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ON AMPLE DIVISORS

Lucian Bédescu

Intrcduction

Iﬁrthis paper we arg dealing with the following pfoblem: deferéine ali
-Aormal (or smoofh) projective varieties X ovér an elgebraically closed f;éldﬂ_
k aupporting‘a given variety f s an ample Cartier divisor. In §1 we assume
1« P" ! with 03 and‘show thet such a normal variety X is isomorphic to--
the.projective ccne over vs(Y), where 8> o0 is ﬁhe-ihteger determined bj the;
equality O (Y)QQOY = 0(s) and vs:Pn.d c———%»Rg—i (¥ = (?;i:‘)) is tﬁa.s?h
Veronese embedding of P -1 ) gimilar result is velid for Y = p%x B’ with
.a)t?}Q. In'the second se;tion we prove the following generalization of a re-
sult of Sommese ([13]). If Y = H(d) is & hypersurfﬁce of prime degres d in-

P! such that either n>3, or else char(k) = o &nd H(d) is & gederic surface

in P3 with d»5, then Y can be contained in a smooth projective variety £ as

an emple divisor only in one of the following two ceses: i) X is P and

- the incluslon YCX is just the inclusion H(d)c:° 1, or ii) X is a smooth"

‘hypersurface of degree d in Pn+2 and Y is the "intersection of X with a hyper-

plane, In the last gection we determine all smooth projecfive_thréefolds X Mﬁ+k;

E | x
P~ (resp. P4><P4) as an ample divisor. Note that if char(k) = o the proofs
are not so complicated (in the case of Y = P2 the result being (ﬁell known
and) contained in §1) because one applies the result of (2]. However, by

the method of lifting to characteristic zero we show that in our situation

ve can apply [2] in posiiive characteristic as well,




The proofe of ‘these results require Lefachetsz type theoreds in Grothendieck!
'8 form ([}"],[8},[2]). Throughout this paper k will be an algebraioally closed
field of arbitrary characteristic and the notations and terminolon‘y will be

standard, unless otherwise specified.

' _n-4 : 8t
¢1. -Normal projective varieties containing P (n>3) or P xP

(2+t>3) as an ample Cartier divisor

Let Y bos an arbitra\ry.connect.ed smooth projective variety over k ard
5 v : : %
chocse a projectively normal embedding istYce——>P of Y (by & theorem of

Serre such an embedding a.lways exists), Denote by C(Y,l) the pro;jective cone
tn ¥ over i(Y). Then C(Y,l) is a normal projective variety containing i(y)

‘ as an ample Cartier divmor.

. Exemples., 1) Take Y = P. - w¥ith n72 and for every 8> o consider the

' -1 N-1 - .
Veronese embedding vs:Pn &——3>P with § = n;s 44). Then vs is projec-

n-4 ;
tively normal and hence P is &an ample Cartier divisor in the normal varjety .

n 18 O(S) '= OP-.‘-.{(S). Moreover,-

X '= (‘E(Pn 3V ) such that the normal sheaf X neq
8 Co8 _ Bk

n _na
X., = P ®
2) Take Y = P xp* with a>o, t>0, 8+t23 and for every a>o, b>o0 con-

=4 :
sider the Segre-Veronese embedding i be X Pt > PN . With N =
8, ‘ ;

8+a\ /t+b
= ( ; )( ; ) s The.n i . is progectivelv normal and hence b 4 is an. ample
: . a2,

Cartier divisor on the cone C(P XP gd oY - S St such that the respective

a,b a,b

normal sheaf if 0(a,b) .= P:(OPS(E‘-))@PS(OP’:(b)), P, and P, being the canonical
projections of p°x 'Pt.

Theorem 1., Assume that n>4 and that Y = P‘n_'1 is an emple Cartier divigor

~on the normal projective varjety X, Then if the normal sheaf NY x is 'isomorphic
; »

to 0(8) (necessarily 8>0), X in isomorphic to X: ard Y i8 contained in X as in



example 1 above, If n = 3 the same conclusion holds provided that char(k) = o.

In particular, X is smooth if and only if o iy il KB

_form) to deduce that o is injective and Coker(ct) is torsion-free. Since -

R P AR

Proof. Let Sing(X) be the singular locus of X and set U_; x-51ng(x). sm’;‘é
Y is' s smooth Cartier divisor on X, YCU, apd:s;_incé‘Y'is anple, dim(s'ixig(x))é
Lo, 1.8.‘? Sivng(x) consists of at most a finite .set of closed points {x' ,.;.-,x.,i.
By [#]s -éxposé X, example 2.2 the pair (X Y) satisfies the effective Lef-
schetz conditxon, Leff(X,Y). Since this condition is local along Y we have
also Leff(U,Y). If n4 we have H (o (—mY)/O (- (m+4)Y)) = H (0(-ms)) = o for
i s'd,zla.nd for every m> 0. Hence by [#]s oxppse XI, théordme 3,12 the natural
map- of restriction o3 :Pic(U) ——> Pic(Y) = Z is an iaomorphism; I.f in-
stead n = 3 and char(k) = o we have E (0 (-m‘f)/o (- (m+4)‘f)) = H (0(-ms)) - o.

for every m> O, and _then.apply.the theorem of [2] (in a s8lightly modlfied L

Pic(U) ¢ o (ox(y)/u & ou) and Pic(Y) ¥ Z this yields that o< is also an .
; , \ : s

isomorphism. - : -
Therefore in both cases there is an invcrti’blelou-module L such that

- @ & 2
L®0Y = o(i). For every m €Z put F(m) = j,(—L m), where j:Ue—7"X is the

" canonical open immersion. The following statements holds: ot fa

a) F(m) is a coherent Ox-module and deptho ((F(m))x }> 2 for every.-..
: x, ot it : .
m é Z ° :

Indeed, the coherence of F(m‘) comes from [’7‘], éxposé VIII, coro“ar_y vim-y-—3.

On the other hand, the canonical map F( ) 3&3 ( i )) is (by the very

St

definition of F_‘(m)) an isomorphism, ‘and the second affirmation follows from

the exaot gequence

Oﬁ@n Gl s F(m)-————rj;j(n( )).——-———"@H ((F(“’)) e
i i . . .i . i. :
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b) (ms) ¥ O (mY) . for every m € Z .

Inclieed‘, I? C (mY)/U because 0 (mY)@O - O(ms) and the map ©o¢ is in-
jective, Applying j, to this iaom'orphism and taking into acgount that
‘depth(o > e (D ig normal of dimension >2) we get *‘l:.he conclusion,

1xvsn : ;
c) H (F( )) = o for every m <<o, P s /

Firet choose t big enough so that 0 (tY) iz very ample and consider the
embeddlng {:fe——>P = P(F(x 0L (tY)) such that 10 (4) 0 (tY)
Claim. For every coherent Oi-—,module (} such that deptho (Gx)>/2 for every

‘ x
: 4
closed point x€X, H (G@OX(qY)) = o for every q<<o,

Proof of the claim. Set G' = 1}(0). For every closed poini’. yEP-i(X) we
have cle&%‘ly Hi((};) = O, I‘f y€i(x) is a closed point, by [5'], corollé.ry 5.6
.we have H;((};) = H;(G;)., and recallir_xg the hypotheais.the last group is zero,
Thus we may apply [#], éxposs XII, corollary 1,3 and deduce that
Ed(x,(}@bx(q'tY)) a H‘(P,G'@OP(q')) =e for every q'<<o. Also, denoting by
Gr = G@Ox(r'!), T = 0ydyu00,t-1 (co = G), then H‘(x,cr@ox(q'tr)) = o for
q' <<o (because for every closed point x €X depth((gr)x)>/'2). Now let q be
arbitrar;r and di?ida qQ = vq"t + 7, with o{r<t-1, The eguality G'@Ox(qY) =
.; Gr®0x(;1'tY) and the above ciisc%usaion proves the cl.aim.” .
Now. in order to prove c) write m = gs +‘x", with olr< 8-‘1,. Si.nce 'ox(-Y)
ig invertible on X, b) and projection formula yield T ,
P® L (T %) « 5,0 @7 0 (1) # 1, D@0 (an) = 2 Peo(av).
: The statement of _c‘) follows applying the c.laim to G -.F(r), T = o',i,...,s—{
'-zind taking into account a). | | .

d) Let b‘El’(x,‘é(

28 -

» # k)
5 .
)) ?F(x,o‘(y)) be such that divx(G') = Y. Then for every
) 4
m & Z thers is the exact sequence on X .

e o(a-2) (n)

— > o(a) —>0 ,
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where the first map is multiplication by € .
_ Indeed, the exact sequence o-é———*r,Ox(-Y)———g——-r Ox-————-a' OY-—-——rb tenso-
‘rized by F(m) yields the exact sequence

(m)®0 (-1) = (m—a)————-————? e )—————-—’7‘*~°(m)—-————4‘7‘°- ' Sty

1

o

‘Since"F( n) is invertible on U the map 6/U is 1n3ective, and since 6'(1 )74

for every 1 o 1 sisisinugdh © is injective everywhare.

e

., Now (1) yields the exact sequence of coh@ology (meZZ)
oo [(x, 72y € rx,r™) —-'-————?F(YA,o(m)) —
1l (x, F(m S)) ¥, 5i(x, F(m)),.—-————a— gf(¥,0(n)) ., g
Thus for every @ € Z the map ’\,Vm is suraectlve. Thus from c) and ihduc-
tion on m it follows that hat (X,F( )) o for svery mEZ Thus f.or e;."ery m '

one gets the exact sequence

m-8 R € Sarts '
R 13 Jas)y & ey rr0@)—>o -
Set S = @D r(X,F(m)) -ﬁr(U,L m). mhen S is a graded k-algebra, 6€ S,
m=0 7 m=0
and (2) yields the isomorphism of graded k-algebras . ~ , s
., *5% . _ _
s/6S € EBOF(Y,o(m)) % k[T ,...,Tn_J (polynomial ring in n varisbles).
= ’ 7

B 8 : . Z
Set S' = S( ),_ where S; = Sat for every tEZ. Then 6‘€S'1.and

8
S’/S’S' Lo k[T,"ooc,Tn.J( ). ey 7
R : ; ; iy L
Choose t € Si such that t modé S = T, and set: 2o Tm Tt eeet i & For < A
‘ i > i 14,...,1 1 n
= 8 -whre'....i = 8 and i 7 0. The 6’ ' 3
ess 5y e i+ +1 ! > T . n. '14’.““’111 satisfy the
weli known Veronese equgtiona '
(3) S - 6, - € o 6 = 0 4

i Saneortns imanadin opreeer®,  Tyreeesty
where i .+ jm.- _ém +f 4@ ni,...;rx'.
Furthermore the images of {641_4 . L,n_} in s /6 S' generate the graded
k—-&igebra s'/6's', and sj.mce 6esy , it follows that 6 and {6: :Ln%

rsonerate S' as s graded k-algebra.

e s




In perticular, S' = _@f(x,ox(m‘[)) is generated by its part of degree one,
’ - M=o ' : , : :
Since Y is ample on X, OX(Y) results then very ample, Thus the canonical mép
f)oi,:x ———~——>—P(T-(X,OX(Y))) (such that ?’;(0(4)) Q’Ox(‘!) ) is a closed immersion,
“I2.-in (2) we take m = 8 we get dimr(X,OX(Y)) a.dimr(x,'ox) + dinT{Y,0(s)) = N+4,
ny8-4 N ,
= % : d tricted ¢ is precisely the Ve-
where N , ( n—-4) Thus SQ{(X)CP, an ?OY restric T prec y
ronese embeddiﬁg v . In particular, Y is the intersection of X with the hjper-
; N-1 n
pla.ne P . It remalnes to be proved thet Cf (X) is isomorphic to the cone xs.
Set S" = k[T,‘,...,’I‘ ]( ), grade the polynomial k-algebra S"[’I‘] 80 that
if a€ S" is an arbitrery homogeneous element then deg(aT ) u_deg(a) +m, and
defins the homomorphlsm of graded ;c-algebras ’\/f‘xS"f’I‘]-———-—r 8" “by ’}V(T) =
and “{f('l‘ ...T ) =6 "3 where i ?/o and i +...«n~:l.-n = 5, The equations

11’...’11’1 ‘ 1 ;
(3) ensure us that this definition is correct, Since s'i ' and 6 ge-
1,-..,
nerate S' as a k-algebra, N/ is surjective, Also, the dimension of S"[T] and S*
are the same (namely n+4) and these gra.ded algebras are integral domains, There-
fore-’\'!/ is an iaom'orphism, which proves thgt 'iOY(X) = X: A Qs E. D,

Exactly in the same way one can prove the following theoremn,

' : it s t . :
Theorem 2. Assume that Y = P XP  (with a2, t>2 Em==st=-4) i3 an ample

divisor on the normal projective variety X. Then if the norﬁal gheaf N is

9

isomorphic to 0(a,b) (necessarily a>o and b>o0), X is isomorphic to the cone

(S 2, and t/-_z;))

8, e s 8 Lt 5
Ka’; (from example 2 above). In particular, P X P @'Enof; be coni:aired in a
? :

smnoovh proj'ectivs variety ag an ample diwvisor,
Remark, The assumption about the normality of X in theorem 1 or theorem 2
cannot be dropped, Indeed, consider the Veronese embedding VZ;PQC-———-—a' P5 and
—te 2 | ‘
take the gensric projection Y' of v2(P ) into P4, i.e. the Veronese surface in
4 - ; 9 e 2 "
'P’. Then Y' is isomorphic to P°, Y' is an ample Cartier divisor on the cone

C(Y')CP5 over Y', but since Y' is the projection of vé(Pz) into-P4, the ver-



L

tex of C(Y') is not & normal point. Thus c(Y') cannot be isomorphic to any xz 5

2 5 n-=41' . y . ]
Corollary 1, 1) Assume that Y = P is an effective Cartier divisor on

the normal complete variety X such that HY 0(s) with s>o, &nd assume.no-
, =

reover. that either n> 4, or else n = 3 and cher(k) = o. Then there is & bira—~A'

“tional morphism-fzx-4~——e»12 guch that £ is an isomorphism in a neighbourhood .

n—i)

®

©of Y and £(Y) = va(P

) is a effective Cartier

' s_ %
1i) Assume that Y = P X P (s34, t > loieedt=sy

divisor on the normal complete variety X such that KY'X = 0(a,b) with a>o ard
9

8,%

b> 0. Then there js a birational morphism f:X-—;—u;arxa & guch that £ is an
> i '

g S 8
jscmorphism in a neighbourhoed of ¥ and £(Y) = ia b(P ><Pt).

9

Proof. let us proée for example i). By [8] chaptgr'xzx, theoren 4.2 thefe
: is a birational morphism f:X——>X' such that f is &n isomorpﬁism in a neigh-
bourhood of Y ard Y' = £(Y) is an emple Cartier divisor on X'. Since X is nor- -
‘mal, ve may assume fhat X' is also normal, Thon by theorem 1 X' ¥ x: such that

P

Y' corresponds to vs(P Q.E.D.

COrolléry 2., -Aasume that Y is as in corollaryll i) or ii), and let Yc_—yxi‘

(L =4,2) two closed . immersions such that,xﬁ_and Xz are smooth varieties of °

ijgs ample, Then there is & birational

dimension equal to dim(Y) +4 and X =N
” q Y,"b{ Y)XL

‘map u:X, —eief—rxa.which is an isomorphism on an open ‘eighbourhood of ¥ in X

and induces identity on Y. ko

§2. A generalization of a result of Somme se

Firét we need the following extension to arbitrary characteristic of a
result of Kobayashi-Ochiai (see ﬁJ}). For the intersection theory of line

bundles needed in this gection we send to BQL

A ST Y

SR R A

IS

e i

e AR TS
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Theorem 3. (Kobayashi-Ochiai) Let V be a complete Cohen-Macaulay algebraic

: scheme’of‘gpro dimension t>0 over k and L an ample invértiblg_0v~module such.

that (L't)v ={ and 'dimr(V,L);>t+K. Then dim[(V,L) = t+4 and the canonical’

Bap Y&,v ,_;.__———srP(r(V,L))fZ PF is-a birepgular isomorphism,
Proof, First we prove that'vvis integral. Let V ,...,V "be the irreducible
22280 _ 1 n :

components of ¥ naturally regarded as closed subschemes of V (see [10], page

298). Then by loc, cit. proposition 5 and corollary 1 one ‘has

.t 0t ) ) ot 3 "
s XX L h 4 L = L@ .“
Wy ¢ (dy : 20980 Yy Oy
: : it .
Since every Vi has dimension t and Li is ample on Vi’ (L; )v'>'o for

: i
Thus if V were reducible the zbove equality would imply. - °

every i = 4ye00,y0
s > 2, & contradiction.

(1),

Thus V is irreducible, By loc. cit, proposition 5 and corollarj 2 (page'
298) one haz

'.t .t>
(L"), = length(o_ ,)- (M "),
v V,§ Y
. ; ' red . . :
where M = LQS’Ov and € is the generic point of V. Thus length(0_ ) =1, i.e.
- red ’ ) V9§
Y is generically reduced. Now since vV is Cghen—ﬂacaulay and generically reduced,

'[{]; chap, VII, proposition 2.2 showa thet V is réduced evbrywhere; Thus V.is

integral,.
1st now Bis’;"at+i-be t+4 lYinearly independent scctibns(over k) from

[(V,L) and D_ = diyv(ai), Define the sequence of closed subsets of V

i
V = v E v oo e
by V, . = DyN...ND for LR P V, , can be neturally endowed with a

structure of closed subschemé of V, i = 4,..09%+41 . Then one can easily prove

as before that each vt—i is an integral Cohen-Hacaulay scheme of dimensioh t-1i

and that there is a natural exact sequence

' 04(81"”'éi).'-—'.“?r(v’l’)'—‘__-_—_*r(;’t-i’L@-OV{_e‘)’



vhere (8‘1"“’8 ) is the subspace of I'(V,L) gererated by 8,5...98, (ses E]ﬂfor
detaiis).«f‘rom this point one gets the conc‘lusion exactly as in ["H] Q. Ee D

: n+d ; '
Theorem 4. lLet Y = H(d) be a hypersurface of P & (i.e. a complete inter-

a4 . g
Bection of codimension one in P , not necessarily amooth) of degree d with d

prime, Assume that one of the following conditions holds: . : B S b e

2) n} or

b) cha:f(k) = o and Y is a geperic surface in p3 with d325.

Assume further that Y is embedded as an ample d1v1sor in the vrojective

smooth variety X. Then one has one of the following posslblllties:

i) X is igcmorphic to Pn+ and the 1nc1usion YCX is just H(Ld)CPnyi.

'411): X 48 jsomorphic to a smooth hypersurface of degree d in p" hag and Y.is

the intersection of X with a hyperylane.

Proof. In case &) by Lefschetz's theorem we have Pic(Y) =Z_[0 (4)] Also,

@ince Y = H(d) and dim(Y) = 0223, H (OY(S)) = o for 1 = 4,2 and for_ every 8€Z ;
in particular, Hi(ox(—mY)/OX(—(mﬂ)Y)) =0 for i=4,2 and fér every m 21, Thus

ve may apply Lefschetz's theorem to (X,Y) and get that the map ol:Pic(X)—>Pic(¥)

is an isomorphism.

In case b) we may apply Noether's theorem (see f8], page 182) and also de—

~duce that pic(Y) Z[O (1 )] By [2] * is injectiyve and Coker(c) is torsionafree.

Hence o turns out to be also an 1somorphism. e

Therefore in both cases there is an invertible Ox.—module L such that L&®O

®
= 0 ('1) Further there is an integer r> o such that o, (Y) = LT, Let

6' € r(X,Ox(Y)) £ r(X,L ) be a section suchthat _d.i\'rx(G') = Y, We have

(4) (-x:(“*‘)')' R L MR N Lt N LN g8

1/1'. (0 (4)-“ = d/r , where ‘LY - L®0Y




- JUOU =

In particular i: diyides d., and since 4 is prime one has fwo poésibilities.

159w d, died 0,(Y) = o,

Then (4) gives (L‘(n+‘))x = 4. On the other hand, exactly as in the proof
of theorem 1 one. shows that the sequence

o e PPy sl iR A e
éLa exact, Since d>4 and L is ample r(L®(4—d)) = o, _Thus'dimr(Lj = n+2, 'Now_
theorem 3 applied to VaX lead; t; cagse 1i).

é), T af , j.e, L& ox(y)..

Again one deduces the exact gsequence (for every m € Z )

() o —r () 1™ M0, @) —— o .
Denoting by S the graded k'—algebra-géor(x,ljem), 6€8, and by (5) s/68%
O . » ] fx+4 ' :
G;jéif(Y,oY(m)). Recalling that Y is a hypersurface in P ., this last algebra
is generated by its homogensous part of degree ona. Hence S itself is gonerated
by S, = [{L), and in particular L is very ample on X,

;f in (5) we take = =4 we get QimT(L) = dimf(ox) + dimf(oy(a)) = 0+l
Therefors the canonical mg.;') P= fL:X—-——-—-——>-P(r(L)) -.Pnfz- ié a closed immer—
sion. Since ?;(0(4))‘3 4 (taking igto account that r = 4 and (4))

R RO I Gt SEE
. The fact that T%Y) is th? intersection of f(x) vit? a hyperplane of Pﬁ+2

i now clear, Thus case 2) leads to case ii). QeBeDe . .o s ne

: . n
Corollary, Let Y be a hyperquadric in P f‘ with n23, Then Y can be an

smple divisor on the smooth projective variety X_if and only if either X is

4, or to a smooth hyperquadric in Pn+2.

o ns
isomorphic to P

Remark. If k =( the abowve corollary has been previously obtained by

Sommese in [13]. ' -
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§3. Lifting to characteristic zero

Let k be an algebraically closed field of charscteristic p>o and A = W(k)

- ¢he ring of Witt vectors on k, which is a complete discrete valuation ringof " -

characteristic zero, with residue field k and such that p generates its maximal

ideal. let X-be & projective smooth variety over k., One says that X has a lif-

e

-ting to characteristic zero if there is a projective smooth morphism °

£f: X —— > Spec(A) whose closed fibre is isomorphic to X. Then the generic -

- fibre X' of f is a projéctive amooth variety over the quotient field k' of A/

Grothandieck proved in (6], expose TLL, theoreme 7.3 that a sufficient con- :

dition for the existenca of a 1lifting %o characterlstic zero of X is- the follo-
: 2 2 ' R
w;ng " H (T ) sl (0 ) = o %, where TX = (’Qx/k) is the ta.ngent sheaf of X.
Let now k be a field (not necassarlly algebralcally closed) and X a smooth '
projective variety of dimension 3 over k, Let L be an ample invertible Ox-modu]e
and GET(X L) a section such that Y = div (6) is smooth over k, Then we have the

following result which follows from [2].

proposition 1. Assume char(k) = o. Then the natural map Pic(X)———> Pic(Y)

i8 injective and its cokernel is torsion-free,

lemma 1, Let k be an algebraically closed field of -characteristic p:>o‘aﬁd'

X, L ,6, and Y as abovs, Assume moreovers:

i) X has a 1lifting to characteristic zero.

ii) Hi(o ) =0 for i=41,2.

34) - E (o ) = 0 for i = 4 2,

iv) S ) =

Then the map of restriction Pic(X)j————é-Pic(Y) is injoctive with cokernel

a torsion-free group, I .




B

i ki

EER AR

Ceoofigei o = it

Proof. Let f: X —> spec(A) be a 1lifting to chaxjactéristic zero of X.

First we prove that the natural map ;>f restriction Pic(X) —— Plc(X) is an
isomorphism., Indeed, let 9{, be the formal completion'of & along X. Then by
Crothendieck's existence theorem (see [3], chap. III 5.4.1) the natural map
Pic(f}:)-——-——-z— Pic(i) is an isomr,opﬁiam. It will be therefore -sufficient to
show .that ‘t'he map ofAre_str'ic.:tion Pic.(i),—————?Pic'(X) is also an isomorphism,

Let xn be the closed subscheme of ZE defined by the sheaf of ideals p"ox. In

particular 3{' X. An 1nvert1ble 0. -mcdule is nothing but .a sequence (L ) 4
‘ X

where Ln in an invertibl_e Oxn-module, plus isocmorphisms Ln+4® Oxn’x}’ Ln' Then -

: » ‘ A

the map Pic{XE)———> Pic(X) is precisely (Ln)nﬂ'w——rLi' In order to see
i / = B

that this map is an isomorphism it will be sufficient to show that for each

ny 4 the map of restriction Pic(%nw)—-———-———? Pic(%n) is an isomorphisnm,

Bui .thia followsnfrom the standard exact sequence

o._-——>;p0 /pn” 0,.% ox—_————,——v—o* ——-———"rox — 3

- M+ n

-which together with hypothesis ii). Jlelds the assertion,

In particular}there exists an invertible. Ox-—module 58 auch that &36901 L,
and by [3], chap. III 4.7.1 £ is eample., Moreover, from the'exact sequence
F(xfﬁ)————a-f(xx,)—-———ya(aiéﬁ) H(SCSC)————rH(XL)so
a.nd hakayeuna'a lemma we deduce that the flrst map is suraective. In particular,
6 1lifts to a section TelieE, I)‘ Set o = d1v (?;) and g = f/y : Y —> Spec(4).
'l‘hen the closed fibr_e of g is Y, and hence g is a smooth morphism. It Y' is the
generlc flbre of g, then Y' = d1v (Z/X') is a smooth surface in X', By propo-

sition 1 the map Pic.(X')———————>Pic(Y') is injective with cokernel a torsion--—

free group. In order to complete the proof of lemma 1 it will be therefore suf-

. ficient to show that there are isomorphisms Pic{X') —==.Pic(X) and
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Pic(Y') —22—> Pic(Y) making commutative the following diagram

Pic(X') — > pic(Y')
3 5
pic(X) > Pio(Y) gugos et
This fact ijs well known, For example we have firstly the isomorphism g

Pic(Y’)——“~—f> Pic(Z/) defined by [M]AAA——-»-Lm:} , Wwhere M' is an invertible

G,

o}

lar scheme and Y' is an open subset in 2/ This definition is correct since

-module such that M' /Y' M. Such a K' always exists because Y is a regu-

the complement of Y' is ¥ and Y is deflned as a closed subscheme of 2/ by the

jdeal po,, , which is isomorphic as an O, , -module to 02/; Secondly, by the first.

G o, | Y

part of the proof the natural map Pic(ﬁ/)——é—erPic(Y) is an isomorphism. Q.E.D.

Lemma 2., Assume that Y = P2 (resp, Y = P£)<Pi) is contained in the smooth

-projecti#e veriety X as an ample divisor, where ¥ is an algebraically clecsed

field of arbitrary cherscteristic. Then the map of restriction Pic(X)——>Pic(Y) -

~is an isomorphisa (resp. is injective and its cokernel is a torsion-free grouv),

Proof, If char(k) = o0 this follows direcily from proposition 1l taking into
, 2. AP -

scoount (if Y = P°) that Pic(P ) < 7/ Assume therefore char(k)>o. Then the

conclusion will follow from lemma 1 if we show that conditions i)—lv) are sa- =

tisfied by (X, L = O (x),9, div (6) = Y). The verlficat1on of conditions 1ii),

1ii) and iv) are not difficult (using the explicit computation of the cohomolo-'

4

> _
gy of P and P X Pi and the cohomological characterization of ampleness) and

are left to the reader,

In order to verify condition i) it will be sufficient (using [6], expose,
2 5
III, théordme 7.3) to show that H (Tx) = o (the condition H_(Ox) = o being

contained in ii) ). Consider the exact sequence (ne?)




!
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n'i(Tx@ox(mY)@oY) i n""(rp ®o, (‘(m- 1)!))'———~—>32(T 0, (a1))-

Since Y is ample on X, E (T @0 (mY)) = 0 for n>> o, Therefore in order to

prove that H (T ) = o it will be sufficiont (via deﬂcending jnduction on m) to

see that |
(6) Hi(TXQQOX(m.Y)@OY) = o for every mnyd,
COnsikdef the exact séquenée | |

: (1) Hi(TY®0x(va)) _— Hi(TXCX) Oi.(mY)CZ’OY)———f—-? ni(oi( (m+1)i)®o;f)
(induced by o——-——’;mY»————-v 7 @o —>0 (Y)®O —>0),

If Y= p2 then 0 (Y)@O = 0(s) with s>o (since Y is ample on X). Then

B (0 ((m+'1)Y)®O ) = H (P ,0({m+4)s)) = o for every mEZ ' On the other hand

the standard exact sequence on Y = P

9 3
0——"‘"‘701—-——‘—"70(1) 3 =T > 0
yields the exact sequence of cohorology
@ ' : 2 :
e m— 1T e L
1, : :
- Therefore Ei(TY®Oi(mY)) = H (TY®O(mB)) = 0, Now the exact sequence (7)
proves (6) if Y = P2.
: . ;
i ¥ = P x P! then 0, (1)®0, = 0(a,b) with &7 o and B> o. Then
1, : o . | i
5 (0, ((ned)1)B0,) = B (P7xP7,0((mrt)a, (m+1)b)) = o for every m>o.
Cn the. other hand, 'T'Y ¥ 0(2 o)GBO(o,2 , and therefore 'H4(T @o (nY)) =
= H (O(m‘w2 mb))@H (0(ma,mb+2)) = o, Again the exact sequence (’{) proves (6)
iy« Bl uE,
; 2 ¥
Proposition 2, Assume that Y = P° is embedded as an ample divisor in the

3

smooth projective variety X, Then X is isomorphic to P~ and Y is contained in

X as a hyperplanse,

Proof, If char(k) = o this result is contained in theoren 1, Thus we may
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essume char(k)> o. Since Pic(P") = Z we may apply lemma 2 and deduce that
the map Pic(X)—~ pic(Y) is an ‘ysomorphism. Now the 'a.rgumént ijs contained

in the proof of theorem 1. Q.E.D.

phoorem 5. Assume thet Y = p' x P is embedded in the: smooth projective. .

- varjety X as an ample divisor., Then W© have one of the following'possibi_lities:m

i) X% P3 ard Y is a quadric in X.

i1) X is jgomorphic to a .hyperquadric in P4 and Y is a h;fperplane'sect"i‘on.' :

111) There are &>0, P> o0, €>0 and 576 positive integers such that

&+b+c = 28 and the exax:t gsequence of OP‘-—modules

o—-—-—-’rOP —_— o(a)®o(b)®o(o) = B ._—cf———r 0(3)@0(8) = F-————> )

guch that X is i‘somorphic to P(E) and Y = p(®) is em‘dedded_ in X via the surjec-

tion f .

oof. From lemma 2 we deduce thai the map pic(Xx) —=— Pic(Y) ’;’ZXZ a8

P

injective and its cokernel is torsion-free;, Thus we have two possi’bilities:

&) Pic(X) = . Let L be an invertible Ox-—module which is smple and ge-

" pierates Pic(X). Then L®O = 0(s,t) with s o and t7y o, Since Coker (o) is tor-
sion-free 8 and 1 _are relatively prime integer.s. Writlng O () = L and

e o P
(JJ’x > L , we get easily from the adjunction formula that s(d+r) = t(d+r) = -2,

and thuss-tn'i.

et 6 €T (X, 0 (T)) = B, L ) be such that d.iv (6) = Y. The sxact sequence

@(u-T) AOm

o—> L B S _.—-—/-? o(m,m) —> ©

yields the exact sequence (m E—Z.)

m'"‘>) s TIE™) iy [ (olagmn)) =l (LQm )) = O,

(8) o—> [(L

Put S = @f(L ); then S/6 8= @ M(o(m,m)) is a g'raded k—algebra genera—-

ted by its part of degree one, On the other hand

o e

AT Y A
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(L‘3)x . 4/r_.(L°2.Y)X = 4/:.(6@,1).0(1,1))Y-= 2/r.
The;-efore 5% 2 of 2=, | . ‘
a.l) Crg8e T = 2.‘ It in(8) we toke m =4 we get dimf(L) = '4.. Siﬁce
(L'B)x -.ﬁ theorem 3 impiies X = P.3- and we get case’ i).
az) Case r =4. Then deg;(S)/;J and since S/6 S is gener‘ated by its

homoge neous ba.rt of_dégree' one, the seme is true for S, In particular L is.

{rery ample. Again take m =4 in (8) end get dim[(L) = 5. Thus sﬂL:X——-—? p(r(L)) =

2 p* and since deg?ﬂL(X) = 2 we get case ii).

b) Pic(X) Z%¥Z. Then the map Pic(X)—= 5 Pic(Y) is an isomorphism., The—

refore there are two invertible Ox-modules Li and L2-suci'1 that L1®0VY 0(4_ o)

and L @0 = 0(o, i) If 0 (Y)@O 1 O(si,s ) with 8, > o and s 2O (Y is ample

1

on I), then since the map oL is injective .0 (Y) x I;es‘®L L et o F(O (v)) =

©a,
= r(L '®1L s’Z’) te a section such that div (6) = Y, Then the exact sequence

9 “—'—"‘?’ox( (m-1)Y) _____§___> Ox(mlf) SR Q(m31 ’382)-——-—'>- o

yields the exact sequence (exactly as in the proof of theorea 1)

(9) 0> (0, ((a-1)1)) LS ey (mY))"-———rr(O(nsi,ms e

Put S = @F(O (mY)); then §€ 8, and s/68 = @F(Y O(ms1,ms )) is genera-
ted b, its homogeneous part of degree one, Therefore S.itself is generated by
S'l and hence Y is very aﬁnplewon D €4 If in (9) we take m =4 we get

(10) dim ]I] = (s1+4)(52+4).

If By = 3.2 =4 then [Y] ] P4 and X would be a smooth hypersurface in P4.

But then Lefschetz's theorem yields Pic(X) §Z, a contradiction, Thus at least

one 8

y o 8y is >4,
Suppose 8 >i. Then the exact sequence i

®(4 =84 )®L (“'82,) &

o ....._-—_—>-L L

1' >O(’1,o)——-—%—-—>~9

Y
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yields the exact sequence

) o—»fm Bt -, )®L2(~32’))——->F(L y—>(0(4, S it b, (4 -81)g ("52)).

®( -84 )® ®( 3:,))

Since 4-s, <o and -s <o we have H (L o for i1, Indoed,

Hi(F®OK(mY)) e o for i<{ and m <<o (with F = L,f),,a'nd from the exact sequence

> o.__.~.>F®oX((m-4)Y)———-»F®ox(n‘r)—{f—» 0(ms1+4,m82) >0

ve deduce for every m<o and i1

A i 1 ' i, :

H (F@O ((m-—4)‘[))»—-————‘7}1 (F@O (nY))——>=H (0(ms +1,ms )).

By Klunneth's formu.lae we get H (O(ms +1,ms )) = o for i< 4. and n<o, and
the affirmation results by induction on m.

Now recalling (11) we get that the map of restriction My, )-———-9)'_(0(1 o))
js an isomorphism if s1>(. In particuler, for every A Aé[L (A ,éA’) Wwe
. have AﬂAnY ¢ Slnce Y is azple on X, AﬂA’ .18 at most a finite set of clo-
~ sed points. Since X is emooth we cannot have ANA'f P bvecause otherwise

Fin codimx(AnA')\( codim (A) + codmx(A') = e iR,

Therefore AnA’ z¢. Thus the linear systenm (L'{] "has no base points and
hence the correSponding map p = ?L .X——-—-——~—>IL12= P (such that p 0 1(*;) = L‘)
is @& morphism. Moreover, for every invertible Ox—module L, (L .L) -

How look a_t the equalities

4= (004,0):0(0p))y = (Byalye) = 8y (L35 1))+ 8, (L L0
4047 2 e e R

One deduces 52(L1.Lé Yomide Ao 8, - q az.xd' (Li.L':) -1 . Set s;= 8 .

AencielL Ibf’ arbitrary. Then (0, (T)" 2h) = »Bz(L.3) . 2s(L'42.L ) + (Lq'.L:?z)p

= (L L ) =4 ., Therefore, denoting by ¥ = 0 (Y)®OA’ we got (M° ) a{, M is

a.mple on A and’ A is e Gohen-Macaulay schemd of pure dimension 2, Moreo;er,

jw)\ \&?@\

i i e



e ik A S A

_18-

for evory i = 0y4y...,8-1 one has the exact sequence (since L;®0, 05.3 )

&(s-i=1) : : @(s -1)

o—'—-yL: ; ol ooy ®L&__--———->M-———~>o

apd. hence
: r(g(g..j_ 4)®L2)—-—-—>r(ﬁ@'ﬂ®x,2)»-———»»-r(Mj.
Claim, Dis [ (M) >3
Indeed, assuning the contrﬁry we get

@(s-t 4)

szimr( ®L)"d r( @Lz) » 1'0"1"00’3f‘1,

and therefore teking the bum:
(12) 28 2 dm{'(o (Y)) - dmr(L Y
But the exact sequence
8(8)
0 —=> ¢ ———f~—?’L2 > 0fo,A)—>0
yields : ) \ ’
s BE-5)
o= [(1y y s (L § e [0y 1))
and thus diaaf(l, a2, Therefore (12) becomes dimr(ox(‘{))é 2(s+1), or else

d;uu }Yb{ 23+1 , whlch contradicts (lo) The claim is proved,

By theoren 3 we deduce then that AF P ard O (1) = I.2r790A . Now Hironska

has shown that in these circumstances p ig the 'projection.of the projective

burndle F(E) associated to a locally free OP4 -module E of rank 3} (see[d] thaoren

A
can take E = p 0 (‘1) Then O

{1.8)). Moreover 0 (Y)@O ¥ L, ®L2®OA= L2® OAn.OA(i),-and—therefore we

(E)(‘i) = OK(Y) and the exact sequence

o)
m-—»rox

> OK(Y) L T
yields

»p,,0(8,1) ¥ o(s)®0(s)—»R*p 0_ = o,

° ————»p 0 01’1 — pXOX(Y) = B

*» X X

1 : ;
where Py :P R P ey P! is the first projection. In other words we get the

- exact sequenco of locally fres ()P,,.modules

OMOP" —— F —> 0(s
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- In particular deg(E) = 2s. By & theorem of Grothendieck (see [4:] for k= C,

but the same result holds in arbitrary characteristic) there,are. three integers

a, by ¢ (uniquely determined up to a pernutation) such that-‘E ¥ o(a)®0o(b)Po(c).

Finally, since OX(Y) is ample on X, E is ample on P", and therefore a7y o,l b>o.

and c}o. In other words we get situation iii). R

Remarks, 1) “Thé case iii) of theorem 5-really occurs, Indeed, we shall 5
construct an exact sequence as in case iii) with ¢ = 8,‘1.6. with a+b = s (a>>o0,
b>o and ¢ o). It will be sufficient to construct a sur jection of the form
?’:0(&)@0(‘0)“—'—? 0(a+b) = 0(s), because one can take ¢ = (lol@ido(é) (and
then taking the degrees one sees that Ker(p) ¥ Opi). Let x and X, homoge ne ous

: ; : + o . - :

coordinates on P~ and define CF (p,q) = x p + X, Q. ¥e claim that ) =

r(?’)‘ﬂo(a))@r(o(b)) — r(0(8~+b)) is surjective, For, if u & r(O(a+b)) =

a—i—b

; : i 'wb - K b

- k[io,xJ , 18 of the form u = 2 L& XX, ! then u=xp+ I1q, vhere.
o i a-i ' atb Li-a e+b-i

P = 8% X, cl(o(a)) and q = 2 8, X o % e[ (0(b)). Now since
(=0 (= s

r(ga) is sur;ective and 0(a+b) is generated by its global sections, C)O is
also surjective (and thus P is surjective).

o
2)- Note that the thsorem asserting that P is the unique smooth projective

variety cbntaining.-E (n 73) as an ample divmor was known for n?4 and char(k

grbitrary, and for n = 3 and char(k) # 3 (see [12-_().
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