $\mathfrak{L}\otimes 0_{\widetilde{X}}\cong L$, and by [3], chap. III 4.7.1 \mathfrak{L} is ample. Moreover, from the exact sequence $\Gamma(\mathfrak{X},\mathfrak{L})\longrightarrow \Gamma(X,L)\longrightarrow H^1(\mathfrak{X},\mathfrak{L})\longrightarrow H^1(\mathfrak{X},\mathfrak{L})\longrightarrow H^1(X,L)=0$ and Nakayama's lemma we deduce that the first map is surjective. In particular, \mathfrak{L} lifts to a section $\mathfrak{L}\in\Gamma(\mathfrak{X},\mathfrak{L})$. Set $\mathfrak{L}=\operatorname{div}_{\mathfrak{L}}(\mathfrak{L})$ and $g=f/\mathfrak{L}:\mathcal{L}\longrightarrow \operatorname{Spec}(A)$. Then the closed fibre of g is Y, and hence Y is a smooth morphism. If Y is the generic fibre of Y, then $Y'=\operatorname{div}_{X'}(\mathfrak{L}')$ is a smooth surface in Y. By proposition 1 the map $\operatorname{Pic}(X')\longrightarrow \operatorname{Pic}(Y')$ is injective with cohernel a torsion—free group. In order to complete the proof of lemma 1 it will be therefore sufficient to show that there are isomorphisms $\operatorname{Pic}(X')\longrightarrow \operatorname{Pic}(X)$ and

Pic(Y') -> Pic(Y) making commutative the following diagram

This fact is well known. For example we have firstly the isomorphism $\operatorname{Pic}(Y') \xrightarrow{\hspace{1cm}} \operatorname{Pic}(\mathcal{Y}) \text{ defined by } [\operatorname{M}] \xrightarrow{\hspace{1cm}} [\operatorname{M'}], \text{ where } \operatorname{M'} \text{ is an invertible}$ $\operatorname{O}_{\mathcal{Y}}\text{-module such that } \operatorname{M'}/Y' \cong \operatorname{M}. \text{ Such a } \operatorname{M'} \text{ always exists because } \mathcal{Y} \text{ is a regular scheme and } Y' \text{ is an open subset in } \mathcal{Y}. \text{ This definition is correct since}$ the complement of Y' is Y and Y is defined as a closed subscheme of \mathcal{Y} by the ideal $\operatorname{pO}_{\mathcal{Y}}$, which is isomorphic as an $\operatorname{O}_{\mathcal{Y}}$ -module to $\operatorname{O}_{\mathcal{Y}}. \text{ Secondly, by the first}$ part of the proof the natural map $\operatorname{Pic}(\mathcal{Y}) \longrightarrow \operatorname{Pic}(Y)$ is an isomorphism. Q.E.D.

Lemma 2. Assume that $Y = P^2$ (resp. $Y = P^4 \times P^4$) is contained in the smooth projective variety X as an ample divisor, where k is an algebraically closed field of arbitrary characteristic. Then the map of restriction $Pic(X) \longrightarrow Pic(Y)$ is an isomorphism (resp. is injective and its cokernel is a torsion-free group).

<u>Proof.</u> If char(k) = 0 this follows directly from proposition 1 taking into account (if $Y = P^2$) that $Pic(P^2) \cong \mathbb{Z}$. Assume therefore char(k)>0. Then the conclusion will follow from lemma 1 if we show that conditions i)-iv) are satisfied by (X, $L = O_X(Y)$, \mathcal{O} , $\operatorname{div}_X(\mathcal{O}) = Y$). The verification of conditions ii), iii) and iv) are not difficult (using the explicit computation of the cohomology of P^2 and $P^4 \times P^4$ and the cohomological characterization of ampleness) and are left to the reader.

In order to verify condition i) it will be sufficient (using [6], expose III, theorems 7.3) to show that $H^2(T_X) = 0$ (the condition $H^2(0_X) = 0$ being contained in ii)). Consider the exact sequence $(m \in \mathbb{Z})$

$$\operatorname{H}^{2}(\operatorname{T}_{X} \otimes \operatorname{O}_{X}(\operatorname{mY}) \otimes \operatorname{O}_{Y}) \longrightarrow \operatorname{H}^{2}(\operatorname{T}_{X} \otimes \operatorname{O}_{X}((\operatorname{m-1})Y)) \longrightarrow \operatorname{H}^{2}(\operatorname{T}_{X} \otimes \operatorname{O}_{X}(\operatorname{mY})).$$

Since Y is ample on X, $H^2(T_X \otimes O_X(mY)) = 0$ for $m \gg 0$. Therefore in order to prove that $H^2(T_X) = 0$ it will be sufficient (via descending induction on m) to see that

(6)
$$H^{1}(T_{X} \otimes O_{X}(mY) \otimes O_{Y}) = 0 \quad \text{for every } m > 1.$$

Consider the exact sequence

(7)
$$H^1(T_Y \otimes O_X(mY)) \longrightarrow H^1(T_X \otimes O_X(mY) \otimes O_Y) \longrightarrow H^1(O_X((m+1)Y) \otimes O_Y)$$
(induced by $O \longrightarrow T_Y \longrightarrow T_X \otimes O_Y \longrightarrow O_X(Y) \otimes O_Y \longrightarrow O$).

If $Y = P^2$ then $O_X(Y) \otimes O_Y = O(s)$ with s > 0 (since Y is ample on X). Then $H^1(O_X((m+1)Y) \otimes O_Y) = H^1(P^2, O((m+1)s)) = 0$ for every $m \in \mathbb{Z}$. On the other hand, the standard exact sequence on $Y = P^2$

$$\circ \longrightarrow \circ_{\mathbf{Y}} \longrightarrow \circ \circ (1)^{\oplus 3} \longrightarrow \mathsf{T}_{\mathbf{Y}} \longrightarrow \circ$$

yields the exact sequence of cohomology

$$0 = H^{1}(O(ms+1)^{\oplus 3}) \longrightarrow H^{1}(T_{\gamma} \otimes O(ms)) \longrightarrow H^{2}(O(ms)) = 0.$$

Therefore $H^1(T_Y \otimes O_X(mY)) = H^1(T_Y \otimes O(ms)) = 0$. Now the exact sequence (7) proves (6) if $Y = P^2$.

If $Y = P^1 \times P^1$ then $O_X(Y) \otimes O_Y = O(a,b)$ with a \nearrow o and b \nearrow o. Then $H^1(O_X((m+1)Y) \otimes O_Y) = H^1(P^1 \times P^1, O((m+1)a, (m+1)b)) = o$ for every $m \nearrow o$.

On the other hand, $T_Y \cong O(2,o) \oplus O(o,2)$, and therefore $H^1(T_Y \otimes O_X(mY)) = o$

Proposition 2. Assume that $Y = P^2$ is embedded as an ample divisor in the smooth projective variety X. Then X is isomorphic to P^3 and Y is contained in X as a hyperplane.

Proof. If char(k) = o this result is contained in theorem 1. Thus we may

assume char(k)>0. Since $Pic(P^2) = \mathbb{Z}$ we may apply lemma 2 and deduce that the map $Pic(X) \longrightarrow Pic(Y)$ is an isomorphism. Now the argument is contained in the proof of theorem 1. Q. E. D.

Theorem 5. Assume that $Y = P^1 \times P^1$ is embedded in the smooth projective. variety X as an ample divisor. Then we have one of the following possibilities:

- i) $X \cong P^3$ and Y is a quadric in X.
- ii) X is isomorphic to a hyperquadric in P4 and Y is a hyperplane section.
- iii) There are a > 0, b > 0, c > 0 and s > 0 positive integers such that a+b+c = 2s and the exact sequence of Op1-modules

 $0 \longrightarrow 0_{p1} \longrightarrow 0(a) \oplus 0(b) \oplus 0(c) = E \xrightarrow{\varphi} 0(s) \oplus 0(s) = F \longrightarrow 0$ such that X is isomorphic to P(E) and $Y \cong P(F)$ is embedded in X via the surjection 9.

<u>Proof.</u> From lemma 2 we deduce that the map $Pic(X) \xrightarrow{\alpha} Pic(Y) \cong \mathbb{Z} \times \mathbb{Z}$ is injective and its cokernel is torsion-free. Thus we have two possibilities:

a) $\underline{\operatorname{Pic}(X)} \cong \mathbb{Z}$. Let L be an invertible 0 module which is ample and generates Pic(X). Then $L\otimes O_{Y}\cong O(s,t)$ with s>0 and t>c. Since $Coker(\alpha)$ is torsion-free s and t are relatively prime integers. Writing $O_{X}(Y)\cong \overset{\otimes}{L}^{r}$ and $W_{X} \cong L^{\otimes d}$, we get easily from the adjunction formula that s(d+r) = t(d+r) = -2, and thus s = t = 1.

Let $6 \in \Gamma(X, O_X(Y)) \cong \Gamma(X, L^{\otimes r})$ be such that $\operatorname{div}_X(6) = Y$. The exact sequence $0 \longrightarrow L \longrightarrow L \longrightarrow 0 (m,m) \longrightarrow 0$

yields the exact sequence $(m \in \mathbb{Z})$

(8) $o \longrightarrow \Gamma(\stackrel{\otimes(m-r)}{L}) \xrightarrow{G} \Gamma(\stackrel{\otimes m}{L}) \longrightarrow \Gamma(O(m,m)) \longrightarrow H^{1}(\stackrel{\otimes(m-r)}{L}) = o.$ Put $S = \bigoplus_{m=0}^{\infty} \lceil (\stackrel{\otimes}{L}^m) \rceil$; then $S/6S \cong \bigoplus_{m=0}^{\infty} \lceil (O(m,m))$ is a graded k-algebra generated by its part of degree one. On the other hand

$$(L^{\circ 3})_{X} = \frac{1}{r} \cdot (L^{\circ 2} \cdot Y)_{X} = \frac{1}{r} \cdot (O(1,1) \cdot O(1,1))_{Y} = 2/r.$$

Therefore r = 2 or r = 1.

- a_1) Case r = 2. If in (8) we take m = 1 we get $dim \Gamma(L) = 4$. Since $(L^{\circ 3})_X = 1$ theorem 3 implies $X = P^3$ and we get case i).
- a_2) Case r=1. Then deg(6)=1 and since S/6 S is generated by its homogeneous part of degree one, the same is true for S. In particular L is very ample. Again take m=1 in (8) and get $dim\Gamma(L)=5$. Thus $\varphi_L:X\longrightarrow P(\Gamma(L))\cong \mathbb{R}^4$ and since $deg\varphi_L(X)=2$ we get case ii).
- b) $\underline{\operatorname{Pic}(X)} \cong \mathbb{Z} \times \mathbb{Z}$. Then the map $\operatorname{Pic}(X) \xrightarrow{\propto} \operatorname{Pic}(Y)$ is an isomorphism. Therefore there are two invertible 0_X -modules L_1 and L_2 such that $L_1 \otimes 0_Y \cong 0(1,0)$ and $L_2 \otimes 0_Y = 0(0,1)$. If $0_X(Y) \otimes 0_Y \cong 0(s_1,s_2)$ with $s_1 > 0$ and $s_2 > 0$ (Y is ample on X), then since the map \propto is injective, $0_X(Y) \cong L_1 \otimes L_2$. Let $0 \in \Gamma(0_X(Y)) \cong \Gamma(L_1 \otimes L_2)$ be a section such that $\operatorname{div}_X(0) = Y$. Then the exact sequence $0 \xrightarrow{\longrightarrow} 0_X((m-1)Y) \xrightarrow{\longrightarrow} 0_X(mY) \xrightarrow{\longrightarrow} 0(ms_1, ms_2) \xrightarrow{\longrightarrow} 0$

yields the exact sequence (exactly as in the proof of theorem 1)

$$(9) \quad \circ \longrightarrow \Gamma(O_{X}((m-1)Y)) \xrightarrow{6} \Gamma(O_{X}(mY)) \longrightarrow \Gamma(O(ms_{1}, ms_{2})) \longrightarrow 0.$$

Put $S = \bigoplus_{m=0}^{\infty} \Gamma(O_X(mY))$; then $6 \in S_1$ and $S/6S \cong \bigoplus_{m=0}^{\infty} \Gamma(Y, O(ms_1, ms_2))$ is generated by its homogeneous part of degree one. Therefore S itself is generated by S_1 and hence Y is very ample on X. If in (9) we take m = 1 we get

(10)
$$\dim |Y| = (s_1 + 1)(s_2 + 1).$$

If $s_1 = s_2 = 1$ then $|Y| = P^4$ and X would be a smooth hypersurface in P^4 .

But then Lefschetz's theorem yields $Pic(X) \cong \mathbb{Z}$, a contradiction. Thus at least one s_1 or s_2 is >1.

Suppose s₁>1. Then the exact sequence

$$\circ \longrightarrow L_{1}^{\otimes (1-s_{1})} \otimes L_{2}^{(-s_{2})} \xrightarrow{6} L_{1} \longrightarrow O(1,0) \longrightarrow \circ$$

yields the exact sequence

(11)
$$0 \longrightarrow \Gamma(L_1^{\otimes (1-s_1)} \otimes L_2^{\otimes (-s_2)}) \longrightarrow \Gamma(L_1) \longrightarrow \Gamma(0(1,0)) \longrightarrow H^1(L_1^{\otimes (1-s_1)} \otimes L_2^{\otimes (-s_2)}).$$

Since $1-s_1 < 0$ and $-s_2 < 0$ we have $H^1(L_1^{\otimes (1-s_1)} \otimes L_2^{\otimes (-s_2)}) = 0$ for $i < 1$. Indeed,

 $H^1(F \otimes O_X(mY)) = 0$ for $i < 1$ and $m < 0$ (with $F = L_1$), and from the exact sequence

 $0 \longrightarrow F \otimes O_X((m-1)Y) \longrightarrow F \otimes O_X(mY) \longrightarrow O(ms_1+1,ms_2) \longrightarrow 0$

we deduce for every m < 0 and $i \le 1$:

$$H^{1}(F \otimes O_{X}((m-1)Y)) \longrightarrow H^{1}(F \otimes O_{X}(mY)) \longrightarrow H^{1}(O(ms_{4}+1,ms_{2})).$$

By Kunneth's formulae we get $H^1(O(ms_1+1,ms_2)) = 0$ for i < 1 and m < 0, and the affirmation results by induction on m.

Now recalling (11) we get that the map of restriction $\Gamma(L_4) \longrightarrow \Gamma(0(1,0))$ is an isomorphism if $s_1 > 1$. In particular, for every $\Delta, \Delta' \in |L_4| (\Delta \neq \Delta')$ we have $\Delta \cap \Delta' \cap Y = \emptyset$. Since Y is ample on $X, \Delta \cap \Delta'$ is at most a finite set of closed points. Since X is smooth we cannot have $\Delta \cap \Delta' \neq \emptyset$ because otherwise

$$3 = \operatorname{codim}_{X}(\Delta \cap \Delta') \leqslant \operatorname{codim}_{X}(\Delta) + \operatorname{codim}_{X}(\Delta') = 1 + 1 = 2.$$

Therefore $\triangle \cap \triangle' = \phi$. Thus the linear system $|L_1|$ has no base points and hence the corresponding map $p = \varphi_{L_1} : X \longrightarrow |L_1| = p^4$ (such that $p^* \circ_{p_1} (1) \cong L_1$) is a morphism. Moreover, for every invertible \circ_{X} -module L, $(L_1^{\circ 2}, L) = \circ$.

Now look at the equalities

$$1 = (0(1,0) \cdot 0(0,1))_{Y} = (L_{1} \cdot L_{2} \cdot Y)_{X} = s_{1}(L_{1}^{2} \cdot L_{2}) + s_{2}(L_{1} \cdot L_{2}^{2}).$$
One deduces $s_{2}(L_{1} \cdot L_{2}^{2}) = 1$, i.e. $s_{2} = 1$ and $(L_{1} \cdot L_{2}^{2}) = 1$. Set $s_{1} = s$.

Let $\Delta \in |L_{1}|$ be arbitrary. Then $(O_{X}(Y)^{\circ 2} \cdot \Delta) = s^{2}(L_{1}^{3}) + 2s(L_{1}^{2} \cdot L_{2}) + (L_{1} \cdot L_{2}^{2}) = (L_{1} \cdot L_{2}^{2}) = 1$. Therefore, denoting by $M = O_{X}(Y) \otimes O_{\Delta}$, we get $(M^{\circ 2})_{\Delta} = 1$, M is ample on Δ and Δ is a Cohen-Macaulay scheme of pure dimension 2. Moreover,

Jud 46625

for every i = 0,1,...,s-1 one has the exact sequence (since $L_1 \otimes O_{\Delta} = O_{\Delta}$)

$$\circ \longrightarrow \bigsqcup_{1}^{\varnothing(s-i-1)} \otimes L_{2} \longrightarrow \bigsqcup_{1}^{\varnothing(s-i)} \otimes L_{2} \longrightarrow M \longrightarrow \circ$$

and hence

$$\circ \longrightarrow \Gamma(\mathbb{L}_{1}^{\otimes (3-1-1)} \otimes \mathbb{L}_{2}) \longrightarrow \Gamma(\mathbb{L}_{1}^{\otimes (3-1)} \otimes \mathbb{L}_{2}) \longrightarrow \Gamma(\mathbb{M}).$$

Claim. Dim Γ(M)≥3.

Indeed, assuming the contrary we get

$$2 \geqslant \dim \lceil (\mathbb{L}_{1}^{\emptyset(s-i)} \otimes \mathbb{L}_{2}) - \dim \lceil (\mathbb{L}_{1}^{\emptyset(s-i-1)} \otimes \mathbb{L}_{2}) , \quad i = 0, 1, \dots, s-1,$$

and therefore taking the sum:

(12)
$$2s \geqslant \dim \Gamma(O_X(Y)) - \dim \Gamma(L_2).$$

But the exact sequence

$$0 \longrightarrow L_1^{\otimes(-3)} \xrightarrow{6} L_2 \longrightarrow O(0,1) \longrightarrow 0$$

yields

$$0 = \Gamma(\underline{L}_1^{\otimes(-5)}) \longrightarrow \Gamma(\underline{L}_2) \longrightarrow \Gamma(0(0,1))$$

and thus $\text{dim} \Gamma(L_2) \leqslant 2$. Therefore (12) becomes $\text{dim} \Gamma(O_X(Y)) \leqslant 2(s+1)$, or else $\text{dim} |Y| \leqslant 2s+1$, which contradicts (10). The claim is proved.

By theorem 3 we deduce then that $\triangle \cong P^2$ and $O_{\triangle}(A) \cong L_2 \otimes O_{\triangle}$. Now Hironaka has shown that in these circumstances p is the projection of the projective bundle P(E) associated to a locally free O_{p^4} -module E of rank 3 (see [9] theorem (1.8)). Moreover $O_X(Y) \otimes O_{\triangle} \cong L_1^{\otimes S} \otimes L_2 \otimes O_{\triangle} \cong L_2^{\otimes S} \otimes O_{\triangle} \cong O_{\triangle}(A)$, and therefore we can take $E = P_*O_X(Y)$. Then $O_{P(E)}(A) = O_X(Y)$ and the exact sequence

$$\circ \longrightarrow \circ_{X} \longrightarrow \circ_{X}(Y) \longrightarrow \circ(s,1) \longrightarrow \circ$$

yields

 $0 \longrightarrow p_{\chi} 0_{\chi} \cong 0_{p^{1}} \longrightarrow p_{\chi} 0_{\chi}(Y) = E \longrightarrow p_{\chi \chi} 0(s,1) \cong 0(s) \oplus 0(s) \longrightarrow \mathbb{R}^{4} p_{\chi} 0_{\chi} = 0,$ where $p_{\chi} : p^{1} \times p^{1} \longrightarrow p^{1}$ is the first projection. In other words we get the exact sequence of locally free $0_{p^{1}}$ -modules

$$0 \longrightarrow 0_{p^4} \longrightarrow E \longrightarrow 0(s) \oplus 0(s) \longrightarrow 0.$$

In particular deg(E) = 2s. By a theorem of Grothendieck (see [4] for $k = \mathbb{C}$, but the same result holds in arbitrary characteristic) there are three integers a, b, c (uniquely determined up to a permutation) such that $E \cong O(a) \oplus O(b) \oplus O(c)$. Finally, since $O_X(Y)$ is ample on X, E is ample on P⁴, and therefore a > 0, b > 0 and c > 0. In other words we get situation iii). Q.E.D.

Remarks. 1) The case iii) of theorem 5 really occurs. Indeed, we shall construct an exact sequence as in case iii) with c = s, i.e. with a+b = s (a>0, b>0 and c>0). It will be sufficient to construct a surjection of the form $\varphi':O(a)\oplus O(b)\longrightarrow O(a+b)=O(s)$, because one can take $\varphi=\varphi'\oplus id_{O(s)}$ (and then taking the degrees one sees that $\ker(\varphi)\cong O_{p^1}$). Let x_o and x_1 homogeneous coordinates on P^1 and define $\varphi'(p,q)=x_o^b+x_1^qq$. We claim that $\Gamma(\varphi'):\Gamma(O(a))\oplus\Gamma(O(b))\longrightarrow \Gamma(O(a+b)) \text{ is surjective. For, if } u\in\Gamma(O(a+b))=x_1^p+x_1^qq$ is of the form $u=\sum_{i=0}^{a+b}a_ix_i^{i}x_1^{i+b-i}$, then $u=x_o^p+x_1^qq$, where $p=\sum_{i=0}^{a-1}a_ix_0^{i}x_1^{i}\in\Gamma(O(a))$ and $q=\sum_{i=0}^{a+b}a_ix_0^{i-a}x_1^{a+b-i}\in\Gamma(O(b))$. Now since $\Gamma(\varphi')$ is surjective and O(a+b) is generated by its global sections, φ' is also surjective (and thus φ is surjective).

2). Note that the theorem asserting that P^n is the unique smooth projective variety containing P^{n-1} (n > 3) as an ample divisor was known for n > 4 and char(k) arbitrary, and for n = 3 and char(k) $\neq 3$ (see [12]).

hariki

REFERENCES

- 1. Altman, A. Kleiman, S. Introduction to Grothendieck duality theory,

 Springer Lect. Notes Math. 146 (1970).
- 2. Bădescu, L. A remark on the Grothendieck-Lefschetz theorem about the Picard group, Nagoya Math. J. 71 (1978) 169-179.
- 3. <u>Dieudonné, J. Grothendieck, A. Eléments de Géométrie Algébrique, Publ.</u>

 Math. IHES 11 (1961).
- 4. Grothendieck, A. Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957) 121-138.
- 5. Grothendieck, A. Local cohomology, Springer Lect. Notes Math. 41 (1967).
- 6. Grothendisck, A. Revetements étales et groupe fondamental, Springer Lect. Notes Math. 221 (1971).
- 7. Grothendieck, A. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North-Holland, Amsterdam (1968).
- 8. <u>Hartshorne</u>, R. Ample subvarieties of algebraic varieties, Springer Lect.

 Notes Math. 156 (1970).
- 9. Hironaka, H. Smoothing of algebraic cycles of small dimensions, Amer.

 J. Math. 90 (1968) 1-54.
- lo. Kleiman, S. Toward a numerical theory of ampleness, Annals Math. 84
 (1966) 293-344.
- 11. Kobayashi, S. Ochiai, T. Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13-1 (1973) 31-47.
- 12. Mori, S. On a generalization of complete intersections, J. Math. Kyoto
 Univ. 15-3 (1975) 619-646.
- 13. Sommese, A. J. On manifolds that cannot be ample divisors, Math. Ann. 221 (1976) 55-72.

I.N.C.R.E.S.T. Bucharest, Dept. of Mathematics, B-dul Pacii 220, 77538 Bucharest, Romania.