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l. INTRODUCTION

It is the burpose of this paper to treat the ﬁroblem of flow—inan
riance of a set with respect to the autonomous second order differen-
tial equation (2.4)(or,to the force field f) and then to give several
applications in Mechanics.From the point of vieﬁ of applications,this
theory is important at least for two reasons, A

The first one consistsin the fact that it unifies many classical
res&lts of Mechanics,Indeed,by flow-invariance method (via Theorem
2¢4) we can Prove e.g.Bonnet's theorem, the equivalence of the firsgt
two laws of Kepler to the law of force varying inversely as the square
of the distance‘conceived by Newton,as well ag:

A mass particle mnoving under a central field of force describes

&n orbit wich lies in a plane,(see Theorem 5,6)

Furtheﬁmore,via this method one can determine all "g=smooth"field
-of force (in the sense of Definition 5.2)-dnder which a given orbit
can be.deSCribed (Theorem 5¢3)eIn this manner the results of Dainelli
are derived (Remark 5.6).Finally,the method allows to get several ge~
ometrical properties of some particular flow-invariant getgs (like-the_
curves whosé.curvature is different from 2ETG), -0 . < T

The second reason is the following:

This theory allows ug to prove thaf Somé mathematical characteri-
zations of the motion in R3 or R? remain valid in any Rp(n>3) and e-
ven more~in any real Hilbert or Banach space X (see e.g.Theorém S5e4,
Remark 5.6 and. Theorem 52 which asserf; th;% the set of all g-smooth
force fieldsunder which Dg can be described isg & convex cone),There~

fore Theorem 5.2 is a generalization of Bonnet's theorem from R to
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the real Banach space X.The paper is based on a result (Theorem 2,1)
on flow-~invariance of a set with respect to the first order differen-—

tial equation (2.1).In a slightly different form (see Remark 2el )

Pheorem 2.1 has been proved by Nagumo [14] and independently by

Brezis [4] .

A significant generalization of Theorem 2,1 is given by Martin
[12].This result of Martin is extended to the time-dependent closed
subsefs,in [24] .Oﬁ thiswsubject the bibliography indicates referen-
ces to which the interested reader may turne |

This bibliography (ee.ge [11 » [3] » [61 , [ 7] » [201 , [22] ,[16~
25] )vshows that actually,the problem of flow-invariaﬁce of a set
came to the atention of the people interested in it,after Brezis'pa-
perxr [4] .The first major application of flow-invariance theory ié
that given by Bourgouignon and Brezis [3] to the study of Euler's e~
quation (which descrlbes the motion of an incompressible perfect f1u~-
ide).Such a theory has been ‘applied also by Abraham and Marsdenl,l]
to Hamiltonlan systems as well as in LZO] s t0 get necessary and suf-
.ficient conditions for the existence of positive solutions.The proof
of oui-results is besed on the theory of “"tangent sets".This effi-
cient technique has also been used in optimization and control the-
ory.For example,using such a technique,Clarke [6] and Ursescu [27)
have obtained significant. extentions of the Pontryggin maximum princiy
le, The idea of the second section goes back to [16] and [21] .The
core of the section is the introduction of the subset My (by (205)).
It is shown that for the existence of a D~valﬁed solution u of (2.4)
corres‘ponding'to the initial dates u{o) = x€D and u'(o) = yeX,it is
necessary that (x,y)e-MD (but this is not shfficiént).Then the follo-
wing question aiises:

What is the best condition we must add to the hypothesis (x,y) -
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_€ Mb »in order that the corresponding solution u be D-valued (i.e.
-u(t) €D as long asg it exists)? ‘ | '
Such a condition is (2.6)(call it "the invariance condition of D
under £") eIt consists in the requirement that for each (x,y)eem- .

(y,£(x)) be "tangent® to My at (x,y).In the case of D =D given by

(2.7),the "invariance conditidn of Dg under fv becomes.(2%13);This

- equation (2.13),in important particular cases (Remark 202, Remark 5.8)
is a partial differential equation in f,whichv51lows the determiﬁatio
of all g~smqqth force field fyunder which Dg can be described (see
(5¢28),4(5082)) eTherefore the main results of this section are:ihe

way in which the notion of flow-invariance of D is defined ((2+5) and
Definition 2.3),Theorem 2.4 as well ags its consequencess.

In a slightly different Torm,M, and Thecfem 2.4 has been presen-
ted i [210 jbut not too efficiently.For applications,the consequen-—
ces of Théorem 2¢4 are useful (as it is shown in §5).

In the third section,several preliminaries on tangent sets are .
discussed.Such results are used in the proof of those of second sec~
tioneSome of them seem to be new (eegeTheorem 3,2,Corollary 3,2,Lem=
ma 3.5,5¢e also Remark 3.2),

In § 4,the results of second section are proved,

Applications of the results of second sections are given'in S 5%
Some of these applications has already been discussed at the begining.
In addition we want to point out that (in view of Theorems 5.5 and
5.6) any conic is a flow-invariant set under the Newtonian field of
forceo.Therefore,via flow~invariance method one obtains a qualitative
explanation (based on the second law of Dynamics) of the motion of
planets as well as of the launching of man-made satellites (ﬁﬂéorém

546,Corollary 5.4).Note also that the formula
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(1.1) y2 = - %%E%ﬁ"' (c(x)~ the curvature of Dg at xtSD )

appearing in (2.24),is the square magnitude of the speed y of'projec=
tioh".from x<ng.More precisely,if £ satisfies the invarianée con-
dition (2?25)(or(2.27)) of Dg,then a mass particle projected from any
point xe;Dg in the tangent;direction to Dg at x,with the speed y of
square norm (lol),describes (under the action of the force field f)
‘an orbit which lies in Dg.The formula (l.l) contains in partlcular,
the well-known cosmic speeds (see 5.47) (5651)4(5.63) and”is class;-
cal tooe

The case of theinverse square repulsion (important in phgsics at
the bombardament of atoms by o~ particles) is included in this theo=-
ry,too (see(5.65) and Theorem 5.5).Finally,in the'last section 6,

some opén problems &nd suggestions for further study are given,

2o.STATEMENT OF THE MAIN RESULTS
: S
Let X be a real Banach space of norm (.| «Throught this paper
AcX is a nonempty open subset of X and f: A->X ~'a locally Lipschitz
function (i.e. for each x € A,there is a neighborhood of x,on which f

is- Lipschitz)Let us consicer the first order autonomous differential

equation:
(230 ©uw' @) =2u®) )Rtz 0
Let D be a nonempty subset of A,

The following definition is well-known

Definition 2.1 Tne ses D<A is sald to be a"flow~invariant set"™

for the equation (2.1) if every solution u: [0,T )—~>A-g£ (2.,1) with
u(o) € D,verifies u(t) €D for all te [0,T).

\
: 4
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. In other words,D is said to be a flow-invariant set for (2 1)
if every solution of (2 1) starting from D,remains in D as long as
it exists,

Definition 2,2, The nonempty set D is said to be closed dinc A

D = D/)A where D denotes the closure of D,

Obviously,if DcA and D = D,then D is-closed}in A (the converse:

statement is not true). ; : e

For z€ X ,denote
(2.2)  d[z;D]= inf{ Jz - =il ; xc—D},

It is easyAto check thét _
(2.2)! }d[z;D]- d[W;D]/é}lz -wl , fz,weX

The following theorem is s consequence of a result of Nagumo[l@]
(independently considered by Brezis [4] and generalized by Martin
[12] .see also [24]).

Theorem 2,1 Assume that D is closed in A.Then D is.a flow-inva~

riant set for (2.1) iff ;

. 1 : S \
(23 lim d + h.'f( sDl =0 &Do
) i i [X x);D] ’ 71X

Remark 2,1 (2.3) means that for each xg D f(x) is "tangent" {o.
D at XoTheorem 2,1 holds even f isg defined (and locally Lipschitz )
on D only.In this case Theorem 2.1 is in fact a result of existence
rather than a problem of invariance,If Dc A is closed (in X) and T
is glqbally Lipschitz on D,then "the tangent condition"(2.3),assures
the existence (and uniqueness) of solution u %o (2.1),0n [Q,+a>)(i.e.
u: [0,+m )—>D,ufo) = x ¢D.See Martin [12]); ‘
2 In what{ follows we are concerned with the notion of flow-invari- -

ant set for the autonomous second order differential equation

(204) U."(‘b) = f(u(t)),tZO
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We shall, give necessary and suf101ent conditions in order fer =
the solution %o the Cauchy problem of (2. 4)(determined by the ini-
tial condition u(o) = zsut(o) = y,x€D) to remain in D as long as
it exists.To do that we néed'fhe following set

(2“5) 3%}) ={(x!y)é AxX ; ll'ij,fg ; d[x + hy + '5 f(X);D] . = 0}‘

=

/A necessary condition for the existence of a solution u: [O,T)»D
to the equation (2.4) is that (u(o), u'(o))éEMD.This condition is not
suffleient (as we shall see in Theorem 2.4 or Theorem 5.4)9A first
result in this direction is givem by

Theorem 2,2 Let u:[0,T)>A be a solution of the equation (2.4)
(1) If u(t)e D for all te[o,f),_t_@_(u(t),u'(t))e M, for all te[0,T.

(ii) I£ D is closed in A,then u(t)eD for all te [0,T) iff (u(t),
ut(t))e My for all t€ [0,7). i
The proof of this theorem (as well as of all results of this .
.gection) is given ih section 4.The following definition of a flow=in-
variant set for (2. 4) is now quiet natural.

Definition 2.3 The set D is said to be a flow-invariant set for

(2 2) 1f My is nonempty and if for every solution u.[;O T))A of (2,4)
with(u(O),.u(a))eMD,We have (u(t),u’ (t))éMD for all t& [:O,T)o

The result below justifies,both the introduction of MD and the

Definition 2¢3e

Theorem 2.3 Assume that D is closed in A Then D is a flow-infa~

riant set for (2.4) iff MD is nonempty and every solution u:[:O,T)ﬁm

of (2.4) with (u(o),u'(o)) €My, is D-yalued (i.e.u(t)ED for all t &
[0,1)). - |

A direct consequence of Theorem 2.3 is giVéﬂ by

Corollary 2.1 Let D;yi€ 1 be a family of nonempty (closed in A)

sets with each Diéflow~invariant set for (2.4) where I is a‘nenempty

B e e
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es
set of indeX.Assume in addition that

D=1 D; is nonempty too.Then

i€l
(*) M, = Nu
S n e

i

(2).Moreover,D is flow-invariant set for (2.3) ife Mb is a nonempty

get.
We now state one of the main results of this paper,

Ilieorem 2,4 Assume that My is closed in AXXo.Then D is a flow=.

invariant set for the equation (2.4) iff ED is nonempty and

(2.6)  in £ alan) + n, 26005 = 0, Fixg) cu.
(0] . . :

(iee iff for each (2,y)6?MD,(y,f(x))is "tangent" to My at (x,¥)).

A first simple example of applications of the above result ig

the following

Theorem 2.5, Let S be a elosed linear subspace of X and D=ANS,
%"“""‘ A
(W 1y = enels)) s
- (i1) Assume in addition that £(D)CSuThon . s DB mnd 1 Lo o ilem

invariant set for (2.4)
(As usual,f"i(s) ={zeX;f(z)¢ s} and £(D) = {f(x);xen} )s

Next we are iﬁterested to examine (2,5) ahd‘(2.6) in significant

particular cases,
Let Y be a real normed space (who's norm is denoted by ”.ﬂ +t00),

We shall give some consequences of Theorem 2.4 in the case which .
(8- " = Dg ={x€A,g(x) = o}

where g:A—Y is g function,
For.this burpose we need some elements of Fréchdt differential
calculus.Such elements can be found in Cartan's book ( [5] CheT,35 ).

However,let us recall here some basical aspecfs in Fréchet differen-
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tiability (strictly necessary in what follows)'

The function g:A—>Y is said to be Fréchet differentiable at x4
if there is a linear continuous function (say g(x)) from X into ¥
such that:

(298) :lrilg ﬁ-%-ﬁ}!g(:Xfy)-g(X)-é(X)‘(y)U =0

y#o |
(All over the paper the differentiability of a function is conside-
red in Fréchet sense,only). = ‘

The function g is said to be differentiable on A if it is diffe-
rentiable at every point X € A. ‘

By defihition,&: A—~>L(X,Y)(the space of all linear continuous o-
perators from X into Y,eﬁdowéci with the standard linear normed struc-

ture).Similarly,é is said to be differentiable at x€ A if there is

& linear continuous function (call it g(x)) from.X .into L(X,Y),such =

that

(249) ;irg fﬁa\écx.:-y)«écx)-'é(x)(wv “ 6
7 B
J#o

where lizl] is the noxfm inX(L(X,X)) if z€X (résp.z'e LX) e g 1B
said to be twice differentiable on A if both g and g b A d
tiable at any x € Ao 4
Therefore,g: A—~>L(X,L(X,Y))+Inductively one defines ALK, L(X,
L,(X,Y))) 8y5¢0,We shall use also the following ronsequence of Taylor for-

mula (when g is twice differentigble on X€4),

(2.10) lim Lo Je(rey)-g(x)=5(x) (7)) (¥) (3)] = 0
_ g0 Yl e
y#o g

Finally,by Ck(A,X) we mean (as usual) the set ‘of all k-times diffe-
rentiable functions g:ACX"‘}Y,With g(k)v(‘bhe derivative of k-order)

continuous on Ae.
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In the sequel we shall suppose that ¥ = Rpffhe Buclidign n-space’
end that the function w:A—>R® given by
(2.11) w(x) = £(x)(£(x)),x €A
is differentiable on A For application ig mechanics the following th-
ree results are useful v

% ’ & : ‘
Theorem 2.6 Assume that the function u->g(x)(u) from X into Rngg

surjective (for each xe;Dg) and g is twice differentiable on A.,Then

(2.12) M, ={ (2,7)€ AXxX;8(x) = O.é(X)(y) = O;E(X)(y)(y);ré(X)

(2(x)) = 0 |
(i.e,M given by (2,5) has the form (2.12)).

Agsume in additlonffhat g 1s three times differentiable on A,W(given

by(2611)) is differentiable on A,Mﬁ is nbnemnty and the function

s & g ; ;
u—>(g(x)(u),g(x)(y)(u)) from X into RnX‘Rn is_surjective, for each
(x,y)éEMD oThen Dg is a flow invariant set for (2.4) iff

(24137 g(x)<y)<y)<y>+2g<x>(f<x))<y)+w(x>cy> 0, ¥(z,y) €My »
Furthermore we consider the case n = 1(ieeeY = Rethe real axis)

Theoreme 2.7 (l)Let g:AC X->R bé twice differentiable and w:A->R

tis d ®
(given by (2.11)) satis fving the condition w(x)ﬁo for all xeng Then
(2. 12) holds.

(2) Assume in addition that g is three times differentiable on A,w

15 differentiable on A,and Mb is nonempty.Then Dg is flow—lnvarlant

for(2.4) 1ee (2613) holds,

(3} Moreover,for each x,7€X with the properties:
(2.14)  g(x) = 0,6(x)(F) = 0,&(x)(£(x))&(x) (F) F)< o,
e pair (X,Y)(:M Where

(2.15) \/gg&cgg(xygg Ik =

We now consider the case X = R2,Y = Relet us precise several

notationse.
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X £ (Xh 9%5) :
(2as) = (i)‘R e (f (X:.xz)> (;i) ot 4 vg = ol

. . V2
g’i= si<x) ‘v"‘«'g'jg{i(x)‘:gij: gij ()= T%ij‘X),gijkz

(2,16)

| de - :
% gijk<x)é<axi;xjaxk(x?

&

Wi='wi(x) = {Ei(x) sividale = 142

In this case it is well-known that

& s . se R £ & \
(2"17) g(X) =(gi>(196c8(3) = 83:‘8(1 g(X)),g(X)= (gii gi§> ]
85
g(x)(y) =@(x)s .7) = g4+ gzyz,g(x)(g(“))._ 0, g(x) ,( 1)

For the sake of simplicity,denote

U

&y = ai(x)
(2.18)9 a,= a,(x)

) % g2 (ioesai(X) -ﬂg(x)l —qg(x)n )
B1482" ; 281 281" @ézgi -
81118, 3811281 &2 f3312251 Eo= Bo0081”

fl

83= as‘x)

where'giz'is the square of the number gi(x),i = 4,24

Obviously : : ,é
L e 841 &2 (yi) |
(2919) g(x)(y)fy) = {yisyz) (521 g22> =~ &199 2y 284 ¥4Yp + |
2 * 8072 210 812" 321) -
(29??) g(x)(7) (7)) =£§%:k 5 B13017 3k

eds =
: fip o <
Therefore with y = g(x) ,it follows
& oo ” .L e ‘ _L 260 i J— . % l
(2.21) a,= g(x)(g(x))(g(x)),a3= g(X)(g(X7)(g(X§)(g(X))
Denote by c¢(x) the curvature of Dg at x,It is well-known that

8,(x)
z”“"‘*“yg ’

(2922) ©o(x) =
 (ag(x)
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From Theorem 2,7 we can derive g result with a »unifying'effec'b
in the theory of flight space,namely (with the above notations):

Theorem 2,8 Assume that g.ACR —>R is twice differentiable and

(2, 23) g(x) (£(x))- g(x)(y)(y)<10'
for all (x,y) with with g(x) = 0 and g(x)(y) = O,y;éO.
Then,-MD glven by (2012) has the form

(2.24) MD; ‘{(X'y’f“R 6(x) = 0,471+ g7, = 0,5°= - E{Z GE ll}

H;

and for each xeD there is yeR2 such that (x,y)eM D sASsume in ade

& :
dition that g is three times differentisble on A and W:ACR2—>R (gi~

ven by (2.11)) is differentiable on Ao.Then Dg is flow-invariant for
(2.4) ifz |
' % 33(1) ul
(2.25) =~g(x) (f(x)) g;(gy + 2('811g2" g12g1)f (X) + 2(‘82182"’
= £5081)T° (X)+ Wygy wygy= 0

for all x with g(x) = |

Remark 2,2 . If :f:"ACRZJrR2 is dii‘ferentlable on Aythe invariance
condition (2,13) becomes obviously

(2.26) g(X)(y)(y)(y)+Bg(X)(I(x))(y)+g(X)(f(x)(y))~

since

w(x)(y)~g(X)(f(X))(y)+g(X)(f(x)(y)) .

In this case (2 25) can be rewritten under the form

Wi im (x)
1 5.2 1
Iz Ve, oyt 2 9f
+glg2(3x1 ax 2 82 2%y gl 3%y s

for all x with g(x) =

Indeed,this partial differential equation in’:f:‘i is a direct con-

sequence of (2,25),in which wi(i=1,2) is repldaced by the e.xpressions
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,(2 29) below. :
" Pirst of all,in this case (2.11) is the following function

BN by s ey il
Consequently,
: “o e . 1 2
‘2,29) Wif"wi(,".)z ;—%{: glifi'f' g2if2f" g{ gfc + g2§§ ,:L--j~ Z

3

( o I
;mw)w@xgmkwgpyﬂbzw%qﬁﬁ.g
3,PRELIMINARIES ON TANGENT SETS

For-the proof of the resulis stated in section 2 it is necessary
to present some aspects on tangent sets.We shall use the no%ations
of the previous sectione

Let us consider the conditions:

3l 1i -—d D=0 .
R CMJ

(342) : Jim _, a x+hy+ z Di= 0
. hyo h ? j]

where D is a nonempty subset of the real Banach space X and X,¥,%Z € X,

Using (2.2)'it f0110Ws
hldEk+hy+ z ;D] = dE?+hy ﬁ”é?% izl

Which shows that (3.2) implies (3.1)
The set of all y éatisfying (3.1) is said to be a “"tangent set"to
D at X : |

In some particular cases(ee.gewhen D is a smooth set)the tangent
set is just the tangent space to D at x (in classical sense)On this
subject we refere to Ursescu [27-29] » 4

ILet E be a nonempty subset of real normed space Y,ACX an open
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subset of X and giA->Y a differentiable function at xeA4,

¥e now introduce the condition

‘\;\\QB.B) 11m;1; a[e(x)+ng(x) () ;5] = 0

\\

and if g is Twiee differentiable at xe¢ A,
(3.4) 53 gé a[e(x) (=) (7)+ §<tg'<x><y><y)+é<x><z>);E]= 0

The key of the proof of the resul‘bs from section 2 is. given by

the next two theorems,

Theorem 3,1 If D =g 1(E) and g is differentiable at xe A then

(301) implies (3.3).If in addltlon to the above hypothesis we assumé

that g is contmuous on A,u->g(x)(u) from X into Y is sur;}ective and

Y is finite dimensional,then kFe3) :unplles (3 l)(therefore in this
case(3ol) and(3.3) are equivalent)o
Theorem 3.2 ItD =g (E) and g is twice differentisble at XEA,

then (3,2) implies (3¢4).If in addition,u->g(x)(u) from X into Y is

surjective and Y is finite dimensional,then (3.2) is equivaleht to

(3e4)e

For the proof of these theorems, the following lemmas are useful.

Iemma 3,1, The condition (3e1) is equivalent to each of the sta-

tements (345),(3.6) helow
(3¢5) For every €3> 0,there is d =dJE€) > 0.5 ggwmmﬁmhem 4,
:hb.eze_ex:.m;a u=u(g,h) € X satisfying (ui<e and x+h(y+u) €D
(395) For each h> 0 there is u(h) eX mn_jm u(h)—-ro as hlo angd
x+h(y+u(h))~:— Do

I-emma 302 Mibﬂ_ﬁ.talmn.em_a (3 7) and (3 8) are equivalent
fo (3.2),where :
(3.7) For_every ¢ > 0,there iz J>0 sush that for each h € (0, d’).

.'L& u-u(e,h) € X with the properties

2
(<€ and x+hy+ & (z4+u)e D
= 2




(3.8) For each h> O,there is u(h)€ X such that u(h)->0 &g h ¥ 0 and
: ) AT e ,

X+hy+ % (z+u(h)) €D

I,ﬁ the carfesian product X X X,the last part of Iemma3.l becomes e

=

Lemma 3.3 Let M be & nonempty subset of X*X.For each (7)€ M

end (z,w)€XxX,the following conditions (i) and '(‘ii) are equivalent

e
F [Gea3)+h(agw) ]

"(11) Fox each h>O,%here exist r;(h)€X (3=1,2) with r;(h)=>0 as hi{ 0,

guch that
(x+h(z+rg (h)) 1 J+h(wir,(h))) €M

The proof of these lemmas is elementary and can be found e.gein
[:2];' o580 we omit ite.A second set of results establish _Some consequences
of the relations (2.8) and (2,9).First of all let us consider (2.8).

I1f gs AcX>% 1g differéntiable at xeA then from (2.8)it follows
o f e
(3.9) ifé‘% (g(x+9)-g(x)-né(x) (7)) = 0 ,
uniformly with respect to y from bounded subsets of X,

Replacing (in 3.9)) ¥y by y+u,one obtains

(3.10) gﬁm % (g(x+h(y+u))~g(x)=hg(x)(y)) = O
0 el . |

o :
The lemma below states a reciprocal (in a certain sense) relation .

to (3.10) ,hamelyg

Temma 3.4 Assume that g is continuous on A differentiable Vat-x‘éA,

u--;vg’(:i) (u) from X into Y is surjective and Y is finite dimensional.,

Then for every € >0 there is §>0 such that for each h 6(0,5) and veY

€
with jvll< J»there is ue X with the proprtiess

(3.11) Juf<g,x+h(y+u) € A,g(x+h(y+u)) = g(x)+h(g(x) (y)+v)

In the proof of Lemma 3.4,the following simple result is needed -
Lemna 3,5 Let L: X->Y be a linear surject‘ive operatore If Y is fj.ni\’c/




? dimensional,then there is a linear continuous operator l: ¥->X such

= thap

(3.32)—LlL(y)) = 7,for all ye s

Proof.Let 6’1,...,9 be a basis for Y.Choose xiéx such that L(xi)

= ei,i-i 2,0..,n.If y is arbitrary in Y,there exis’cs a;€R i-1,..,n

i=I

such that ¥y = Z v 848, .oWith 1 Y—}X given by 1(y)- 2_'_ a;x l,the ag=
: i=1
sertion of lemma is proved.

Proof of Lemma 3¢4 Since g(x) is suraectlve by Lemma 3. 5(W1th

L = g(x)) there ;Ls & linear continuous operator J: Y-—>X,such that

(3.13) g(x)(l(w)) = w,for all we Y,
Let 570 érbitrary.lnasmuch as l(o) = 0 and ] is continuous at o,

there is r>0 such that
(3.13) } L(w)[<E,for all w€B(r) ={we Y;,v)}}gr}.
According'to (3¢9),there is JV=¢fkg)>»o,such that
(3414) =x+h(y+l(w))e A . |
(315) %ﬂg(X+h(y+1(W)))~g(X)-hé(X)(y+1(W))H<T5
= ; for all h € (0 8) and w€B(r),

We may assume (without loss of generallty) that 54 5 o

Let us show that this § satisfies the condition required by ourlemma
Take an arbitrary hG(O,S) and v€Y with | vﬁ<<§‘and denote by F:B(r)>Y
the function ' o

(3.,16) F(w) = %[(»g(mh(yﬂ(vv)))+g(X)+hé(X)(y+1(W)))]w
Using the linearity of é(x) and (3.13),(3.16) yields
(3.17) »g(x+h(y+1(W)) g(X)+h(g(x)(y)+v)+h(W~F(W))

In view of (3.15) and of é"< s vl[séL <% We have

IP(w)l< xr,for all W €B(r),ice.F:B(r)->B(r).Since F is continuous on



B(r),by Brower fixed point theorem,there is an elemént weB(r) such
that F(w)= woWith this w and u = 1(w),(3.13)',(3.14) and (3. 17) show’

that the requirements of the lemma are satisfled. :

We now.assume that g is twice differentiable at x € A.Replacing
S (2.10) v by hy(y by,hy + -§ z) and taking into account g(x)é L(X
L(X, Y)) we easily get (3 lB)(resp (3 19)) below,

(3.18) lim ~2 g(X+hy)~g(X)~hg(X)(y)~ 2 (x)(y)(yi]~ 0
~hjo h

uniformly with respect o'y from bounfed subsets of X,
: 2 : £ 2, 5 .
(3.19) iig ig [&(x+hy+ % z)~g(x)~hg(x)(y)- % (g(x) (¥ (¥) +g(X)(z))}=O

u.hif‘ormly with respect to (y,2z) from bounded subsets of XX X,
Finally,if in (3.19)'we replace z by z+u and we have in mind go(x)
€L(X,Y),we obtain -

2 n?; . B2 : .
(3.20) iim ;2[§(X+hy+§ (z+u))-g(x)~hg(x) (y)~- 3 (g(X)(y)(y)+g(x)(Z)§¥0
: o) : ; .

>0 5
| aawwwyw*“[ |
The lemma below establish%’mrtain sense)relation to (3.20)

Lemma 3.5 Assume that g is continuous on A,iwice differentiéble

at x €4, u-)é(x)(u) from X into Y is surjective and Y is finite dimen=

gional.Then for every € 0,there is 4 >0 such that for each hE(O §)

and veY with with )vj<§ ,there is ueX with the properties

2

“uﬂ<g ,x+hy+ (z+u) €4,
(3421)
g(X+hy+ (Z+u)) = g(x)+hg(X)(y)+ (g(x)(y)(y)+g(x)(Z)+v)

Proofelet 1 :Y->X as in the proof of the previous lemma, satisfy-
ing (3413).For an arbitrary £> Oylet r> 0 be such that (3. 13)' holds.
Since A is open and(3.19) holds (wmth z+]_(w) ingtead of z) it :ﬁ‘ollows

~that there is é\ >0 such that

2
(a 22) x+hy+ (z+u)6A




ql?..

and
- (3423) 121 Hg(X+hy+ 5 (z+1(W)))--g(X)-hg(X)(y)- 5 (g(x)(y)(y)+g(X)(z+
+1(w)>>/}<1’
for all h €(0, 5) and w €B(r)(see(3, 13))
Without loss of generality,we may agsume that 55 5 elet us show
that this § is a suitable one.To do that,let h€(0,5) and veY with
: ﬂv[]<&1}efme the function F.B(r) —>Y by :

(3024) F(w) = 2[g<x+hy+ 3 (z+1<w)>)+g(x)+hg<x)<y)+ <g(x)<y)cy>+
: +g(x)(z+1<w))>]+v
The lmearity of g(x) and (3,24) implles %

(3025) glxthy+ 3 (Z+l(W))) g(:c)+hg(X)(y)+ (g(X)(y)(y)+g(x)(z)+

' e S +v+w—I‘(w))

Clearly (3.23) and (3.24) yields ”F(w) <r for all wEB(xr),that is

F: B(xr)->B(r).Since F is continuous on B(r)ythere is w €B(x) such that
F(w) = weWith this w and u = 1(w),(3.13), (3.22) and (3.25) conclude
the proof, |

We now can proceded to the proof of the theorems 3el-and 3.2,

Proof of Theorem 3,1 Let us assume that g is differentiable at

x €A and that (3,1) holds.In order to get (3e43)we shall use Lemma 3.1
By this Lemma, for ‘each h>0,there is u(h)éX such that u(h) >O as h{0
and x+h(y+u(h)) €D = g"i(E).Th:Ls means that

_ g(x+h(y+u(h))) €E, ¥ h>0 and therefore
£ 4 [BG0)+hé(x) (7)3E)<d g (x) +hé(x) (7) ~g (eh(y+ucn)) ) ]
which according to (3,10)) implies (3.3).
Assume now in addition that g is continuous on A,é(x):X¢Y' is sur=

Jective,Y is finite dimensional and that (3 3) holds.Then by the part

(366) of Lemma 3,1,for each h> 0,there is r(h)éY with r(h)—?O as b0,
such that

Areet 46636
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(3 26) g(x)+h(E(x) (y)+r(h))EE

For an arbitrary g:ro let cgvn. 5(&)? O be a number with the proper- -

ty given by Lemma 3.4,
Since r(h)- 0,85 h|,0,there is é\lzcyi(é)é (O,cf)guch +that

(3.27) lzm)<d,4n € (0, y) _
According to Lemma 3.4,for each h with O<h~<ar (&145)1;11@1'@ 1s u=

= u(h)€ X with the propermes'

 (3e28) [ u]l<Ex+h(y+n) € £, a(x+a(y+1) = g(x)+a(E(x) (7)+x(h))

First of all (3.28) shgwé (taking into account (3.26)) that x+h(f+u)

gg"'l(E) = D,consequently,in view of Lemma 3‘;1,(3}1) is proved,

Froof of Theorem 3.2 The proof of this theorem is very similar

to that of theorem 3.l.However,since it is rather technical,we shall
give ite ;

et D = g"i(E),g:A~>¥ twice differentiable at x€ A and assume
that (3.2) holds.
In view of Lemma 3.2,there is u(h)€ X with the property (3.8) which
gives ‘

2
g(x+hy+ § (z+u(h))) €E,

Eor 811 h> 0oy

Therefore |
; a[g(x>+hg<x><y)+ b <g<x><y><y>+g(x)<z)> E]<—§ug<x>+hg<xxy)
+ 3 (g(x)(y)<y)+g(x><z>>-g(x+hy+ o (z+u<h)>ll
which (according to (3.20)) implies (3¢4)e
Assume now in addition that,s(x): XY is surjective,Y is finite di-
mensional and (3.4) holds,

Then by the par’c (3 8) of Lemma 3.2,there is r(h)EY with r(h)-=>0 as
hy 0 and

: pre :
(3.29) g(x)+hg(x)(y)+ %'(g(X)(y)(yHg(x)(Z)+r(h))éE

///’

i

5~

o ———
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for all h> 0, _ _

For gzro;let53>0.be & number with the property given by Lemma 3-5 and
816 (0, J) satisfying (3.27).Since O<(r< é\ saccording to Lemma 3.5,for
each h€ (O 51) there is u€X with the properties '

[ ujj<g ,X+hy+ 3 (Z+u)EA
(3¢30)

s 2 = E
g(X+hy+ (Z+u)) (:r)-elclé(x)(y)ﬂfz1~ (g(x) (¥) (7)+g(x) (z)+x(h))
which implies (using(3‘.29)),

e
(3e31) =x+hy+ %(z+u)eg"1(E) =D
In view of Lemma 3.2 (with 5\1 instead of J‘),(3,31) and the firs
part of (3.30),prove (302).

From theorems 2.1 and 3.2 we get easily the results below
Corollary 3.1 Assume that giAc X->Y is differentiable at x€A

continuous on A_,é(x): X->Y is surjective and Y is finite dimensional.

Then the following conditions are equivalent g Ay

o :
3632) lim ¢ dlx+hy;D = 0 X
( ) s g d[= .h~Y g] sy JE

Gt b =0, B

"Here Dg is given by (2.7).
Corollagx 3e¢2 In addltion to the hypotheses of Corollary 3.l we

assume that g is twice differentiable at x € A.Then the follovnng CONe

ditions are equ:.valent

2
(3.34) lim - d x+hy+ z;D |=0, y,zéX
hvo h° L gl= 0 ¥

(3s35) -glx) = O.g(:c)(y) = O,g(X)(y)(yHg(X)(Z)

Proof of Corollary 3,1
e : |
Set E _-(o}. Then D, = g™ (E),
In view of Theorem 3.1,(3.32) is equivalent to




w20 =

- i .
36) -1 afe(x)+ha(x) (y); fo}]= 0
6% pia b efumitarns {o)- o

Obviously (3.36) holds iff (3.33) holds,
Proof Of Corollary 3.2 In view of Theorem 3e2,(3.32) is equi-

valent to

(3637) iim d[g<x>+hg<x><y>+ 5 (g(x)(y)(y)+g(x><z>) {o}] 0
O

and the results. followse.

Remark 3.1 In the cage in which Y is a general Banach space and
g is if class C Ch; Y))the equivalence of (3 32) and (3 33) is proved -
in [11] pe483. '

Denote by <3’Z>4 s the usual one~sided directional derivative of

the norm el of X at x,i.e,

{3.28) <x,y>+ = ;_li_’m llx+hyg—ilxﬂ T, EX
. O

We shall éive a characterization of (3.32) in terms of (338),
when ”

(3.39)  8(x) = UxlP-x"),Dy = 5(x) =fx ex,xl= ], ¥>0

Propogition 3.1 The following conditions are equivalent

: ; 1
4 liminf = d 39 =0
B = T

€ii) <X1y>+= 05 ]]X” = X
(111)  Lin ¢ afx+hy;S(x)]= 0
Proof Let us assume that (i) holds.Then there exists two sequen=-

ces h | O and r € X with r >0 as n>0o ,such_thaj
le+hn(yfrn)1! Sl
This implies | x| = r and

|l =+b 3l Jxf] ={phy 3] ||z, (7)) ERWEN
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which yields (ii).
We now prove that (il) implies (iil)oFor each h> O,choose r(h)eLX,

such that
T
7/(3.40) x+hy+hr(h) ﬁé§§§%l
Clearly
(3041) | xey (il = 2, fz(0)] = ety -]

Since {x,y>, = 0,(3041) shows that r(h)f>0.as_h¢o.ln view of Lemma 3.1
| Zey4(dii1l) follows from (3.41). ‘ : .

Remark 3,2 (1)When the norm of X is not dlfferentlable,prop031-
tion 3,1 cannot. be obtained from Corollary 3.l.
(2) In the case of GAteaux differentiability of the norm of X,with a
broof very similar to that of Proposition 3.1 ,one can prove the equi-

valence of the condition below

C3d2) “Yim % dEg+ty;S(ri]= O,

ts0

tto

g NX+tyll=ixIl -
(3643) %m ——%—— =0, Izl =

-0

t£0

(3) The condltion (ii) of Proposition 3 1l is related to Example 4,1
from [o]. ]

In the case of a real Hilbert space H of inner product ¢, >
and norm | oIl , the condition (ii) of Proposition 3.1 means <?,y>~ G2
Moreover, we have ‘

- Corollarye.3.3 Let =x,¥,2 CH.
Then
1 e
(3444)  Yim =5 d x+hy+ z;S(ri)z 0 :
-~ hyo h ‘ : & e
iff ‘ |

(3445) | x = r, {x,5> = 0, ”y”2 +{xy2> = 0

ool e



< oo

»Proofo One applies Corollary 3.2 with g given by (3,39),obser-
ving that . ; ‘
(3.46) &(x)(¥) =<x3> » 8X)F)(V) =<F,v>, ¥veHe

4+ PROOF OF THE MAIN RESULTS

Proof of the Theorem 202 Assume that. us [O,T)—?A is a solution of =

- (244).I% is known that (see e.g.[5],CheI) if u"(t) exists then
: : 5 ;o - -
(4.1) Llim lu(t+h)=-u(t)=hut(t)=- 5 ut(t)l| /b= 0
where the derivatives are taken in strong sense.
Therefore

: 2
(4e2) Lim [[ult+h)-u(t)-hu' ()= 3 T /AP -

(i) If u(t)€D for all %€ [0,T),then for each té[_O,.T),u(‘Hh)e D
for all he[0,T-%) ‘ |
Consequently .
1 2 2
(4e3) 25 aface)smut (6)+ 3 2(a(0)); Jj< =, || u(s)+hut (m £(u(t))-

-u(t+h) I
for all h€ (0,T~t) and t€[0,7),

Combining (4.2) and (4,3) it follows (u(t),uf(t))e MD.We now assume

(in addi’cién) that D is closed in A (in the sense of Definition 2.2)

and (u(t),u'(t))em (given by (2.5)) This means (by Lemma 3,2) that -

there is r(h)€ X with x'(h)->0 as h{ O,such that
(4.4) u(t)+hu'(t)+ -;»(:t‘(u(t))-i-l‘(h))ED DNA -

for all h> 0O,
Since u(t)€ A ,(4.4) implies u(t)€DNA =Do &
Remérk 401l With the same proof it foilows that the projection
: pr.l( ) of MyCAXX on the first factor space of XX X satisfies



prl( )CD Nae

Thérefore the case D = DNA yields pri( )< Do
B, . The proof of theorem 263 18 & s.unple combination of Theorem 2 2
with Definition 2¢3480 it is left to the reader,

Prqof of Corollary 2,1 Assume that we are in thé hypothesis\(l)uo*
Since D€ M) D.,it follows directly £zom (2.5) that upc N Y, JItT
remains to prove the converse :anlusiono
Let (x;y)e€ 1EIMD eSince f: ACX->X is locally Lipschitz the then 8O
lution us [o,T )—-)A of (244) with u(o) = xzyu'(o)=y is uniquely deter-
mined by (x y)GMD oAccording to The orem 2.3 (u(o) u'(o))e M implie.
es u(t)€ D, for all t€ [O,,;T),wher\%rer . £l b Consequently,u(t)é% for all
‘t€[0,1),which implles (by Theorem 2.2)(u(t),u’(t))e€ MD.)’ftéD Hye !

For t = O,this gives (x,y)éM and (¥) is proved,

-(2) Assume that M, is nonempty.If u: [0,7)>4 is a solution of (2.,2,)
’W.l'th (u(o)yut(o))e N pythen (u(o),ut(o))e M oHence (by Definition '
2e2)(u(t),ut(t))e MD 91 €T, té[O T) Whlch J.mpl:x.es (using (#)) (u(t),
u'(t))é DoThlS means Just the fact that D is flow-invariant set

for (2.4).

Proof of Theorem 2.4 By a standard dQvice,consider the first or-

der autonomous differential system
ut(s) = v(t) |
L {v'(t) = £(u(t))
Obviously this system is equivalnt 1:0(2.4) In iriew of definitions
201 and 2,3 it follows that D is a flow-—lnvariant set for (2.4) if
and only if MD is & nonempty flow-invariant set for (4 ¢5)

Since the function f: AC X=X is locally Lipschitz,the func‘b:.on
(x,y) =>(y,£(x)) from AX X into XX X is locally Lipschitz toooBy tr.‘he-
orem 2.l,the nonempty (closed in AXx X) set My is flow~invariant for
(445) iff (2,6) holds. g |



Remsrk 4.1 Essentially,the result given by Thewrem 2.4 (as well as it

.2
\.?‘

proof) has been presented in [21.] «Hexre,both the proof of Theorem 2.4
and the notion of "flow-invariant set" for a second order differential .
equation,are much moxre precisély'givenoThe 1imit appearing in (2.5)

has been considered (before [21)) in [16} but not efficiently used.How-

ever,the idea to investigate the flow-invariance of a set for (2.4),

goes back to [16] . i
Proof of Theorem 2,5 Let (x,y)€ Iy and u the function defined by

(3.8) «Then

2 7 :
(4.6) =xthy+ 3 2 (f(x)w(h))e D =ANScS, ¥ h>0
‘ ' and u(h) ->0 as hyo, A
Since S is closed (4.6) implies X€S so xéAn Si=

Further,because S ig a linear space, (4.6) implies now

(4.7) y+ -13 (Bx) +6h) g 5 >0

APguing as above, (407) gives y€S amd then f(x)€ S.Therefore
x€ £ (s) and (x,7) € <an“1<a>>x S

Finally let (x,y)€ (DNt (S)),( SeThen for every h> 0 we have
(inasmuch as D = A()S)
V= x+hy+ zf(x)é S

Since A is open,the:ce is 5\70 such that v, € A (hence vy € AI)S)
¥he (O,{)QAccordlng to the definition of MD(see(E.S)) it now trivial-

1y follows that (x,y)€ Mﬁand the part (i)'off the theorem is proveds

If we assume that £(D)cC ;S"(ioe.Dcf"l(S)) then obviously, (i) becomes
MD:= DXSoTherefoﬁce MD ls a .nonempty closed in AXX set To gert the
last agsertion of (ii),we apply Theorem 2.4.

Let (x,y)eMD(which means xX€ANS and y€S).Then for every h> O,

we have
{x,y)+h(y,£(x)) €Sx5S

end there is § > O such that x+hyéA, ¥he (0,8) Therefore



Lon

(X.y)+h(y‘.f(x‘))e G 8IS e aDixegits MD Fh€ (0, 5)

: which trivially implies (2 6)e The theorem is proved. :
Proof of Theorem 2.6 The form (2.12) of M, given by (2.5) follows

from Corollary 3.2,To prove the sedond part of the theorem,observe

that M, can be written in a form similar to (2,7) namely:
g i a

(408). MD = {(x,y)e‘AxX; k(x,v) =_0}
; g . ' A : ;

- whexre k: AX X-—)R3n is given by

k(x,y) = (g(x) g(:t)(y).g(x)(y)(y)W(x))
with w given by (2ell)e

It is eagy 't;o check that k is dlf:f‘erentiable on AX X and that for
each (x,y)eAxX,

k(x.y)(u,v>=<g<x><u>,§tx)(y)<u)+é<x><v>.§2x>(u)(y)(y)+2§%x)<y)<v>+
: +7(x) (1))

We now brove that the function k(x,y) XXX-'->R3 is surjective (for

each (x,y) e My Je

8
To do that let s e si=1,2,30We have {0 prove that there is (u,¥y)
€ XxX guch that k(x,y)(u V)= (yl,yz,yB) ie€e.

g(x)(u)
(4.9) "fg(X)(y)(u)-i-g(x)(v) =¥y
(P "“’/’”ffl g(x)(u)(y)+2g<x><y><v>+w<x><u>

The first hypothes:.s of the theorem is .the surjectivity of g(x)
XaIfI.Therefore,there is veX verify:l.ng the first equation of (40 9).
The existence of veX verifying the other two equations of (4 9) is &

direct consequence of surjectivity of
u-a(é<x><u>.g<x><y)<u>>.

According to Corollary 3,1,with k(MD ) instead of g(resp.D) we cone
' . - L |

clude that (2.6) holds iff k(x,y)(y,£(x)) = O holds (which. led us

to. (213) )0
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Proof of Theorem 2.7 The fact that (2.12) holds too,is a direct

consequence of Theorem 2,6.Indeed,since é(x): X—>R and g(x)(£(x)) ﬁrO“”r/

on Dg(according to one of the hypothesis),g(x) is not the null fuc~

etional and consequently is surjective.

ol

To prove the sevond part of the Theorem,it suffices to check that
in this case,the linear function u—v(é(x)(u),gzx)(y)(u)) from X into

R2

' &
functions

(4,20) u=g(x)(uw), - u=>g(x)(y)(w)
from X to R are linear independente

To this aim,let us consider the linear combiﬁation,
(4.11) 1 &(x)(W)+sE(x)(¥)(w) =0, Yuex

where r and § arerreai numbers,
The hypothesys w(x) # 0 for all erDg implies (in view of (2.12))
g(x)(y)(y) # O for all (X,y) €M p eTherefore,with u=y, Chsit) giveé
s = 0 (since g(x)(y) = O).Furthergore,for u =-2(x)y(4.21) gives =0
and hence,by Theorem 2.,6,the flow~invariance of Dg is equivalent to

(2613) ¢Finally,the thi%;d part of the theorem is obvious, f

Proof of Theorem 2.8 Let (x,y)€ M, given by (2.12).Clearly,

g 5 '
With y = g(x) given by (2617),(2.23) is satisfied.In this case g(x)f)

= 0 and g(x)(¥) = Oyshows that the vectors y and y are parallel,the-

refore there ig & -

a(xj&iR such that y = aﬁ;Since”gkx)(y)(y)+é(x)(f(
(x)) = 0 it follows ' ' |
(4o a g(x)(y)(y)+g<x)<f<x))

//Hav1ng in mind the notations (2. 15) 2 22) and

N91%= a® J31% = a® PaGYI"= a%a e

it is clear that (4.12) and (2.22) implies (x,y)e;MD given by (2.24).

) e by
Note that the hypothesis (2.23) implies w(x) 3% 0. and (for y = g(x)L)
8, f 0

is surjective (for each (x,y)éfMD );or équivaléntiy that the lineaz




- 27 -

Actually we have proved that for X‘EDg,there is ye X namely
- : R 1/2
(413) y = ay 36 £(x) (f(x)ﬁ é(x)J_

such that (x y)eMD and conversely (3. eoif (x,y)é MD then y is given
8 : :

by (4 13)e | :

The last assertion of the theorem follows by replacing y given by

‘(4 13) in (2.13) and using (2 30),

5e APPLICATIONS IN MECHANICS

It In the goal of this section to show that Theorem 2.4 (by 1ts con=
sequences )unifies some fundamental results of Dynamics,
Moreover,some of our resultsg (1ike Theorem 2e24Corollary 5,1,The-
orem 5.4,Remark 5.6) allow us to see that some mathematical characte~
rization of the motion on a get Dg (given by (25,7)) in 5 or E_B’,re-
main valid in any R® with n> 3,011‘ even more,in any real Hilbert

(Banach) space,

5l Geometrical properties of a flow-invariant gete

First of all we reéall that a function f: Ac X->X is regarded as a
field of force on A,in the sense that with each vectdr position xe A
is associated the vector force f(x)eX.

Remark Sel I gIACX >R is continupus,then D {xeA,g(x) }is
closed in A, |

According to Definition 2.3 and Theorem 2.3,the notion

(5.1)“_]9_g is a flow~invariant set for the equation (2.4 )"

-can be restated in terms of Dynamics as follows

(5.2) A'mass particle","projected" fr.om_a_g_om XGD with a "speed"

yeX such that (x,y)e My (given by (2.12)), descrlbes (under the action

&
of the force field f) an orbit which lieg in Dg.



w» 28 e

Denote by Nx the null space of the linear continuous opera‘bor

g(x): X—>R (where x€A and g is differentiable at x),that is

(5.3) W(E@) = N =fyeX, &xG) = 0f
In terms of geometry; N(g(x)) can be identified wiihL the tangent
space at x to the manifold D _e '

&
Definitions 5.1 (1) A function g: ACX->R ig_said to be "smooth"

if it satisfieg the properties

(a) g ig_three times (Préchet)differentiable_on As

(b) For each x€D ,,é(x) : X=R is not the null functional (i.e.

A B s
there is ue X,stich that g(x)(u) # 0)e

L EX) (T £ Oy e T,y £ 0a

(2) g is said to be "completely smooth",if it is smooth and if for
g 5

(¢c) For each x€D

each xeDg,the functional P(x) defined by

“O&X % )m

0 ,y:O?Nx

Gar” F=GET =

is a linear continuous functional £gm N_ into Re

Definition 5.2 A field of force f on A is gaid to be "oegmooth!

if it locally Llp.gcha_tz the Function w: A->R (glven bz (2e11)) is

differentiable on A and for each x €D g

(5.5 &) (E@)-E@ @ FI<0,  FyeN, ,y A0

Theorem 5.1 ILet A be an open subset of the real Banach space

X and let g: A—>R be a smooth function.

(1)If there is a g~smooth force field of on A such that a "mass par-

ticle""projected" from any point XGDg with a "speed" y such that -

(x,y)€ MD ,"describes" (under the action of f) an norbit" which lies
g :

in Dg,then g is completely smooth,
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(2) If g is completely smooth and f is g—smooth then Dg is a flow=in-

e
Vam\ent get for (2 4) iff for each XGDg ,there is a (x) € R with the

progertz TSR

(566) ~w(x)P(x)+2€(x) (£(x))+W(x) = a(x)i(x) , X €D,
Proof.(l) Let g be a smooth function from A into R.If there is a

g‘usmogth force field £ on A with the property. that Dg is a flow=-in-

vatiant set for (2.4),then in view of Theorem 2.7, (2,13) holds.Take

X eDg.If ¥y £ 0 is an arbitrary element of I}I%(given by (5.3) and '
32 ¥ Y2

e o w(x) \ B o w(x]
(5.7 § = (- 5@ Y- 3'767 B (7))

then obviously (x,¥)¢ ¥y (given by (2.12))

g :
Replacing (x,y) in (2,13) and dividing by a it follows that

(5:8) = W(x)P(x) (y)+28(x) (£(x)) (¥) (%) (y) =

®

for all yeNx

By definition of differentiability,the fﬁnctions y-—}%(x)(y),y-a'gg(x)
(£f(x))(y) are linear continuous functlonals from X into R.Therefore)
(5 8) implles that F(x) given by (5.4) is a linear continuous from N
into R,hence g is completely smooth,. |

(2) This part of the Theorem is a consequence 0f (5¢8).

. To show that,let L ¢t X-2R,i = 1,2 be two llnear functionals (dlf-—

ferent from the null functional).Denote
N(Li) ={y§X,Li(y) = o} s do= 1,2._ .
- It is well~known that if N(L,) € N(Iq) then there is a € R,af 0,
such that Iy =al, (which implies N(L,) = N(I,)). |
Since N_ = N(g(x)),(5.6) follows from (5.8) wit.h
Iy= = WP (LG +(x) , Ly &(x) ,
Remark 6,2 If g is smooth and f is g-smooth then MD is nonempty

Moreover,for each xGDg,there is ye X(eoge ¥y given by (5.4 7)) such tha{
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(xyy)e M, » . : o
et . ' |
We now give some examples of completely smooth functions and//

g=smooth foree field. - » 2o

Let us consider the function

' T - 2 2 = 2 i T

(5.9) &(x) =5 (ix = all® = (¢byx = 8>+ 4)%), x€K yn>»2
where 'éﬁ)é R gnd de R,d # O, < y> = the inner product of R*.In the

case n = 2 C = D {x&R s8(x) = 0} is a conic with g as one of the
foeci (ieee circle ellipse,hyperbola and parabol&).

PrOPOSitiOD 51 The function g' Rn-avR, n= 2,3 given by (5 9) is

i

& conmpletely smooth nglcti on.Moreover

(5010) ex)F)(y) =¥ (i-cos 2[x = 8,51)>0

for each x and y ¢ B (n = 2,3) satisfying g(x) = 0,g(x)(y) = 0,y £ O

end Newtonian field on AD Dg is g g-smoothe

Here <{x-8,y denotes the angle determined by the vectors y and
X = & (which joins xeDg with the focus a).

Préof.The property (a) appearing in Definiti.on 51 is obviously
sétisfiefd in this casé,(b) is satisfied too, s:h.nc‘e the gradient g(x)
cf a conlc is diff_erent from the null vector.0f course (5.,10) is also
a well-known property.However,we prove it here (since,séme of the
formulae involved in its proof are needed in 5.2 = 5.4)s

Clearly,

(5.11) g(x)jy) <x~a,y>~(Lb,x-&)+@.)<b,y>
The condition g(x) = O,means

(5.12) ux-—au = (cb,x - a}-ﬂl)z

which impliea x ;é & (since d ;é Oe - '
Now,g(x)(y) = 0 and glx) = O,yield

2 :
(5 13)<b:Y>2 S*{‘w%“{(.’fl( cos"’ ]_x-a,y] , : : *

| X=8I " . 5 ‘ |
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On the other hand _
(5414) g(x)(y)(z) = L2,y>~<b, z7<b,y> sz € R%,

pee

. Therefore g(x) = 0 and

(5:14)' B @) = v >-&,5)°

Combining (5. 13) and (5¢14)' one obtains (5.,10)(since [;~a,j] is
neither 0 nor 180 )oIn this case F(x) defined by (5.4) is the trlvlal
functional.In 5.5 we “hall see that the Newtbnlan field (5,73) lS
g-smooth. '

2€>R is completely

Proposition 5.2 (1) Any sméoth function g:R
smooth,
(2) Any smooth polinémyal g: >R of (at_most) second degree is com~

pletely smooth (eeg(5.9))e

Proof (1) In this cage N = N(g(x)) given by (5.3) is an one ‘dimen
sional subspace of Re.Therefore there is r = »(x) # 0(r e R) such that.

I 7
for any y =(y;)e N(g(x)) we have 4= T¥,eTaking into account (2,19)

end (2.20),it follows that there is a constant b = b(x)€ R such that
b(X) Yopif YEN. ,v £ O |
P(x) (y) ={ s = |
0 if y =0
hence y->F(x)(y) is a linear functional on RZOThe proof pf the second
part is obvious since in this case ékx)(y)(y)(y) ='O,y<5Rg.

Remark 5.3.It would be interesting to give an example of "comple=~

- tely smooth" function in Rp(n;>3),othér.than the smooth polinomysals:

of (at most) second degree,

?roposition 503. Let g: AC X—>R be three times differentiable on
Ae
(1) If there is a g-smooth force field on A,then g is necessarly a

g-smooth function,

(27 If g is _smooth,then for eachixeng,the 1ineaf continuous fune

ction ( )»lx )from XXR into L(X,R)X R defined by
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u). £(x) (u) +s8(x) g(x) é<x>> u
(%) L ol e W, =8 y,uéX,8€ER
- ol e Ne@) - o /\s

ig one to onee

(3) Lét %oa B and gt Ac:R —> R a smooth function.

‘Then for each xeng L is a blaectlon (i..one to one and suxrjective)

(4) Fox n = 2 the curvature c(x) of Dg is dlfferent from Zeroe
Proof.(l) This part is a direct consequence of the defihitions
501 and 5.29

u ;
(2) Yet ue X and s € R be such that LX( ): O,i.c
s

B(x) (u)+8£(x)=0,0 € L(X,R),&(x) (u)=0fi.e, u€N)
Then v = O and consequently s= O ,too.Indeed if u # O,then O = E(x)(u)
(u)+s&(x) (0) = g(x)(u)(u) and ue€ N, contradict the hfpothesis (¢) of
Definition 5.1.
(33 In this case Lx can be identified with fhe_(n+1)x (n+l) matrix :

¢ 811°°°€1n &

: : n+ :

(524" Ix™ = |Bpgeccpy &
: gl...ogn 0

since é(x),g(x),L(Rn,R) are identified with gradient,Hessian matrix .
and R* regpectivelye.

n+l

The fact that L is one to one is equivalent to det (Lk+1)£0

(hence,tp the surjectivity of Ln+1)

(4) If n = 2 it is easy to check that =~ az(x)’= det(Li) # O which im-
plies (in view of (2.22) and of a4 (x) £ O);o(x)_ﬁ O.Actually,the fact.
that ai(x) £0 (az(x)‘# 0) followsvdirectely from hypotheses (b) and
(¢c) (with y = é(x)4) of pefinition 5.l,respécti#él&.

(see the‘notatiéns (2.15) ~(2.21)0

5 2 A generallzatlon of Bonnet's theorem,

Ag a first appllcatlons of our results we shall g;ve an extension

s
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of Bonnet's theorem (see e.g. 3%] P.95) Given g: ACX->R, sget

(5.15) Kg= {f: ACXSX; £ ~ "'g-smooth"}

and (5.1)(or equivalently, (5.2)) holds }
~ —_ For the statements of the results below we shall use definitions
561 énd S5es2 and the notations. {(2.7) and . (2.11).. .
‘ Remark 5,4 If g is a completely smooth,then in view of Theorem

5¢l,1it follows
(5.15)' ; Kg =-{f:.A->X is g-smooth and (5.6) holds}- .

The null function 0 doesA't satisfy (5.5),hence OéKgo

Theorem 5,2 Let X be a real Banach spéce,A<:X an open subset

and g: AR a completely smooth function.Then Kg ig a convex cone -

(whicﬁ doesn't contain the null function).

; m‘

More precisely,if £.e¢K and b,20,i = 1,eee,mwith. = b.%>0
i g —— : i i e

Then £ given bv :

(5016) : f = f_i blfi

belongs 1o Kg,too.
Moreover,if xeDg and' v = w(x)ds such that (%s v)e My

&
(glven by (2.12) with f defined by (5.16),then for each 1—1,...,m

there is v having the properties

(5.18) (x.yi)emg plmm oy e

: | g Sar

Here we denoted by MU I% the subset My corresponding to fi,i.ei
g 24 - ]

0,&(x) (¥) = 0,8(x)(y) (3)+
&) (2;(x)) =0 {.

(5429) My = {G@yIeax; gx)
&

G

‘Proof of Theorem 5e¢2¢ Since fi are g-smooth,then obviously f given
by (5.16) is g=smooth,t@o.The fact that fieiKé given by (5.15),means
also that for each x €D,,there is a;= a;(x) € R such that



,(5"20) ~w, (x) F(x)fz‘g‘(x)(fi(x))’ﬂf«i(x) 5 aié(x) , X€ D,
where (similarly to (2.11)).

: m :
(5.21) Wi(x) =~é(x)(fi<x)), x € A(hence };:1 bi.wi(x) = w(x))

Multiplying (5.20)"by b, and then summing up over 1 to m we get (5.6)

:with £ given by (5.,16) and & = Z b. ;84
i=

'To prove the last assertion of the theorem let x€D_ and veX be such

&
that (}:,v)él\iD «The existence of such that v is suowg in Remark 5.2,
Consequently :
(5.22) g(x) = 0,&(x)(v) = 0,8(x)(v)(v)+g(x) (£(x)) =

with £ given by (2.16) (therefore w(x) = &(x)(£(x))

It .'LS easy ’co check that vy
2

. : E Wi(x) ;
(5;23) v = Tl =

has the property that (x, vy )E M .

given by

. :
Note that fEKg implies w(x) £ 0 (accordlng to (Be 5)) and then v£ O
(by(5.22)).
' > biwi(x) o
In view of (5.23) we have b,v.,© = e ¥ which implies (5.,18)
(using (5.21). @ '

We now give (in terms of Dynamics ) a consequence of Theorem 5.2 -

Corolla;z‘ r Bl et X = R2 and g ACR2-—>R a completely smooth func-

tion.If the orb:i.‘t;.]i)g can be described in each gnsmooth field of‘ force

fi9di=lyeeoym,the Yelocity of any point P of the orbit being v;sthen

the game orbit can be described in the field of force f= X b f

(biz 0, 21 b 2# 0),the veloelty v of P (:Ln tle field of force f)being
i=

-

m ;
(5024) v2 = 2‘: b.ve

\
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Proof In view of Theorems 5,2,the only fact we have to prove 131
(5024) 1et v; be as in the statement of the corollary In our frame~
work this means (see e.g.Theorem 2.2 and the explanation (5 2))
(x,v )EM ‘% and (x,v) e M p sWhere x is the vector pogition of P,The-
refore v, gnd ve N(&(x)) given by (5.3) In this case (i,e. X=R° )

N(g(x)) is a subspace of R2 of one dlmen51on hence v, and v are pa-

¢
 rallel vectorsoConsequently,there is die.R guch that V= d._.L «Combie

ning (5.22) and (5.25) below

(5625)  B(x)(vy) (vy)+&(x) (£, (x)) =

w, (x)
one obtains at once d 2. W%ET" (1.e.(5 23)) which implies (argulng

as for (5018))(5024)0
Remark 5,5 In the case b, = 1,121,454, maCoP0) a5 1. 1n. the
Bonnet's theorem (under the form presented in [32]p.95)"

53¢ Determination of the field of force under which a given orbit

can be desccibed,

In this subsection we are concerned with the solution of the

following problem (call it (P)).

(P) Given a curve Dg:{xéA cRe,g(x), = O} (with g completely smo-

oth,find all (g~smooth) force field f: A<:R2f#R2 with the property

that for each xeDg,’chere Inava=avi(zoR) eRZ, such that a mass particle

Projected from x with the speed Vvydescribes (under the action of £)

an orbit which lies in Dg.

In our framework,the solution of the problem (R) consists in the
determination of all elements f of K given by (5.15),

Bemark 5.6. Given a function f: A—>R2,denote by f/Dg the restr1C£
tion off . to Dg.Let fng.If f’l' ACX—X ig g-smooth and fi/D =2/ g
then f1€<K s $00.This fact follows from Theorem 2.7 (or Theorem 2,8)0_

Therefore,we are interested to determine merely the restrictions (of

elements of Kg) to Dg,When there is now danger of confusion we denote

f/Dg by £,too(for the gimplicity of writing).
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With the notatationa of §2 and

; =g Eo1
: ) 811 ~814

we give the following solution to (P)e

2-->R be completely-smoo'th (1) Ti fe Kg,

then its restric‘tion (denoted by f,too) 1o Kg satisfies the sysi;em'

Theorem 5,3 et g: ACR

i 18 W(X)
- (5027) (giagz“gziéi)f (x)+(gp185" 89081 ) (x)=5lw 8y W1g2)+2 &
_ g1f1+g2f2 = w(x)

for each X€ Dg.q

(2) The solution of (5.26) can be written under the following three

equivalent forms:

: : aw(x) ,
(5.20)  1G0) = - HEL B g0+ 3 ot i B(x) -k RUCH g(sc))gu:)

Gl |
& ani e sl m.zs_z. Bgaad iz"f’ri e L s M(X)
; a2

(D.28)"  T(x)

It

2()B_§(x)+ %_-nécxm 2 (x)- S, E)

for each x€ IDg

Where z: A-»R ig g differentiable function and z(x)>0 for all xeDg.

(3) Conversely,if w: AR and z:A->R are differentiable function such
hat

(5.29) &y W(x)<0,2(x)>0, ¥xeD,

and f given (5.28),(5.28)' or (5.28)" is locally ILipschitz,then this
£EK . | ‘ Siad ‘
(4) In particular,if in addition to the above hypothegses,we agsume

m vr,zéCz(A.,R) and gé¢€ 04(A,R),then f given by (5.23)-—(5.28)" belorgs
it Kg,ihexgﬁgxg Kg 1s nonempty. ‘
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Proof.(l) The first part of the theorem is a consequence of Theoreﬁ
268 . | : _
(2) If in the system (5. 27),w is regarded as a parameter function,then
solving this elementary system we get easily (5.28),

(First all,one observes that the determin§¥’of the,system is just a
and that (2.30) holds). _ f

Since‘y = é(xj&?Nﬁ (given by (503))-and 8,= g(x)(é(xfj(é(x#),then

(5¢5) implies the first inequality of (5.29).

2

To prove that the form (5.28) of f is equivalent to that given by
(5. 28)' let us observe that for each flxed.x:EDg there exist a(x),b(x)
€ R such that '

w(x) = a(x) é(XJ+b(X) é(X)'L
Namely -

a(x) = §<(),E()) , b(x) = %-1<v?<x>,é<xf">

: g
where (2,18) has been used,as well ag (é(x),g(x)>>= 0

Consequently
# R S i o e .o > »
(5430) <w(x),g(x) Ye(x) = aﬂ(}:)-ﬁ?(}thg(X)}@;(X)

‘which shows the equivalence of (5.28) and (5 28) We now prove the equi
valence of (5.28)" and (5,28),.Set

WX
(5.31) Z(X) = = ap * xe)i)g

Since we have already proved the first inequality of (5. 297, 1t follows

that z(x)> 0, xeDg.

- Let us prove that the derivative of a,= a (x) in the direction g(x)

is just a3,1.e. |

; rxrs P % _L = i
(5032) (), 6(x)d= ) (6x)) (4G (EGT) - g
. I P ] 1 -
Indeed,since a5(x) = g(x)(g(xf)(g(x)) and

” 5 e i e
(533X g(X)(g-(x)l},(g(X))(g(x) }> =
(which we shall prove below)
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we have

<a2(X).g(xsl)- +2(g(X)(g(XBL) (g(xsl)(g(xg'b = a,

We have to prove (5.33).Indeed,s1nce
0 gi\ ) 4 32
g(x) =(82) i Blx) 1('31

1 (x)( (X)} &o (X)(g(:ﬂ}
g(x)(g(x)) (g (z)(i(_&)) » (g(X))(g(X)) {g (X)Ig(x)))

which yield us to (5.32).

it follows

Furthermore,by (5.31) we see that

. ‘ ’ ‘ ek el
(5‘34)<W(X),g(3c7">= ~Z(X)<82(X),g(X%naz(X)@(X).g(X) >
Using (5.30)(with z(x) instead of w(x)) and (5.31),(5934) gives

(5.35) (=), &(x) Y (x) = -aBZ(x)é(XFL -8, (x)aq (x)z(x)+a,(x)LZ(x),8(x )

g(x)
In view of (5 35) and (5.31),it is easy to check that (5.28) is e--

quivalent to (5.28)", v

(3) Let w and z be dlfferentlable on A real-valued functions,satisfy-
ing (5.29) and £ given by (5.28).With an elemﬁ%ary calculus we verify
that

(5:36)CB g(x), &(x)y = ~a,(x) .
Therefore,if £ is given by (5.28)(or(5.28)") it follows

(5.37) (B £(x)) = w(x) (), E(x)p = ~a,(x)z(x).

respectively.

Inasmuch as X = Rz,any ye:Rx is parallel %o é(xflghence,(503?)<ag@//,»
(5629) inmply (5.5).Thus,if f given by (5.28) is locally Lipschitz teo .

then it is a g~smooth force field,
The fact that the (unique) solution of (5.,27) is given by (5.28),me-

eng that for every w ag above,f given by (5.28) satisfies (5.27) and
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therefore (according to Remark 5., 6),we may conclude that this feEKgo
(4) In these hypotheses,f given by (5.28) is of class C (A R) and
consequently it is locally Llpschltz.Accordlng toi(3). 1t follows that
£€K,. _

Remark 5.6 (1) The solution (5,28)" of the problem (P) is essen-
tially due to Dainelli [8] (see.also[32,p 9@])
(' (2) In the case of a general (real) Banach space X,glven & ACTX >R

completely smooth,then in view of Theorem 5, 35 the elements T of Yé

are given by the g-smooth solutions of the gystem

[ 4

g(x)i(elz)) « %51 g(x) = Vi—é-’-‘l Bz = ﬂzzil

é(x)(f(x)) = w(x) 2 EED

(5.38)

If w is regarded as a parameter Tunction,then the unknowns of
(5.38) are the vector f and the real walued Ffunction & = a(x).Using
Propositibn 5¢3 ,we conclude that (at least) in the case X = Rn(5938)
admits an unigue solutioneIndeed,in this case the matrix of (5038
is just the nonsingular matrix L2+l(see (5.14))  IF g<504(ﬁ,R) is com=
pletely smooth and W(sz(A R) satisfies ' |

w(x)g(x)(y)(y)< 0, # ¥y eﬂ(g(x)‘ @he solution (f poees

e — T

<fn ~a/2) of (5.38) is 1ocally Llpschltz and £ = (F ,o..,fn)é'K «The-~

reforeyin the above conditions on g the set K is always nonempty.
The formula (5628) can be derlved via the system (5 38), 1005

564 «Uniform motions

Throuéhﬁfthls gsubsection,X is a real Hilbert space H of innexr
product< , %y and norm [| o ”
Corollary 5.2 In the cage of the sphere

(5¢39) S(x) ={x€H, |l x||= r}, >0

the subset given by (2.12),becomes

(5040) Hg(xy= { (1) €AX x| = 2,<2y> = O, 3] 2rim, £ x)> = 0}
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Proof. In the case S(r) = Dg,with
= : 2 2
(5.41) g(x) =% (=f= - =)
For z = F(x) Corollary 3.3 and (2.12) give (5040) «Another proof of
(5,40) can be found in [2i)
, orollarx 5,3 Let ACH be an open subset with o(r)c:A Assume that

f: A->H is locally Lipschitz and in addition satisfieg the propertles

L) =, 0 (x)<l, %xés(r)
(ii) w(x) =¢=x,£x)y is differentiable on A.

Then S(r) is a flow-invariant set for (2.4) iff

(5042) 242 (x),3> +ir(x) (v) = 0, 4 (x,¥) € Mg 1
Proof.This result is a direct consequence of Theorem 2.7.Indeed,

taking into account (3.46),(2.13) becomes (5.42).

Definition 5.1 We say. that the motions on S(xr) are uniform,if

thére is a conétant k = k(£)> O,such that each S(r)-valued solution

u of (2.4) satisfiess
(5.43) Ju'(8)]] = k,k>0, 1420
We now gi#e a characterization of the locally Lipschitz force field
on S(r),under the action of which the moticns ("without friction")
on S(r) are uniform.. |
Theorem 5.4 Let I S(r) >H be a Llpschltz function such that
& ZyElxp<0, F-x £5(x)

The necessary and sufficient conditions in order for S(r) to be a

flow-invariant set for (2.4) and the motions on S(r) be unifomm are
the following | '
5 2 ;
(i)¢x,£(x)> = =k *ffoS(r)
where k = k(r) is a (popltlve) constant independent of xé&8(r)
(ii) {E(x),y>=0
for all (x,y) with ”X” = ryand <X,y >= 0




Remark 57 Under differentiability assumption on x?{x,f(jc)) on

AD S(r),this theorem can be derived from Coroilary 543,0therwige it
requires a special proof.The proof which we shall give here makes use
(directly) of Theorem 2,4,Note that Theorem 2.4 remains valid and in
the case in which f is defined merely on D (see alsor Remark 1.1)_.In
this case,in (2.5) we have to congider only xeD,and (2.6) is &a necesg-
sary :and suficient condition of the existence of the solution of (264)
for each initial condition (u(o) ut (o))éL «Thus,in this case the probi
. <lem of flow-invariance of D is a problem of existence.In such. a way
Theorem 5.4 must be understood (with D = S(r)).Moreover,in this case

D = S(r)y any solution of (2.4) Wi‘ch f: D->H Lipschitz,is defined on
the whole [0,+® ),

Proof of Theorem 5.4 The necessity.let x éS(r) and y€&H be such

that <X,y> = 0 and || ¥]|= l.Then w:.th ¥ =(=¢, f(x)}) /2’,.11; follows (x,@
EMS(r)'In view of the above remark,the flow-invariance of S(r) means
the existence of a S(r)-—valued solution for each initial conditions
: (u(o),u'(o))éMs‘(r)ﬂ.Denote by u = u(t;x,y) the solution of (2.4) with
u(o) = x,u'(o) = yo.According to (5.43) and to {EyE(xP= -11y)12we get
(1) (since {[y{[ =[fu' (o) = k).

‘l‘herefore,Ms(r) can be written under the form‘.

(5.447' M}S'(r)= {'(X,}’)G S(r)x Hy| x| = r,gyﬂ =ik <x,y>i~= 0}

and (2+6) holds for each (x,y)€ Ms(r)‘ | A »
According to Lemma 3,3,there exist rj_(h)é H,with I‘j (h)->0 as h¥0 (j=
=£,2) such that '

(5.45) (X+h(y+r1(h)).y+h(f(X)+r2(h)))é'Ms(r)

Bor 81T W0 o bl B ‘ﬁ‘, ;
Consequently,ny+h(f(x)+r2(h))“2= k2,()[y“=k) for all O<h ,which
yields (ii), | ' ‘

The sufficiency. We now assume that (i) and (ii) holds.First of all
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(1) implies the form (5e.44) (of Mg () &iven by (5¢40)) e Foxr any solu-
tion u of (2.4) we have (u(t), ukt))efms(r) (Theorem 2, 2),therefore
(5643) holds.Therefore it remains to prove the existence of the so-
1utlon ie€e to verify that (i) and (ii) implles (26 6).Usmng once agai!
Lemma 3,3,we have to prove the existence of rj(h) sytisfying (5.45)

. (fof each (X,y)EIMS(r))q v

. Claim that for (x,y)é‘MS( );,rj defined by

Lt h A __k(. hf( »
(5.46) X = wty+hry (h) “§§%§ﬁzl ,y=y+hf(X)fhr2(h)~”y+§§(x35

satisfies (545 ),

Indeed,(i,&)é‘MS(r) and (ii) implies.<x+hy,y+hf(xx> = 0 ,and conse-

quentlyf(x,x}; O.Since | X|= r, ”§”= k it remains to prove that rj(h)
->0 &g hy{ O. -

Inasmuch as (x,y)é‘ms(r) and {f(x),y> = 0,with an elemetary calculus,

from.(5.46)‘we get

2 2
= ilx+hyll h lyil
" 1y (h)” = H'I‘m‘IX+hyI{ ’fl(r'fixi;'riﬂl’) = I"f‘%iﬁ’x"h,‘f”

hile ()l
l| 25 (0l = k+u§§%f(x)u

which shows clearly that rj(hjf90 as h{ 0,j = 1,2.The proof is comple:
lfijﬁow let us show briefly how Theorem 5.4 explaing the launching of
an Earth's satellite in a circular orbit (when the oblateness of the
Earth,aif resistence,the attraction of other celestial bodies,ae8400
are neglected), |

In this case f is the Newtonian gravitational field i.e.

(5.47) £(x) = = G ﬁ? |

where GM »y O,is the power of the force center,

S(r)CR3 is the sphere of radions r about Earth's center 0 (as

the force center)) and r = R+ro (ro> OsR =~ the radius of the Earth).
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Thebequation of motion ig supposed to be (2.4) with f given by (547)
As a corollary of Theorem 5¢4 we obtain af once the following classi-
~eal result of flight space,

Corollarx 5¢4 If a body is projected from the point X at_a dig~

tance v R+r from the Farth's center +With the speed Y (Qgrallel to

the Rarth's surfaoe) of magnitude

(5e4T)" Yy 1l Vf{_,fr ;

then the body descrlbes (unlformly) the cmrcle
C(r) = P(xo,y )) S(R+r ),

where P(xo,yo) is the plane spanned by the vectors X, and Yoo

Proof.In this ﬁase_we have

<x,f(x)>= - E,GE o TX With Ix) = = Rtr ,

therefore the condition (i) of Theorem 5.4 holds with k2 = &,
Obviously,(xo,yo)egmc(r) given by (5.44).Since (ii) is clearly satis-—
fied,it follows that C(r) is a flow~invariént get,which concludes
the proof, .

Other applications of thig type will be given in the sequel,

S¢5e The invariance of the conic in Newtonian field,

Ve shall apply Theorem 2.8 in the case of the conic
(5.48) ¢ =«{X€Rz;j X-a| 2-—(<5,x—5>+3)2= O},
where &,b €R%, d€R and d4 0,8 as one of the foci,

In this case ¢ = Dg with g given by (5.9).A general result on C-
is given by Proposition 5.1.First of all we shallAdiscuss (2¢24) i fom
each particular conic and f given by (5, 47) and then we shall~verify

(2.13), We have already considered the circle. C(r) in Corollary Bedc
5¢5¢l Elliptic orbit

Let us congider the ellipse



22
X Cx +C X
(5'49), B ={x ;(Xi)éRz, _.1,2..)+ ?2 Seqin O}

wheré the rectangular axes are taken through one of the foci,2 a(resp:

2 b) is major (minor) axis and a®-p®a 29

Denote by O the 1nter°eotlon of axes and
2

v xy+e)” X, i
(5.50) g(x) = (""”2"‘ o "'? " 1) pllsnecsd to- T

a

Temma 5.1 (%) Let A = R ~{o}. With £ given by (5.47)(2.24) and (2.11)

become respectively

' (x4+c)y Sk
(5.51) Mp={(x,7) e B xR, ot 4 B2 < 0,30%4 3,7 an( - by

a b
' : 2 a2
where yi,yz are the coordinates of y and r = (Xl + X, ) =uxi<2a

(5.52) W(x) = g(x)(£(x)) = = L, , xeE,
: ar

Proof.It is easy to check that

L
&

(5.,52) z = (be-—cxl), a(r-a) = -c(xi}v-c.),xe}::

In this case (with the notations (2,15)~(2.22),

: X1+C X2 1 1
(5f54? gl(x) = —;?— 9 gz(x) = g? ,8112 ;2, gsp = gz 3. 810 7 0

and therefore

: 1 2 1
(5655) (%) = (2ar-r<), a,(x) = €E
_ e e e s
Finally : ( ; 5
@"56) E(x)(£(x)) = - _.;.3( e E,, zel

ar

Combining (5@54)9(5-55)(5056)(2022) and (2024)_0ne obtains (5051)9

5¢5¢2 Hiperbolic orbit

If we take 5
: s 3 X1+G X X
(5.57) g(x) = g( = + ;)% w i) = =(X2>.




~ 45 =
then Dg 1s the hyperbola

; 2
(5058) HngxeRZ { _(i.ﬂ:.;,)....z..j_zo}

where the rectangular axes are taken through one of the fdci,O(o,o)and

(5¢59) T =lx{l = % .!b2+cx1 ] »x eH,02= a2+b2

It is necessary to consider the following two cases (for )
2
. b
(5060) ay=fxeR? - {of gy - 27 7
' %1 be
(5.61) AE%({X' 2€R p Tyl =

Denote by H, = HNA; the branch of H contained in A;pi=1,2,

Obviously .48 regarded as the center of the force fleld (5.47) and
Hi is the branch of H around this center,

We shall prove (in 2¢5¢3) that Hl is a flow~invariant set under f gi-
..ven by (5.47),while H2 has this property under "repulsive" field (of

center O),

(5.62) f(x) GM -—--—3 y X€A,
: =l

this type of field (5.62)(of the inverse square repulsion K/uXﬂz,Kj>O

ber unit mass) is useful in Physics 1n connection with the bombarda-

ment of atoms by« = particles,

Lemma 50,2 (1) With £ given by (5.47) and Dg- Hl,(2.24) and (2,410 =

become- regpectlvely

Ty (xg+e) yox,
(5663) My {(x,y)éﬂixR2 -—1———%—-— -—2—-2 ,yfwg - Gm(- 3 ...)}

(5:64) @) (£(x)) = = Fg (Prexy) = - gg VX eHy= Hn iy
. , . a“r ; ; ) :

(2) In the repulsive case (5,62) and Dg= Hys

Yi(xq+c) y.x g A
Go65) g ={n) e, P L T L 00202 i - 29

and
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(5.66) £G)(F(x)) = FE3(0froxy) = - §E2 ) T Hy= HNl Ay
: F cAmerT o : ,

Proof.(L)Pirst of all,in this case
gl S IR G R
: - Xq +o " X,
 BY(x) = =~ =, 8, (x) =
610 - y g pe !
and (5¢64) follows at once o Further,by (5.67) we have (for xezHl)

(x+0)® x5 4 X

(5.68) aq(x) = ghel= 4 ﬁ_— e (c?(xy+0)2mat)= ;%E-E(rz—#?ar]

(5@68)' az(x) £~ —-2-—-2

which yield (5463).
(2) In this case b2+OX1< 0,therefore (5.59) gives

" (5.69) r = ~'% (befcxl}(hence a(anr) = nc(o+x1)),X§aH2.

Therefore

al(x) = 'I-? [c (xi+c) —a‘] = ;%E? (r2~23r)f éest

while a2 is given by ().68)' to0~
According %o (569) we get ea311y (5 66)e.Replacing al,a and g(x)(f(x)
- in (2 24),(5. 65) followse.

5.5,3 Parabolic orbit

Denote by P the parabola

2+ 2p xi}*

‘Where P is the distance from the focus O (as the origin of the rec-

(5.70) Polzen bl o p

tanguiar axes) to the directrixa.
Clearly P = D_ with

& :
glz) = %( ~ 2pxq~.p 7
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Using the elementary fact that in this case
i
r = (x|l = p+x1, df.x = v 4 € 1ot
; : S

we get lmmediately (for £ given by (5.47))
(5.71)  &(x)(£(x)) = ~al p/2? , ay= 2pr,a = p2

In view of (5.71), (2 24) becomes

(8.72) {(x,y)e P x R py{= 2y2»y1 + yg = ggm .

The speed y of a mass particle (at the point x €P) such that (x,y)
€ MP(therefore having the magnitude y2= 2GM/¥, r=uxf) is so called
"the.velocity of escape from the force centér" (cf o McCuskey [iéjp.27).
The speed appearing in ((5.51),(5.63) and (5.72) is discussed also in
[15] p.28,29 and in [32],p.88.

5¢5¢4 Flow-invariance of the conice.

The general equation of the conic C is given by (5.48).We now are able
to prove (via flow-invariance method) the follbwing result,

Theorem 5,5 (1) Any conic C is a flow-invariant set for the equaé

tion (2.4) with

(5.73)  £(x) = - B Ly
X - au

where in the case of hyperbola ¢ = Hl(l.e° the branch around the focus

& as the center of the attractive field B3T3 )

(2) The other branch H .2 of the hyperbola‘is flow~invariant for (2.4)
with the repulsive field

G Ry ouER. L odE

where GM is the power of the force center 3,

Proof. We apply Theorem 2.8.iWe have already seen that in this case

MD (with g given by (5.9)) is nonzempfy (actually,that (2, 23) holds).
Thls fact is proved by (5. 40) (or 5.44), (5.51), (5. 63) (5.65) and (5 72)-
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o

emains 4o verlly (2625) ©OF equivalently (2413) In this case g(x)=
end £ 18 differentiable on e {a} therefore,(z.w) pecomes

%) B?é(x)(f(x))(y)—ré(x)('f(x) (y)‘y@or all (x,y)¥ith gzl =
' e

jeedgin thig cas8e the gerivative of w glven (by(2°11)) in the di-
stion ¥ ig the following one E

2y () = B EE) (§)+ER E@ @)

s w(g(x)) defined by (5.3) is @& gubspace of one dimension) et us
iﬁsserve'that the derivative of the function

h(::) dlx-ﬁil,xeRz 3 % is just
&x-BaYY '
h(x)(y s g'f—»&“

1ging this remark a8 well as (5 11) s (5.12) ano (oeis TN nave succesi=
vely

‘P(x)y) =~ T 4 },_Cié_@.-"-a—-?ﬁ(x,a) )

ux-é‘u:‘ b ix-a’

1 =-38(x) (£(x)) (7)+8(F) (£ ) = 3E(x) ,y7-3@;f(x)><s,y>

. @ g @) _—%—3+.3;,Cré£%§—%ﬁé(i)(x-a) _ 20 (a3
: px-al” x=all : vx—aﬂ

3GM d(:t-a >(d+<b B
nx—-a\\

o {Dypx=8 3 D,y> I*

where Ve have algo veed

g(x) (x—a) (d-t-d),x—é v), ¥ x€C
Since g(x) (y) = 0 gn.ves,
L Xe=By y}-kb x.-an(b y>= A<D > 9 rxe Gy

1 becomess

@ d Sk . T
kx-—aﬂ i g

-

e ot

AT RIS

o
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for g(x) 0 and g(x)(y) = O,hence (5 75) holds for f given by (5, 73}0
Since f = «f,the proof is complete,

5.5.5 Central force field

Recall that f£: ACLRQ—»Rs(see 5¢1) is said to be a "central Torce
fleld" of center O 3L for each vector p081t10n X € A,the force f(x)(as~
sociated with x)acts along the vector whlch Joind O with x.The central
force field is gaid to be "attractive"("repulsive") if for each x €4,
_ the vector forcé £(x) is directed toward or away from 0 reSPectively;

In terms of dynamics,Theorem 545. asserts that a body P progected
from & point x € with a velocity y such that (x,y)e&MC(glven by (5.51)

.s.o) describes (under the action of the field (5473)) the orbit G
Or in Dynamics it is known much more snamely the folIOW1ng famous re~
sult holds:

Thaorem 566 (1) A mass particle Q moving under a central field of .

force describes on orbit which lies in =n plane.,

(2) XL Q describes the conic C Wlth constant areel velocity,then the

force acting on it varieg inversely as the square of the distance from

Q to the focus & of Ce

(3) Conversely,if @ is progected from eny point xe ¢ Wlth the speed y

such that (x,y)e.ﬂc given by (5.44) (with k = l/ 22 =Xl ), (5.51) a.s,
Oesdescribes (under the action of £ (573) oz (5, 74)), the coniec C

with constant areal velocity (relatlve to the focus &a.),

In our framework (i.e, via flow-invarianCe method) fhis theorem
can easily be proved as follows, '
(1) Let Q move under the central force ifield f of center O.Denote by
#o(resp yo) the initial position (veloeity) of Q and by S~the closed
linear subspace of R3 spanned by the vectors X, and yo.If y0£ 0 and
Y5 is not pafallel to X then S is a plane Totherwise S is a straight
line containing xo,é 0)elet A = RB»{O}and XeD = Al S.Since f(x) acts
along the vector which joing x with O and Xy0€eS,it follows that f(x)



S(i.e.f(D)c S) and therefore (by Theorem 2.5) D is a flow~invari-
ent set for (2.3).0bviously D = DNA (i.e. D is closed in A) since
D =5 ~{Q}and hence D = S.Inasmuch as (xo,yo)e Dix §.s MD, in.viéw of
ffcorem 2,3 the orbitw = u{t),t%0 of @ 1les in D hence inSe
(2) For the sake of simplicity we shall make a choise,supposing e.g-
that C is the Ellipse E (5049).

- Thereforé let Q describe E with constant areal velocity (pf{iB] :
Pe5),relative to the focus 0 as the origin of the rectangular axés.
First of all,this implies that the force field f acting on ifé%éntra%
ic.e. for each x€ E,there is h(x)€R
such fhaf
(5.76) £(x) = hi(z)=

If u = (ui(t),ug(t)) is the law of motion of Q,then the constance

of areal velocity (relative to the focus 0) means (cf.fl}],po6)
GErh) ui(t)ufz(t)~u2(t)ui(t) ik = const, t=0

Since u is E~valued then (u(t),uf(t))¢EME(Theorem 2.2) therefore
y4(x +c)' 2 ”
X9~ Xp¥q = K

for all (x,y)e ME given by (5.51),where we have denoted xiz_ui(t) angd
yy= ul(i),i = 1,2 e ' e

Using some of (5.47)=(5.53) one observes that the solution (yl,yz)of
(5.,78) is the following one

akx “
Xqt €
Vi“""z% »yg=§%§~2,(r=uxu,er)
.vr S
and hence
' 2
2
(8e79). . 77 Yt yg E §§-§ (2ar-72), x€E,
: I

On the other hand,byr(2,24),(5074) and (5.76) we have
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(5.79)! y2~ = -~<g(X) 6= h(x) ot 5, (g1x1+ 8,%5) = -h(X)r(2ar~
' =2 )/

for each xeE,
Compariﬂg (5.79) and (5.79)' we conclude that

2 :
(5:80) n(x) = - 8K L (ol yxy ),
] 3 x ;

(3) We now assume that f is given by (5470518 .0.4g projected'from
any pbint X;EC as mentioned in the theorem,then Q deécribes_under’f,—
S(r),E,Hl and P respectively (and H2 under repﬁlsion (5+62)) This ag~
pect has been already proved (Theorem 5.5 as well as Corollary S5¢4 in
the case C S(r)).it remains to prove that Q obeys the law of areas.
(i.ee that the areal velOClty relative to .the focus 0 is constant)o

Indeed the areal velocity (denote it 2K(%)) is given by -
K(t) = u1<t)u2(t)"u2(“)u;<t)
as we have seen above (see (5.77))e
Working in the case of E 100, (5.80) holds with h(x) = ~ GM/rB(by,

(5¢47)),therefoxe
' Kz(f) = - erh(x)/éz GM b/az const

5056 The force'field under which a conic can be described

Applying Theorem 5,3 we can derive all g-smooth force field under
which the conic C can be described (with g given by (5.9)

For the simplicity we shall treat this problem in the case of C(x}
only,where

(BeBL)Y  C(m) ={X€ Rz, Xl = rj T30

The rest of discussion is left to the reader,Obviously,C(r) corres-~

ponds to D_ with ’ e

&
2

g(x) % (h=a = 5~ (X12+ x22-'r2)'

il

In this case g(x) = x and (5.26) becomes
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b 4
B =
o -1

In view of theorem 5.3 (formula (5.28)") we get
Corollary 5.5 (1) All force field under which C(r) can be descri-

bed are given by

2
(5.82) f£(x) = -z(x)x+ % Bl e %u<x,é(x)> X,

" where z: R?a{O}aR is a continuously differentiasble function and
glx)ys O fox lixil =2

(2) If in addition we assume that the function z is positively homo=-

geneous of degree 0(i.eo z(tx) = z(x), ¥ 1> 0),then for each natural

nunber n,the sphere
S(x) ={xeRn, Xl = r}

can be described under the force field

2
(5.83) f(x) = -z{x) x+§ B(x) , xeR* ;x40

Proof (1) This assertion follows directely from (5.28)",as we have
already mentioned.
(1) In the case n = 2,this assertion follows from (5.82) and the Eu~-
ler's theorem on oontinuously,differentiable,positively homogeneous

functions (of degree zero),namely
(5.84) <x,2(x)> = 0, xeR'(4(x) = grad z(x))

Forx nﬁaB,Wé have {0 prowe it.First of all,for f given by (5.83),the

subset M ) given by (5.40) is the following one

S(r
£5.85) .MS(I‘)n { (Xay) € S(r) x Rn’(x,y): O:II.V/IZ = TZZ(X)j

where (5.84) has been used.

- We have to prove that any solution u of the equation

2
u" = ~z(u)u+ % z(u)

AR
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with (u(o) u' (0))€Mb(r)) is S(r)-valued (1.e.uu(t)n = r a3 long as it
exists), -

To do that ,set
v(t) - E (nu<t)ue~r2).

Using (5 85) it is easy to check that v satisfles the linear (scalar)

differentlal eqaatlon

(5.86) wni(g) £ -4z(u<+,)>v'(t)~2<u*<t>.z‘<u<t)-)>v(t>
> v ' _ ” initial condltlons

v(o) = O v! (o) =£Xy¥y> = 0, v"(0) = ”yu -1 z(x)
where u(o) = x,u'(o) =y (i.eg(x,y)eaMS(r)).

Therefore v is the trivial solution of (5.86);Which implies nu(t)i=
= Tt > 0, . : |

Remark 5.8-(1) The notion "S(r) can be descllbed under £% ig. obee.
viously interpreted as "S(r) is flnw—lnvarlant get fox (2, 4)"(0ee(5 1)
“and (5. 2))e
(2) By Theorem 5¢4 it follows that the motions on S(r) under force
i f;eld (5.83) are uniform iff .

sl e Bilx) '> T z(x) k2 = donst ¥Xxe S(r)

(i.e, iff £ ig the attractive field £(x) = = kx)
(3) According to (2,27) it follows that f given by (5.82) is the solu-

tion of the partialvdifferential equation

1 3%, £2 (It Boetel Gl s liane
(587) 37 & ~3X1f +X1X '5-351- :(‘)3{-2)-X1 5—-—2+X2 ﬁlz 0
G2 D

where X. 4. X =
h 1 2 I'o

: : £
which characterizes the continuously differentiable force field f=(fi>
2

under which C(r) can be described,
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6o FINAL REMARKS

. 1, In this paper the foxrce field f: A cX->X,(X & real Banach space
¥ = Rn) is supposed to depend only on fhe position x of the tparticle"
on which it acts (i.eo. f£= f(x)).The methos we have developed allowg
however to treat (at least up to a certain point) the flow-invariance
of DCA in a moreAgeneral case in which f= £(x,y) i.e. £ depending
both on the position x and .of the velocity y (of the particle on which
it acts).Indeed,it is easy to check that in this case we have. to puf
£(x,7) instéad g Pl ), 9n (2:9)5in Tﬁeorem 2.4 and (after correspon;
ding modifications) in its consequences,

In this case the speed’y of "projection" from x«eDg is a solution of

the system

(6.1) § 2(x) (¥) () +E(x) (£(x,5)) = O

Ex)(y) =0 , (g A-EY)

Let us assume that suéh a solution y exiéts and (2,6) holds (with
f(x,y) instead of £(x) and D=Dg),Then & body projected from xeaDg with
the speed y,describes an orbit u(t) = u(t,x,y) which 1i¢s in Dg(i.eo
g(u(t)) = 0 ,as long as u exists)Practically,an exact solution y of
(6el) is difficult to obtain.Then the problem of_stability of Dg ari-
ses,namely:

Given £70,is there d » 0 such that if

il Y0~yll<cf,‘chen (u(t,x,y )-u(t,xey)i<€ , #1t 508

In woxrds,the stability of the oxbit Dg means that given a neighborhood:

V of Dg(see (2o7)),if Vo, i8 an approximate solution to (6.1) sufficien.

tly close by the exact solution y,then a body projected>from xe&Dgwith

the speed yogdescribes (under f)an orbit which lies in V,Therefore it

B S



would be interesting to study the problem of floWMinvariance of.the

get Dg with to the equation
(6.2) = f(u,u')

and then the stablllty of this set. »The above remarks hold in the none
autonpmous case £ = f(t,u,u') too,
2+The (ﬁufficient) surjeétivity conditions required in the Theoren
-(2 6 (which is g consequence of Theorem 2.4) are not the best sBhics
because in some important cases,these are imposible (Namely,when X =
Bt W oo,
Indeed,@.g. in the case X = R3,Y = Rz,g: At:X—>R2 is a vector

function)therefore 5
g = g2 s2(x) = éz(x) $8 VAR 5 o (x)e L(R s )

: ansequentiy,the surjectivity of u-a(é(x)(u),é(x)(y)(u)),is equivalent
to the linear independency of the following four linear functionals
Li:RB-?R

| = Ay, T R
Or,four (2n) linear functionals on RB(resp i m4=2n) are always linear
dependentoTherefore,another open problem - is to derive a consequence of
Theorem 2e4,better than Theorem 2.6 »to cover the cases X = Rm,x = R%
with m< 2n (not excludet by the first theorem)

3.We are also interested in the problem mentloned in' Remarlk.5,3.

4. The conclugion of Theorem 2¢4 remains valid if f is defined only
on D (see Remark 5,7).In thls case,to obtain its consequences (as in
§EH we have to use the directional derivatives of x>g(x)(£(x)), €oe
in the sense of [27-29] (since +the l’réclrlet derivative is defined on
open subsets,only).We didn't investigate this (rathexr akward) fact,

although it seems to be poss;ble.
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5o Does the conclusion of Theorem 2,6 hold if R? is replaced by
any Banach space Y ?

6o It would be important to study the problem of flow~invariance
of ‘a time-de?endent set D = D(t).A suggestion to treat such a problem
is to make use of the generalization-of Theorem12°l(of Nagumo-Brezis=-
Martin) to the case D = D(%) given in [24] ,First of all it is neces-
_sary the adaption of the results of §3 to time dependent case D(t).

T.For constrained_control problem would be important to have re-
sults on flow-invariance of Dg for (2.1) with £ = £(t,u)(i.ef ~time
dependent) in Carathéodory type conditions.A rezult in this direction
has been given by C.Ursescu,but only in a general case DCX (see [ﬁ]],,
P+190).
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