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EXISTENCE FOR A CLASS OF STOCHASTIC PARABOLIG
VARIATIONAL INEQUALITIES
by - - S
Aurel R&agcanu

Faculty of Mathematics
University of Iagi
Iagi 6600, ROMANIA

Abstract. In this paper we deal with the existence of a nonanti-
cipative stochastic process uy, solution of the stochastic parabolic
variational inequality:

= ‘ 5 5. 2
ES.(v'+A(t)u—f,v+m+M—u>dt i §E|v(0)—u | < + EE[m(T)\
b 0
| ST (t, vimsd0) ST (t,u)
+ E T, v+m+M)dt E w)at
O‘f ’ i+ > O‘f ’

for all v and m in some fixed spaces of stochastic processes (m and
M are martingales). If f is a convex indicator function , we obtain
- a maximal solution. :

§0. Introduction

Let V and H be two real separable Hilbert spaces, and V densely .-
and continuously embedded in He It is known that, for the stocHstic,
differential equations: :

du + A(t,u)dt +a§0('t,u)d'b 5 f(t)at + am(s)

(O'l) u(0) = u

o

where A(t,.)+aia(t,.):v-—¢v1F is an unbounded operator and M is a mar-

tingale with values in H (for example a H-valued Wiener process),

we cannot generally find strong stochastic solutions (Itd solutions).
On ‘the other hand if we denote u-lM=z, Eq.(0.1l) becomes :

G2 & A(tyzHllEw,t)) + IP( b2+, 1)) D £(w,t)

(Cist29
z(W,0) = uo(‘*’)

which is a time dependent random differential equation. By a strong



solution of Eq.(0.2) we mean a function z@,t) which is absolutely
continuous in t almost sure (z.s.) in we S, =nd which satisfies
23.(0.2) almost everywhere (a.c.) on J0,T[ (u=z+ is It solution
for (0.1)). In generzl +the %time dependent random di fferential equ~—
ztion (0.2) does not admit a strong solution.

For these reasons we introduced a concept of weak solution O
29.(0.1) (which will be given in Def.2.4). For M=0, any determinis-
tic process which is a weak solution in this stochastic sense, is
zlso a weak solution in the deterministic sense from a6l 1],

We shall prove the existence of weak solutions in Theorem 2.7
and Theorem 3.3 . Example 5.1 shows that the weak solution is not
unique. That is why in Section 4-we try to individualize a weak S
solution. : '

In order to find a maximal element in the set of weak solutions
some assumptions of noncorrelation would have been necessary, which
would have been difficult to verify on examples. That is why we aban-
doned this idea, and instead, we have sought for a majorant of the
set of weak solutions which is a solution of Eq.(0.1l) in a2 certain
sense, quite close to the weak one. Def. 2,11 introduces the concept
of "almost weak™ solution, and in Theorems 2.13 and 3.7 are given
existence results for an "almost weak" solution of E Eq.(0.1). Under
some ordering hvpotﬂeses, for y (tyu)= IK(t)(u) (the convex indicator
function for I K(t)), an "almost weak" solution of B (Ol ), -which
maximizes the set of weak solutions will be found (Bt 2) . Also wie
give a method to approximate the maximal solution, ()

In this paper we use certain results of Pardoux: from [13TV€ﬁd
also some results of nonlinear analysis in infinite dimensional spa—
es from [6], [7] [8],[17]. Our technique is based on Itd's Fformula
nergy equality).

The plan of the paper is the follow1ng. In Sectlon 1 we give the
basic notions and notations. In Section 2 we prove ex1stence theorems ™
{27 and 2.13) for weak and "almost weak"-solutions. Proposition
2.6 shows that It0 solutions are weak solutions. In ‘Section 3 we
rrove the existence of weak solutions (Th.3.3) and "almost weak" S0-
“utions (Th.3.7) under weaker coercivity conditions on A,than those
#sed Theorems 2.7 and 2. 13, but in some additional ordering hypotheses
The "almost weak" solution, 4, in Theorems 2.13 and 3.7 "maximizes"
the set of weak and "almost weak" solutions (Th.4.2 in Section 4, '

Finally in Section 5 we give some examples of stochastic variational
problems.

s
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§1. Preliminaries s |

A. Troughout this paper we shall consider a given probabilized
" stochastic basis (N, F,P, (3;) ) which means. that (U, FP) is a
complete probability space and (9")4G is an 1ncrea81ng famlly of
sub—GLalgebras of &F, such that Ae?r 1f P(A) =0 't

e (Bce 18] If X is 2 reflex1ve separable Banach space and
feL Gl, yP;X),1¢ p¢+00, then there exists a unigue element E(fl?%)
e’ F #.9»P;X), called conditional expectation of with respect to
J%, and defined by

@.1)  BER = B REHT ),
for every Fe?%, where

(1..2) E;fz S ‘i(w)dP(w) (= expectation of ‘f)
n s .

-

ana

(1.3)  1.60) =1 if wer

Ce Let I,(SLXID Aliem) 0 y$+ 0 ,be the spece of stochastic processes
FeI2 (K]0, T] , Fxd, Pxat; X) = LP(xJ0,7L ;%) with the property: there
i1s a representative T of the eﬂu1V°lence class f -sueh that T(%) is
gi—measurable a.ee. on JO,T[ (T is called nonenticipative proceso)

We denoted by P the 6= algebras of Lebesmup measurable sets on JO T[
and with dt the Lebesgue's measure. The space L* (A2 P,T[;:X).is 2
linear closed subspace of IP(Sx]O, Bl 2

"~ We denote by Lg(_sz,C(O,T,X)),lsp5+eo ,the space' of all stochastic
processes feLP(2,®P;C0([0,T];X)) = L(2;0(0,T;X)) with the property:
there is a function T belonging tc .the class £ sueh® that T )4 3s
d%ameasureble for every té[O m] (F is egided adapted process). The
space LEOI,C(O,T,X)) is a linear closed subspace of Lp(nJC(O,T;X)).

It is quite easy to show that in for each of the two cases any
representative of the class f has the same property as the corres—
ponding T.

D. (see [9]~- [lj]JlB]HﬂﬁL (Hyle|l) is 2 real separable Hilbert
space, we denote va%f(O T;H) the space of stochastic processes

MGLPOI C(0,T;H)) with the properties :

(i) I‘-'II(O) =0 Qe¢Soe
e o . |
(s ) E(m(t)\&s) = (8) sese , if Odegted .
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The elements of this space are called continuous p-martingales.
Let M be a martingale belonging to;m?(O,T;H). By the Doob

~Meyer's decomposition, there exists a unique stochastic process

<€ L(R;C (0,T3R)) such that :

i) t—<M>(w,t) is increasing w-a.s. ,

(1.5) L
(i1)  IM[%=an> ¢ pC(0,T3R) .

Moreover the following inequality is satisfied

(1.6) E supli(s)|? ¢ 3EV<W»(%) ,
seP,t]
for all t e [0,T]. ) |
For any £ € L2(2;C(0,T;H)) and M ¢ MZ(0,T;H) the stochastic
integral : : ~

gl
§ (£(e),ai(s))
. 0 : ' .
is defined. In this case (see [15]- I+Partie, Th.3.3)’
g(')(f(s),am(sn € M (0,1;R)
and
S
(1.7)  ®sup |] (2(),am(e))] ¢ 3E sup _jf(s)VeiD, .
: sefo,t) 0 sefo, t]

E. Let (V,jl.fl) and (H, [|) be two real separable Hilbert spaces
such that V is densely and continuously embedded in H. Let us
denote by V* the dual of V and identify H,with its own dual. Then
the following relation holds

VeHcV*

algebraically and topologically. Denote by ., the norm (dual)
of V* angd by <w,v) the value of w ¢ V*in‘ve«V; if w,veH then
<Wyvy = (w,v),where (.,.) is the inner product in H.

Proposition 1.1 (energy equality). ir

[&0) ue LZGIXJO,T[;v),
oA LEH 8 =
(Liapuebo iy’ stsaaiviis ot jov(s)ds + W),

iYW @ TR

2 ik
(iV) v € LJG (=], Tl5% ),
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(V) Mep(0,T;H),
then
(cq) u eIE62;¢(0,151)),

. . b %

(o, Ieas il Sofus)® 250<v(s),u(s)>ds : 2§O(u(s),am(s))
1.9 Lt |
: : + <My, 5 for all t e[0T bs fan=aass 5

) - ‘ .
(c3) E}u(t)|2 = E‘uoiQ 4 2E$d<v(s),u(s)>ds g Eim(t)‘Q’

for atil tic{0sT].

4The proof may be found in {151 ( Chap.II,§3 ).
. Proposition 1.2 (see [15], Chap.III,§1) Consider the equation

au(t) + A(t,u(t))dt = £(t)at + am(t)

(L.20)

u(O) ==

If A(t,.) is a family of nonlinear (single-valued) operators from
V to V* defined for almost every t € JO,TL (t-a.e.) such that :

(Al)(coercivity) There exist >0, «eR, VeR such that
<A(t,u),uy + m\u]z + V> a-x\unz, for all ueV; t=z.c.
(AZ)(monotonicity) 2 N b)) ; Alt,v),u = v> +afu - v[zg,o,
for all u,veV; t-a.e.
GE ) (AB)(boundedness) There exists Cy0 such that
fla(t,wll, < Ciul , for all ueV; t-a.e.
(A4)(he@icontinuity) g-~9<A(t;u+ev),w> is continuaus
from R %o R, fér 2ll u,v,weVy t-a.e.
- (AB)(measurablityj For all ueV, t—A(t,u) is strong
measurable from ]0,T[ to V*,
and
(1) uel?(,%,B5H)
(1.12) (i1) £ eLi(@xlo,T(;v")

(1ii) MerC(0,T3H) ,



6=
then there exis%s a unique process_
(2.13) . u e 126ulo,1;V) n12(R;6(0,T58))
which vgrifies the equation (1.10) in the foilowing sense
(1.14) u(f) + S;A(s,u(s))ds =u, + SZf(s)dsﬁ+ 1 ()
for all tef0,T] jeo=a.s. .

Remark 1.3 By using Lemma III-14 from 7] and the Pettis
theorem, or Lemma 2.2 from [lS](Chap T11) s %we obbain that, for
each ueLtQQx]O T[ V), A(.,u(.,.))eLtGZXIO T[ sV*) in the hypotheses
(4,)- (A ). ‘

Flnally in addition for what follows we introduce the spaces

(1.15)  W(0,T;V) = fu:uer®(o,m; v), wi= -TeLg(O,T;V*)}a

and‘

W, (xJo,tL;v) ={u:uel?(nx10,7[;V) for which there
il o) v exist u e1?(,%,P;1) and veLZ(J'ZX]O ol s vH)

=
such that u(t) = u_ + g v(s)ds};
o o

in (1.16) u, and v=u' are uniquely determined by the stochastic
process u.

It may be shown (see (4] Chap.l,§3.4) that W(0,T;V) can be
identified with a linear subspace of the space C(0,T;H), and
Wt(nxjo TL;7) can be 1dent1f1ed (see Prop.l.l) with a linear
subspace of the space L CQ,C(O ;H))e Also W(0,T;V) is embedded
- in We =10, Bl V)

The space NtCnX}O T[;V) is dense in the space L GQX]O TL;V)
because fmrwreI%(nxJO T{;V) the sequence

vn('b) = n‘oen(s_t)v(s)ds

belongs to WtGIXJO,TE;V) and Vv (for n—»+%9 in Li(ﬂxlo,T[§V)-

- §2. Existence of the weak and "almost weak" solutions

in the case A coercive

2.1 Hypotheses The Hilbert spascesV end H will be the seme ag
those given in Section 1(E). Hence VelcV¥, where the inclusion
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mappings are continuous, and V and H are dense in K and V'
respectively.
Congider that for almost every t€l0,T(, there are defined

(i)  A(%):V—>V" linear, continuous; t-a-e.;

(ii) There exist ¢>0, x¢R such that .
A(E)V,v> + vl Z % gUvi®, for all ve V; t-a.e.;
(Hy) : ;
(iii) There exists C>0 such that uA(t)vﬂxig gl , ~Eox

all vE V; t-a.e.;

(iVv) t —A(t)v is strong measurable from ]0,T( to.V*, for
all veV.

Let f(t,.):V~—¢J—oo,+:w],te[O,T]; o family-of funetions
satisfying the conditions

&) ¥ is a normal convex integrand (see [1],{16]), i.e.
RGersie?) 1s;fx.%(V)~measurable, and for every t¢(0,T],
Y(t,.) is a proper convex lower-semicontinuous

(H2) function;
(i1) | dereaeneis s v, 1€ W(O,T,V\ steh- thes TK.,VO<.>}<L & oy

(1ii) “Yhere exist a¢lC,=l(, bé;L*(C,T) spimede gt Hor, o117

vaE i ﬂtw&+sﬂﬂ£+—ﬂt);()me.on{mTL

Remark 2.1 a) /e denoted by &£ the ¢ -algebras of Lebesgue
measurable subsets of (0,T], and with $(V) the Borel g-algebras on V.

b) The hvpothe31s (H —111) is satisfied e.g. ¢P there exist
b€ L (O s V ) and b e,L (o, ) sueh that

(2.1) Pl > (bl(t),v> + bz(t), for all ve V; t-a.e.

Under the hypotheses (H ) sbseerdd] of 204:017) ) the function from
L (§2X]O Bl o J=co +oo] given by

(2.2 Qo= Egoﬂt’u(t)jdt, if f(.,u(-,.))CL (2 x30,TL)
i Py otherwise

is proper convex and lower-semicontinuous (hence it is also weakly



SR
lower-semicontinuous) ‘and v, € D(P) n L%(n x10,T(;V) where

D(P) = {u:ueL?(Q x10,T0;V), P(u) < + 0}

1l

]

(2.3) {u;ueLg(Q X]C,T[;V), wles t)eDP(t . ) (w,t)—-.a.e.,
and *f'(u)éLl(ﬂ %70, Tk
Also for every ueLg(Q x30,T(:V) and A>0, 'the- ma;;éping
(2.4) (@) =3, (5,u(w,1) = (F+A(+,.))  Fu(@,t)
is in L?(n2x10,T(;V), and

(2.5) W (6, v vl + (14003, (%,0)ll, for all veV and t€(0,T].

We denoted by F the duality mapping of V defined by Fu = s

w*e v, <u*,u> = ui® = "7, and by 3P(t,u) the subdifferential
of (T, ) attuk

(2.6) axﬁ(t,u) = {_u*gV*;<u*,v-‘-u> i) (t, Wi forall vieV],

For a function ¥ satlsfylng (H ) there always exists a family
of operators p,: (o, 7] xV—> V' ,\>O, with the propertles

(/31) For every t€[(0,T] 0B 3 by V=i are monotone and
Lipschitz-continuous with the Lipschitz constant
independent of t and A,

(132) B leonpn) L2(O,T;V*) for every veV, and v]\—-'>/3A(.,O)
is bounded,;

(B) (?3) x</3(t u),v-u)y + L(%,J3, (%,u)) £ L(t,v) for all t€(0,T]

and u,veV;

(/34 If there ex1sts a sequence A E]O +20); A J/O, such that
for uA yUELY (Q x10,T(;V) we have

10, L e (weakly) in L2(52 x10,T(; Y.
20. Ef(ﬁ]\ (vt u/\ ) v-uA >d’c—-—>0 For“every
v,eL S xJ0,1(;V),

"then 11m inf ¢(J u ))2(]5(11).
e

An —>0
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Remark 2.2 (I) Indeed, by taking Baltyu) =)9YA(t,u) =

o F(u—JA(t,u)) as an example,where

1l

2 : .
‘inf%l—-—ﬁ———‘u—\:\" + sa(t,v); veV}

L=y (5,0 + (5,9,(5,u))

(é;7) i o

i

the properties (B) are immediately verified since the following
inequalities hold ?

<OP\(t,u),v-uy + %(Jc,u) XD
P, (5,3, (5,v)) € @(t,v) £ p(t,v),
which give . : : -
L <pytyw) v + 3w =d, (15 N2 + nf(t,J/\(t,u )) < plt,v)
where by using (H,-iii) and (2.5) we obtain
<Pa(t,u ), v-u> + %uu -J)(t,u M2 < 2atet Gpui 2 +
+0+1)2 13, (5,000°) # Alp(8)] + Ap(t,v)

Remark 2.2 (II) Let {K(t), te[O,T]} be a family of nonXempty
convex closed subsets of V such that ° :

(i) There exists voe'-av(o,'T;v)', v, (t) € K(t) t-a.e. ;

(ii) - There exists p(.,.):[o,i]xv~—>v* with the following

3 e propexrties : i

(2.8) a) p(.;v) € L2(O,T;V*), Porall. el

) F(t,.):V——+V* is monotone and uniformly
Lipschitz continuous with:respect to tef0,T] ;

c) K(t):{V:VeV,.P(f,V)‘= O}.

These properties imply that P(t,.) is a penalty operator for K(t).
(By a penalty operator for a nonempty convex closed subset K<V we
understand a monotone hemicontinuous bounded operator p:V—*%V*
such that K = { veV: ﬁ(v)zo )

The convex indicator fonction

Oy . i wek(t)

i

Y(t,u) = IK(t)(u)

]

+00, 3£ wme VANK(t)




verifies the assumption (H2) because it is relativly easy to show
that (2.8-il) implies that t —>K(t) is 2 measurable multifunction
(see [1] or [7] for definitions =2nd properties) and then © is a
normal convex integrand.

In this case pA(t,u) = IB(t,u), for all A>0, verifies the proper-
ties (B); e.g., the property (/33) is satisfied because J)L(t,u)
= PK(t)(u)’ where PK('I:) is the projection operator of Ve onukK(8),
fp‘(t,JA(t,u)) = 0 and </5(1:,u),v—u> = <13('b,u)—lg(t,v),v—u> <0 for
every v e K(%5).

Concerning the property (/84) since B is monotone, for every
veLé( x 0,T ;V) we have : :

T g 8
| Ejo<p(t,uAn)-/8(t,v),uln—v>d'b > 0

from which, for A,—> 0, we obtain
T ' 5
E So<ﬁ(v),v-u>dt S0

In this relation we replace v by u+§v§ £>0, and by letting £—0
we find : 0

T
E SO <P(u) yVy>adt > 0

9

for all veLi(Qx]O,T[;V). Hence /B(u) =0 (w,t)-a.e. , i.c.

uo,t) ex(t) {(w,t)-a.e. and thenj{(u) 2}2’—(‘& (u/\ )) = 0.
n “n

- Bemark 2.3 The properties (B) can be satisfied only for )\e]O,EO]
where &O>O is a fixed real number, or just only for )\e{El,E '
- where &> Eo¥ eeer€> eeer0 and En——}O.

2’ ..’En, ® o},

Consider on [0,T] the equation

i {du(t) + A()u(t)at +97)(t,g(t))dt 5 £(t)at + am(t)

u(O) = uo )
where

(1)  w,e1?6y,E,p;n)
(H,) (i1)  fe 12(rx70,T[ ;v)

(iii) Mep(0,T;H)




AEL )|

2.2 Weak Solutions. Definition 2.4L‘Aw§tocha§tic process W is.
a weak solution of Eq.(2.9) if ‘

(8) wed maio, sl ;)
(1)  ufo,t)e Dp(t,.)  (o,t)-8ce. in nx 10, [

T
(2.10)  (iii) ES<v'+A(t)u—-f,v+m+M—u>dt + 3EIm(D)] 2

0
+ %E\V(O)—uo‘z + lvemsn) > %(u), .

m+M € L2 (@70, 1L 5 V). g o

Remark 2.5 a) For (2.10-iii) we have

3 K
ES <V, vHnH-uydt = Eg <v',v=uddt + E<v(T),m(T)+M(T)> ;
0

(see [15] :Lemma 1.3 in §1 Chap.II)
b) From (2.10-iii) it follows that ueD({J)

Proposition 2.6 If uc—Lt(QX]O Pfics sl s, (2 s‘crong\/solutlon\ ItO/
for the equation (2.9) i.e.

Vil ) uﬁo,t) (S Dy(t,.)'v Gu,t)—a.e. -
(3d) There exists YesLich]O,T[gv*)usuch that
(2.11) e, t) € D(.f(t,u(od,t)) Cayt)-naee 5
15 it it :
(131). ~alE) + SOA(s)u(s)ds + Sowl(s)d‘s = §of(s)dfs +."M(}t)
for all te[0,T] ; w-aese ;

then u is a weak solution for Eqg. (2,95

Proof. By Prop.l.l and Remark 1.3 it. follows that ue Lt(ﬂ Lo, H): X

and Au e L2@x10,70;VF). Tet Jve i, (2%70, L5 V)" and mepC (0, T;H) be T 7
arbitrary, such that m+Me L (S‘zx]O T[ ;V). By using (2.11-iii) we

have "
v{£)4m($)+M(H)~u(t) = v(0)-u + So[v'(s)+A(s)u(s)+wz<s)_f<s)jas

+ m(t) ,
a.nd by Prop.l.l we obtain

E lv(T)+m(T)+M(T)—-u(T)[ Elv(O)—-uo}z - 2E50<v'+Au+vze-f,

v+mtl-uydt .
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Hence, taking into account the definition of the subdifferential

97, we can write
e o o 2
E\ <v'+Au-f,v4m+M-uydt + EE\m(T)\ + EEIV(O)—UO\ + @(v+m+M)>
' 0 . £
&),

which concludes the proof.

Theorem 2.7 Under the hypotheses (Hl’ with o=0) (H ) and (H3),
the equation (2. 9) has at least one weak solution in L GQ 1 (0,T3H))
(the varlatxonal problem (2.10) has at least a solution).

B /Pﬁmark 2.8 The case in Vthth<0 may be reduced to the case
~ in which d=0. We shall also prove Th.2.7 for o> 0, bubt making
additional assumptions. :

Proof of Theorem 2.7 ILet for the moment be,AeR arbitrary.

Later in the proof we are going to specify the moment when we

shall assume o= O, :

Consider for the function ¢ a family of operators B, which
satisfy the conditions (B), and also consider the approximating
equations ;

du (ﬁ) + A(t)u @)t & —Ig(t u (t))dt = £f(t)at + am(t)
(i2.02) _

u (0) = u,
where we take only those 2€]0,1] (see also Remark 2.3).
The equations (2.12) have unique solutions

(2.13) Vu

, € 1510, ;V) n LE(2;0(0,T;H))

because the hypotheses of Prop 1.2 are satisfied with A(f V)
substituted by A(t)v F&Kt Vv)— AFA(t 0) ana T Dy f(t)-—-ﬁ(t s 0
By Remark 1.3, Au 1Fd(u)) el Glx]o s Vv¥).

Let veaw 02X]0 TL;V) and mej%,(o [isr) be arbltrary processes
such that m+MeL CS‘ZXJO BE s Vi
From (2.12) it follows that :

St )« mlt)  miE) —n (t) = v(0) - U & S (v +Aqx+—g (u ) f)ds
+ m(t),

for all t e [0,T); cu-a.8. .
By using here the energy equality in the form (1.9-02), we are
led to : :




S
(2.14_) \v(t)+m(t)+M(t)—u)\(t)l e \v(O)-u | + 25 v+ Au,
+ -p (u ) i v+m+M—uA)ds + . 25 (v+m+I\-uA dm) +emy,
for all tEfo,Tl: w-a.s.

Next _ - : X

t

t
S v o+ Au, ~f,v+m+li-u,7 ds + S (v+m+M-uA,dm) + %<m>1‘; -

' n § O
e SR LTG RN Sosa(s,v-i-m-i-_l‘ﬂ)ds>/g0()0(s,J/\(s,uA(s)))ds -

+ %lv(t) £ m(t) + M(t) - uk(t)\z, for all telo,?]; w-a.s.

By virtue of (Hg-—iii),(z.S) and because ‘_)\G]O,l] the following
inequalities hold: :

A(2.l6) <f(s,JA(s,uA)))—a“Jl(s,u})“2 —_p(s)é,— Za“ulnz _bl(s),
&u,S)‘—'a-e-,' : :

where by (s) = 417,(s,0)12 + b(s),biel(0,1).
On the other hand one has:

(B.17) - eyl daliatel’

> for every x,yeH.

' By combining now the hyvotheses (H,-ii),(H,-ii) and the inequ=ali-’

ties (2.16) and (2.17) we obtain from (2.15) for m= -M and v = e

the following ineqguality |
2 ¥ 2 ¢ 2
lu)\(t)l 5 4(0"-2a)50nu)‘(s)l[ dsge(t) + 4]d] Solu}\(s)\ ds +
g7 % =0
K -
(2o18) ¢ 4SOI<—V2> e £yuy >[ds + 4\}0(111,6.31)[,
for a1l +€[0,T]; w-a.s.
whére
b : : : :
g(t) = 450(|<v0,7vo>[ + [<£,v 3| * I(]D(S’Vo” + }bl(s)l Yds +
o+ 4[5 (vy,d)| + 2[¢-M> | + 2|v (%)] + 2[v(o)—u0]2

and geL (D00, TR )
In the second member of (2.18) we make the follwing estimation :

Btk e e >[ds<l ~S»T” : +* 5 :
= & - S5 =V ok Ay
(2.19) 0 . t0 0 » U e o 0 Yo +f’&_ds £

& 2
+ Nu, (=)l <ds,
. 5*50 % :




e
where £2 = 6{(6-2a)>0, and then from (2 18) we get

4 4
E sup luk(t)l + (T= 2a)E‘fuuA(s)H ds € Cy + 4IdJE<fluk(sM2ds

(2.20) t€(0,6] 0
g i sup lSt(uA(s) am(s)i,
téKhG 0 m e
where C, = E sup g(t) + u—v +A¥ v +fn 23+,
1 Ttepo,m 12 ( =28 5§

By using now the 1nequallty (1.7) we have

4E sup |S (u)\(s) aM(s)) 12}3[ Sup |u/\(t)|\/<M>]<
teLoz, 0 1262 €(0,5] <

E sup |u (t)l ECQD>n,
53-2 He0.2 . .

and for d =V12 we obtain from (2.20):

(22 Eicsip u (t)[ &Cout CBS%E sup luA(e)lzds

£€00,8) 0 0€[0,s]
and
feizn) j (s)I°as 3 °l (e)
2622 E o, (s I 7ds g G E sup W, SEER ds.
41 970Gt i

By applying Gronwall’s 1nequa11ty s f( 25210 )5 the 1neque11tles
(221 );(2.22) imply:

a) E sup, lu (t)l Ce

(2.23) £€(0,T]

b) Ej Iy ($)01%at € o

(the constants C; are independent of A
Hence there exlst A y0 and uel (fZX]O s V)nLg(fZ 3 L (O TsH)) such
that .
e B
a) u, —u (weakly star) in Lz(rz;Lw(O,T;H)),
(2.249) n :

b) u, —u (weakly) in Lz(rzx]O,TE;V).
n

But L (fZXJO T(; V) is a closed linear subspace of 1.° G0, 20 ;V) and
then, since u,€ Ly (le]O D) Borcalll >0, uéL (@ )10 T(; V: )%
From (2.14) and (2.23) we obtain:
lim LX <ﬁA(uA),v—uA>dt =0
- A0
for every vew, R x0T V).

This limit just holds for every v€L (2 xJ0,T(;V) because
Wi(f2x]0,T(;V) is dense in L (2 x10,T(; V),cnd (B—ﬁl,ﬁ2 are hold.
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Hence by (B- ﬁ4) we have :

(2.25) llrrri i énf (Jkn(uj‘n)_) > %(u)

By applying the expectation in (2.15) for t=T,one obtains :

ap T
ES V' =, vemtll-u, >4t + ES <A(s)ql,v+m+M—u)dt + —Elm(T)\
(2.26) 0 - 0

+ FEW(0)-ug) 2 + Glvamal) 5 F(I,(eruy(er)))
and therefore

i i , ’
ES V' -Lyvemal-u, ydt + ES <q>,A*(v+m+Ml>dt + }Elm(’l‘)l2
0 0

(z.278 + -]ZElV(O)—u %(v+m+M) +ol EJ' N (t)lzdt
f(J (o) J Ej (<A(t)u Ll +o<!u,\!2)dt .
" The mapping
v . _
v——%ESO(<Av,V)+¢rv]2)ds

from LQGIXJO T[sV) into J-ovo,+e] is a proper convex lower-semicon=
tinuous function, and hence it is also lower-semicontinuous with’
respect to the weak topology on L CQX]O ol 7).

We assume now o= 0

Letting J= =k, 20 in { 2.27). we obtain (_.Lo—lll) for u._ from
(a2l \Tlie proof e eomplieitie:.

Remark 2.9 a) In (2.27) it is not necessary to suppose =0 1if-
u}_(or ul_) is strongly convergent to u in LzﬁliO,T[;H). We
shall see’ that, under certain additional ordering hypotheses ,

one obtainsthis strong convergence of uy. :
b) In general the weak solution is not unique (see Example S
Remark 2.10 &) Theorem 2.7 can be extended with no essential ==

changes in thevﬁroof, to the case in which -V .is-a smooth strictlyw=. 4 -

convex separable reflexive Banach space, A 1s a nonlinear operator
satisfying the assumption (1l.11), and the mapping

: i
(2.28) v*—~7EjO<A(s,v(s)),z(s)-v(s)>ds

is an upper-semicontinuous function LZGQX]O,T[;V) into J-oco,+w],
for every Z¢;L2(nx]o B )iee (Bromsi.1 X and 1.2 are also true for
such a space V - see [15], II Partie Chap.II).

b) If V has the properties specified'in Remark 2.10-a, and A is a
nonlinear operator verifying (1l.1l) with «=0, then the following

problem has at least a solution:



TG
(Py) uwe L%C?X10,T[;V)r\LZ(Q;L&YOQT;H))
ulw, t eD?(t,.) (qht)-a;e.

P
(P3) ES <t =f & AQE, VemENDE, v+m+M-u>dt + zm\m(T)\
0 :

+ 3alv(0)-ug|? + lveman)ydlu)

for ailil veWt(Qx]O,T[;V),mePL(O,T;H) such that

(2.29)

m+lteL2 (nx]0,TL; V).

. The proofs for Remarks (a) and (b) repeat word for word thait of
Bhe2.7 with ﬁ Eeiv) = acf(t,v) up (tothe relation((2.25). Then
we pass to limit A=) —0 in (2.26) for (a),while for (c) we first
use the 1nequa11ty<A(t u, )y V+m+M-u ‘><(A(t v+m+ll) , v4m+M-u,> and then
we pass to limit. -

2.3 "Almost weak" solutions. In orderuto find a maximal element

of the set of weak solntions we should need some hypotheses of
noncorrelation which would be dificult to verify on examples.That
is why we abandoned this idea,and,instead,we have sought a majorant
of the set of weak solutions which is a solution for'Eq.(2.9) in a
certain sense,cuite close to the weak one.Thus we justify the
introduction of the concept of "almost weak" solutions.

Definition 2.11 A stochastic process u is said to be an "almosi
weak" solution of Eq.(2.9) if :

(1) ueLZ(2x10,1[ V)

(ii) Eu(t)eDg(t,.) a.e. on [0,T]

i3

(2.30) (iiz) EX <v' +Au~f, vem+ll-uydt + lE\m(T)\2
0

+ 1E\v(o)_uo\2

i -
7 Sof(t,uv(t))d j(f(t Bu(t))at, for all me (0,T;H),

veW, (Rx10,T[ ;V) such that m+Mel czxzo B Ve

Remark 2,12 1If the process u is an "glmost weak'" solution such
that ‘ '

(2.31) 7o(t,3u(t));ET(t,u(t)) s N

then it %5.2 wealk solution. Por example o137 y(t v) = IK(t)(V) (see
Remark 2.2(II)) and if u is an"almost weak" solution such that
u(w,t)ek(t) (w,t)-a.e.,then u is a weak solution.

Theorem 2.13 Under the hypotheses (Hl,w1th = O)(H ) and (H N
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Ba. (2 00 = ceih least an "almost weak " solution (the. varlatlonal
problem (2.30) has at least a solution).
Proof. As in the proof of Th.2.7,at the begining -we assume R
arbitrary. We are going to specify later in the proof the moment

when we shall take o = O.According to the proof of Th.2.7 the
approximating equation

Y Alhky %\3}(”6,53) = Ef
62,22
7, 00)s=eBul, . LoLpsl)s)

in which a, satisfy the properties (B),has a unique solution
eW(O,T;V).
Moreover

a) {&J0<1<I}is bounded in L2(O,T;V) ﬁ”(O,T;H);
b)  there exist Anio’ﬁeLz(O’T?V)ﬂﬁQYO,T;H) such that

(25 0m) - 12(0,T;V) (weakly)
n

y3~__,§'§ in ﬁx(O,T;H) (weak star);
n
c) V(t)€D?(u,. t-a.e. in [0,T].

These assertions may be obtained dlreCulV too. Now consider the

Uil

anprOX1mat1n5 equation ?

: : . e A : ' |
e avy, + A(t)\&dt - ;@ﬁt,xx)dt = I(t)dt + ax(t) ; é

YA(O) =u, ,

where y, is the solution of Eq.(2.32).
By Prop.l.2,Eq.(2.34) has a unique solution v _ReItCQﬂC TL; V)N Ea o
aL2 Cﬂ.C(O T3H)) in the following sense: !

(&) + {ato)w (o) Hp (=))as =
: N + S V ds - =
(2.35) N 5 S + ﬁ)\ Sy S S

15
= u, + S f(s)ds + M(%),
0]

for all ©€f0,7]; w-a.s. in 5.

After we take the expectation in (2.35),the relations (2.232) and
(2.35) yieiai:

(2.86) Ev}\(t) = 3:\(40).

A bt s® ' i
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Let veWtQQXIO T V) and menE(o TsH) arbltrary processes such that
m+MeT,? x0,0 V ), Erem (2 35) it follows that

v(t)+m(t)+M(t)—v (t) = v(0)-u +j (v!+av +.}PA(YA) ~f)ds+m(t),
and by using the energy equality (Prop.l.l) we get

: j 2 ik 2
toian) B[V (4)+m($)+1(t)-v, ()] =-2-EIV(.0)~uO\ £

5
! il 1. N2
‘ + E50<v L S%yk)-f,v-&mﬂﬁ—\g\')ds + -éu\m(t)\
Next by (2.36) and (B) we have :
t 4 t | 5
=Bl M-wYads + E| (J Yasg\ @(Zv)ds.
5] <5 B(Fa) vemeti-ny 2 + B @3, (75))a0¢] ganas

The boundedness of Ty, and the relation (2.37),where we put v = v
and m = -M, imply in the same manner as in the proof of Th.2.7 that:

| £ %
(2.39) . Elv, (%)l =% E')(OIIVA(S)llzdSSCl + Cl,fOE\VA(S) ? as,

- where the constant C, is independént o A
Consequently, Vv, i1s bounded in L GQX]O T[ ;V) and there exist
AV0, GELE CQX]O T{;V) such that:

LT 12(nx10,TV;V) (weakly),
n 4

i) v L°x10,70;H) (weakly),
: .

Ev, = yi._ﬁisEﬁ = §”in}L2(O,T;V) (weakly).
n n

3y using the relations (2.37) (2 36),the boundedness of vy ,and the
density of W, =)o, Tl V) dn L GIXjO T(;V) we obtaln

T
g2.41) lim 5 SRy Ev-y'>dt =0
L EEe e %> i >
for every veLiﬁQx]O,T[;V).
Hence by (B—P4) it follows that
(2.42) 4l Bt iy SN, :
2.42)  1lim infES t,J. (%,y dt>j tﬁ):j (t,E0)at
AﬁéO &f ’)n ’An /O$ i O? 4 :
On the other hand from the relations (2.37) (2.38) we have
¢ s i 2
] ™
ESO<V -, vem+l-vy > dt + Ejo<vx,A (v+m+M)Sat + gm{m(T)\

L 1 ' T
2.4 1 ~u |2 o s il
(o TR -Q-Er}}v(o) e S(ﬁ( s +o{E$O{v_A(t)f dt)/gogr(JA(J)\))dt
S (<Av >+l [2)at
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Now we assume ol= O,
Letting A=) ,—>0 in (2.43) we find that T is an "almost weal"
solution of Eq.(2.9), that is to say 4 is a solution of the
variational problem (2.30). This finishes the proof.

Remark 2.14 Remarks 2.9 and 2.10 are also valid for the "almost
weak" solutions. ”

§3. Existence of the weak and "almost weak" solutions

when A is o - coercive.

-~

3.1 Hypotheses. Throughout this section we shall suppose that .

‘the Hilbert space H is ordered by a nonempty closed convex cone C.
In addition,we assume that the cone C satisfies the following
properties

P (e)  © = {uen:(u,v)y0 for 211 vee §

(02) (u+—v+;(u—v)+)zo for every u,veH,

where u’ is the projection of ueH oﬁto €
In general the assumption (3.1—01) does not imply the assumption. .
(3.1—02). Indeed, for H:RB, =t (s z)t z;O,x2+y2—z%§O},u:(l,@,—l),
V:(O,l,O),(cj)‘is verified but (c,) does not~hold.

If we denote u~ = (—u)+, then.(a+,u7):0 2nd u=u-u" for every
ueH. The space V satisfies the hyvotheses: from Section 2 and

(3a2) utev for every ueV

Example 3.1. Hypotheses (3.1) and (3.2) axe easiiy verified in
the following situations :
a) -~ LE fe 'keI}IcN 1 giah orthonormal basis of H and {A,) ,&EI}
is a sequence of real numbers such that O/)q$l for every kel, tnen
denoting TV"‘Z:JK(V ek)e we can take

g {ueH:(u,ek);o,-for 211 keI

v

T(H), NIVl = |v]

b) If D is a bounded open subset of R™ with a sufficiently
smooth boundary, we can take H=L (D) C= {ueL (@ (s 0k anent <in i}
and V=HT S, o T HE (D), or V= {ueH (D): U =0, el sufflclently
smooth} eiich ;

Now we assume that A(t),te[o,f], in Séction 2,has the additional
property :
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(3.3) <h(t)vt,v><0 for every veV; a.e. onulo,T,

and that for the function'y>there exists a family of operators, ,
which verify the conditions (B) and moreover

(3.4) 43]:\%_)\(”5,11) —j]i\afb(t,v),(u—v)'l}ao :

for all u,veV,tel0,T], 0<A<M

Example 3.2 a) For f and f& from Remark 2;2(II) (f(t,u):IK(t)(u),

; ﬁ)(t;u)‘:ﬁ(tru)) if

o a) <p(t,v),u"> » 0

b) <p(t,u) - p(t,v),(u—v)"B >0

for all w,veV,tel0,T], then the condition (3.4) it is satisfied

because
Gpa) - 2, () = Fepa)-piv), (wm)®
+ELZ v (u=v) 550 “

b) If 7n{9,i}9—aH is a measurable function such that there exists
vdeW(O,T;V) with the property

vo(t)sw(t) case.on T

then for the mapping T(t’V)ZIK(t)(V)’ where K(%)={veV véy(t)},
(H,),(B) and (3.4) are verified by taking Pl(t,v)zp(“c,v)z(v— Coat
(dee Bxi3.202) ). '
. epllr ViH and «¢(u) %\u+l2,we have af(u)=a+,JA(u) = I%i u
@-‘{A(u) = X(u—J)\u) = -%:—)1 and by taking ﬁl(u)z ,\alf)\(u)‘ ZI:)\—)T u’,
RHZ)’(B) and (3.4) are satisfied. ' v
: g 2 : :
é).If V:g:R andAY(u)‘;‘élu+( + ;]_G%QJ(u),aeR, then by taking

+

_..u— ’

i ' - =
P}(u)= Aafﬁu) Z.Au++(u—§i;f)a—xu ? ,(H2) (B) and'(3.4) are also

verified.

We shall prove subsequently the existence of weak solution and
"almost weak" solutions under weaker coercivity conditions dn A
(A is d-coercive), than those of Ths.2.7 and DAl

Hence,let

e il A BT(t,u_(t))dt.é‘f(t)dt + am(t)

u(0) = Uy

where
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(Hi) A satisfies the hypothesés (Hl) amnd (3.3);

(Hé). ¢ satisfies the hypotheses (H2), (B (3a4)y

(Hy) -uel?(®,¥ ,pH), £ 12(x70,1(;V*), Wer?(0,T;H).

3)

3.2 Weak solutions. Theorem 3.3 If the hypotheses (Hi), (Hé)
and (HB) hold, then Eq.(2.9) has at least one weak solution
w L2 (00 S (1, T

For the proof we first give :

Lemma 3.4 In the aésumption of Th.3s3 the solutions of . the
equations

1 ' |
e duy(t) + A(t)u,(t)at + S'P}(t,u)\(t))dt = f(t)dt + am(t)

u}(O) = U,

have the property

(3:8) inf; KA¢M then u)‘(w,t)suj}_(w,t) for add Gef0,8] s cJ=a.Ser o
Proof (see also (14]). Since quLi( X0 L%GQ;C(O,T;H))

we have

OWa

-
4 (5) Cwo+h = Low. +4) = £
= A( ,w5+ﬂ)+ Agfb,%ﬁm) f

WA<O) = U
and
(3.10)  weL2{;¢(0,75H)), = QLJ%(SZX]O.,T[;V*)!.

where w, = W4M ",

By denoting
(B:11) ali = e-xtwg(t)

we obtain

d.Zx -t e—dt at o -t
I+ &z + A(t)(?k+e M)+ B ﬁz(t{e ot M) = fe
zA(O) = U, .

Hence

T&d(i\’z b Az, -2,) + A6) (7, -2,) + o p(’c e Z.+M)



-t :
(t,edtz +M) = 0

o

(3.12) =

ZA_%w)(O)

0,
where

: ot Y -dt
(3.13) Zo=D, = & (w)—viw) e (u)&—ujw) = Wt(,QX]O,T[;V) |
Let x¢pe . We multiply the equation (3 edi2 ) by (ZA—ZF)"' and
integrate from 0 to T. By using the hypotheses_(Hl—ii),(3.3) and

(3.4) we get
i . ‘
GSO\\,(z,ws)—-_ZfJSﬂQd.s Ui
- and then

(3.14) ( Z‘A(QJ,S) < z}(w,s), ged.es ) WS

Now by (3413),(3.14) and u)\eL2(SZ;C(O,T;H)) we have (3.8). Q.E.D. :
Proof of The3.3 The proof is that of ThsDeT uitil =0 is

supposed. By Lemma 3.4 and (2.24) we find for "the full sequence"
U, that :

if )—0 then:
(3:15) a) u,—u (strongly) in LQ(SZX]O;T[;H)
5) n—su  (weakly) in LZ(SIXKO,T[;V)

by using the following abstract result (see (8] -§6.12,Prop.3).
If (X,l.]) is an ordered normed linear space such that OgugVv
implies yungnvil, and if Xu,u)\;»O}CX has the properties:.

(i) there exists 210 such that u)\__—\u in X (weakly);
n ;

(3.»16)4 (31) Asju,'implies W U 5

(idii) uguy for all Xx»0

then lim uy = u in X (strongly)
20

In our case we take X = L2(§LX‘JO,T[';H) with the order v, <V, o
Vl(w,’c)évz(w,t) (wyt)=a.ee

Now by (3.15) and Remark 2.9 we obtain that u is a 'weak solution
of Eq.(2.9) and the solutions u, of the approximating equations
(3.7) converge to u strongly in LZ(QXIO,T[;H) and weakly in
1270, ;V) vhen A—>0. This finishes the proof.

——— R ———
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3.3'"Almost weak" solutions. From Temma 3.4 where M=0, £ is

substituted by Ef and uj by Eu, we have . ‘
TLemma 3.5 Under the hypotheses (H’,Hé,H3) the solutions of the

equations

1 o8 Lt
(5.0 y+ ACE) Y, (8) + 2 pA(%,7,(0) = Ef

y]\(o) = EuO
have the property:
(3.18) if @<Agptlien yA(t)é%M(t) in H for every G058 Jhs

Now we can state the following result:
Lemma 3.6 Under the hypotheses (Hi;Hé,H3) the solutions of the
equations . :

, av, (5) + A(t)v,(8)at + %f&ﬂt,yA(t))dt - fat+dn(t)
(3.19) ‘

VA(O) = U,

have the property:

(2,20)  EEGakc Lo then vAQg,t)gY@(ugt).for every t¢[0,T]; w-2.8.

Proof By (2.36) we have B,y (t) = yﬁ(t) ond by (3.19)

|

e A ( 2 ok -—-_‘_'L. (- ...j"‘_‘x’-’ <7
d—(v)\ -‘/’U.) =+ Akt>(vf\ ?A)”"-E _,‘“' /:-EM‘\{M) Jl[)A(A

(v -9) (6) = 0

I
(0}
m

fal

N
—

&)

=

<
*
~—

But the equation il Al 6 )R
()= ©

" has a unigue solution v e W(0,T;V). Consequently, V)-Vu is a

deterministic process and then, for,AéyA
vh(t)—ju(%) = ECVA(t)-gM(tﬂ = Evk(t>—Eg#(t) =
= yA(t)_¥M(t)g.o, for all +t€[0,T];wW~-a.8.

This finishes the proof. e
Theorem 3.7 If the hypotheses (Hi’Hé’H3) nold, then the eguation
(2.9) has at least one nglmost weak'" solution. '
Proof. The proof is the same as that of Th.2.13 until it is

assumed o =0. e can pass to the limid in (2,03 ), WhenXER is -arblbgers
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if v,— @ strongly in L°( x10,7(;H) for A — 0. But according to the
proof of Th.3.3 and Lemma 3.6 we have this strong convergence.
That completes the proof.

§4. Moximal solutions.

By ¥ we denote the set of weak solutions and by‘fa the set of .
"glmost weak" solutions of Eq.(2.9).

We have seen that in the hypotheses (H with: =0 HZ,J ) (see
Th.2.7 and 2.13) or in the hypotheses (Hl’HZ’H3) (see Th.3.3 and
37) and:f are nonempty. ,

inorder to find a solution which in a certain sense meximize the
sets F and j;, we focus our attention on the process U from Th.2.13
(or Th.3.7T for real arbitrary ot). ;

We shall suppose that

(441) %(tav—'u-&) < Y(tyv)y

for every t€l[0,T] and u,vev.
Let y, and v, be the solutions of Eqs.(2.32) (or 3. 07 ) “and
Egs.(2.34) (or 3.19) respectively. :
Lemma 4.1 If the hypotheses (Hl withwi:O, Hpy H ) or (H H! ”3)
.and (4.1) hold and wé denote w, = exp(-at) (u-v,) where uefuf’ then

Bf <6 ,w>at Ly [ omect =l
NRC +-Xujoe </3A(t,y/\),9>dt>,ESOL<A(JG)WA,G>+

{4.2) + a(wA,eX]dt, for alk eewt(rzx]o,T[;v),e(T)zo, such that
6, t)20 (W,t)saies if vel;  or Eo(t)>0 t-aB.47 ueifé.

Proof  We denote z,=v,-M. From (2.34) (or 3.19) we have
dz '

A 1 e
(403) EEEQ ¥ A(t)VA + '}'\P)\(t,yl\) S=NE
: z,(0) = u,
and
dz,
(‘hﬂ_ z,& L (Q C(O LGS e a-f-(._L (£ %70, . )

s i

Multlplylng Eq.(4.3) Dby v+m+M-—u, where veil, (N x10, (V) and
me M2 (0,T;H) such that meMeL (2 %10, TC;V) and

vimell € D(P) if ued,
or

Bv € D(§) if ued,,

we obtain




—05=

T it
a5) ES(,Z& i v %\[S)fyk)’ v+m+1¥T-u><1t = ES <, vim+ll-uydt

0 0
But ‘from Def.2.4% for uefwe have
T cieol

ES <f,v+m+M—-u>dtsEj <V AU, veml-uydt + %}'«J]m(T)\2 i
(4.6) 0 0 .
3 %Elv(o)-u 12 +§f(v+m+M) - %(u)
‘ 0
and: from Def:2.11 for uefa :

T aE .
Eg <f,v+m+M—u>dtsES <V'+Au,v+m+M-u>dt + %E]m(’l‘)\ -
0 0 - :

1 2 : S
+ 5F [v(0)-u, |° + SB(EV) = éi(@.

The relations (4.5) (4.6) and (4.7) get %o:

(4.7

-
: el = +e°(tAw -1 (y,),v+m+l-uydt + 1}3- m(T) 2
(4.8) 0 A XY - BAENE D 2

+ %Elv(O?-uo[ 2 + %_(v+m+?£) o V%(u))/o

if ueS, and

T :
! - & v 2l . ,1;? 2
(4.9) « ESO<V -z)‘+e Aw) —5: §Y}),V+m+1»- u}dt + 3o lm(T)\ :

+ %E[V(O)—HO[Z + %(EV) - i-s.(Eu)?O

if u<aj;. : . .
Let ze W, (x10,70;V), 2(T)=0, such that:

Zilon, )20 - (et )=a.e. 3Ff uﬁjﬂ,
or
Ez(t)%0 t-a.e. if u&fa ;

Thanks to the assumption (4.1) one can substitute v in (4.8) and
(4.9) by v - %‘z,(EJO), and so it follows :
: i

ey 1 |-
BA+ E% = EZ V. — Ez+m+M-u7c1t + Eg s¥osZioae 'gz>dt
0 0
dy 0 2 T, 2 i
(4.20) « + =E{5(0) = £2(0)-u |° - 5E|v(0)-u| +.E§LS5 STy ), 22at %
q : _
5 %Esoext<Aw)\’Z>d-t . » : e

Where B/\ is the left member in (4.8). if uef, or in (4.9) if 115:\2;.



G =
On the other. hand we see that

i
5 'l';
v(0)-=z(0)~-u_ + Gr ==z -z )ds
£ o 30 3 A

(4a,110) v(t)—%z(t)+m(t)—zk(t)

+ m(t5)

~and by Prop.l.l (the energy equality) we obtain.

1E1v(T)-F2(T)4m(1)-2, (D)) ® = ZEIv(0)-2(0)-u | *
Cas1sy i - :

ESO<V'— %z -z;,v-%z+mfzx>dt + %Elm(T)\2

sThe relation (4942), for z=0, reduces o,

lElv(T)+m(T)-z (T)|2 = lElv(O)-u {2 + EST<Vl—Z' v+m-z >4t
(2,13) D A 2 0 0 AA’ A

+ 3EIn(T)] 2.

By subtracting the equalities (4.12) and (4.13) member by member,
we infer that. Y

i
T s 1 e il
E_€<- =7 V- Z=z+m-z.>dt + E\ <v =2, ,~- Fz>dt
(4.14) 0 e . 50 el

2
+ FEIv(0)= F2(0)-u i ® = ZEIV(0)-u | =
Now from (4.10) and (4.14) we get .

5
e ol
B, + E\ <~ 7z ,M-u+z,>dt + ——ﬂ&_(s.(y sz
(4.15) N 2 A O-FA L -

Qe ot
gESOe«'<ALA,Z>dt
: xt
where M—u+zA~h—u+vA-m = isnas Wi

Let us multiply the inequality (4.15) by £ and afterwards make £¢—0.
We obtain:

E 2 o<t il L - ot .
(4.16) nS el o ot RES <FA(yx),z>dt - E§Oe % aw, ,z>d%

Which yields (4.2) by making the change z(t)~e te(t). This completes
the proof. '

Now we suppose that the space H is ordered like in the Section 3
and that the conditions (3.1) and (3.2) are satisfied.

Theorem 4.2 Under the hypotheses (Hi with.m:O,Hz,HB) or
(Hl,H H ) (4s1), and '

(4171 <Babt,m), )5 <0

for every ve DP(t, )54 (0,07, we V>0, it holds

(4.18) Eu(t)g EU(%) , t-a.e. for gl uéﬁfUJg,




o

where U is the "almost weak" éolution of Eq.(2.4) obtained as the
limit of the approximating solutions v, of Eqs.(2.34),or 3.19, for
A —0.

Remark 4.3 - The conditions (4.1) and (4.17) areiveritfied for
HP(t,u):IK(t)(u) and 8, (t,u)=p(t,u), from Ex.3.2(z2), if, in addition,™
we have :

(4.1 V=i e E(H) for every veK(t),ueV.

Since other examples we did not find yet,we put the problem of
maximal solutions first of all for such functions+.
Progofef Bhgds2 Tet O¢ be, the solution of the equation

- £6; (t) + 6. (t) = (Bw,(t))"
8 (T) = 0, 5. .0,T05.0

wﬁere WA(t)=e_dt(u(t)—vA(t)).

Hence
. t—s
3o
6 (t) = -E-jte (EW (s))tas > 0
6 ¢ W(0,T;V)
6 —(Bw,)* in 12(0,T;V) (whent ——>0).

Since
: - , S
E{F(G Wy >dt = S <6£,(Ew e S <9£,(EW ) >dt

0 0

=-ggne£1 dt - (ei(o) S(ea'(“‘”) Jat £ 0

We have from (4.2) for 6=6, the follow1ng.1nequality;

= . -
1 -t - : ™

(4.20) ;\jze g <Palts7,) 10> at > go[<A(‘t)(‘mw)\),‘92>H - «(Ew&,eE)dec :

and by passing to the limit {(§—0) in (4.20) we obtain:

T X
0> O“SOII(EWA)J"szt,

' by using (4.17) also the hypotheses concerning A.
Consequently (EWA)+=O, i.e. Eu(t)gEu,(t) t-z.e.,which implies
Eu(G)cmult) a.e. on L0401 0.E.D,

§5. Examples

EXample 581 We shall reconsider:in the eontext ,of this paper the
example given by Mignot and Puel in [14],in order to show that, in




generalifﬂlfa has more than one element;
Let V=H=R, A(t)u=u, T=2,
' o, te[O,-l[
(5.1)' Y(t) =
' e Sl ol
and K(t) = {v:veR,ve¥(t)}.
We have the equation

(5.2) {d“‘“*u(t)dﬁél}{(t)(u(mat 50
L ue) =0 -

The deterministic processes

if t € [0,

Za((t) = 0!
(5.3) s e A s
Gealic. g oweial

where a=l+logel and d;e[l,Z], arelweak and "almost weak" solutions
£or the Ba.(5.2). ' '
Indeed

g s .
(5.4) z, € LE (52 x10,20;R
(5.5)  zulb) =En e ki), stor allitEyfio, 2]

are obvious.
From (5.5) and Remark 2.12 it follows that if zéij;;'then gﬁile:fa
Therefore, it remains only to show that: '

5 g
(5.6) (B, m)=,) ESO(V'+zd)(v+m-qx)dt i %EIV(Q)IZ% %Elm(2)|252 0

for every vegwt(YZXJO,Z(;R), méJ%?(O,Z;R) such that Ev(t) ¢W¥(t) a.e.
on [0,2). First we remark that, since Ev(t) and ¥(t). are continuous
and continuous from the right on [0,2], respectively, the inequality
Ev(%) < W(%) holds for all te [0,23. '

For proving (5.6) we have:

.t .
v(t)+m(t) = v(0) + S v (aase i)
: 0
and by applying Prop.l.l we obtain:

2
sElv(2)+m(2)(® = ZEIV(0)1? + B [/ (wem)as + ZEim(2)1°
0




i 90
Hence
i - 2 2 2 !
(K£.7) Ex(v,m) = éE]v(2)+m(2)] 0 Eg %x(v+m—gx)dt = ES v'iz,dt
' i OF 0
But Em(t)=0,

2 2 ’
ES (qiv—v’qi)dt = Ev(2)—dEv(1)—E5 vdt;EV(é)- Ev(l)+2-a,
0 ,

a
and
2 2
ESOZ"L(m—ZOL)dt = % _o%_. s Dl e
n'Cbnsequently
: . | 5

(5.8) Ex(vgm);;%E]v(2)+m(2)[2+Ev(2) s % - Ev(1) - é_;>
o 2

yIE|v(2)em(2) |2ea - 55220

Thus we have shown that qiékfhjg for évery o¢&[1,2].
The approximating equation for (5.2) is the following :

(519). ul +u, + (u y(t))

u, (0) =

which has the solution

wl) = . irmpidpoen [
fhamo) > 2109 4) G
atad I%i(e 2 sry,ae ¥ ey s

The maximal solution is ﬁ(t):y{t).

Example 5.2 Let D be a bounded and open domsin of the Euclidean .

space R with a sufficiently smooth'boundary ,- and Q=J0,T[xD
Let H=L?(D), V=H (D) and A(t) V—>v* given by

<A(t)u,v> = J (t X )= U =——0x. +-2E: j'b (£ X)——-vdx'" i
l

(5.11) ,3—1 D e
+ SDa (t,x)uvdx

where aij,bi,aoe L ota) .
We assume that

there exists 950 such that

(£.12) N A
jzélaijfifj?GEZifi_

N
for alil \fER

¢
§
g
|
!
b
?
%’



Let Y:[O,T],———)L2(D) be a measurable mapping with the property:

(5.13) there exists v, e w(o,T; sHy (D))CC(O Ts L (D)) such that:
v, (t)sy(t), in 12 (D), for 211 te[o, T]

e denote

i 4
(5.x4) el =§ VeHo(D)3 vep(t) a.e. in D}

Bt 7) = (v-y(6)*

and we consider the equation

'é 5
(5.15) fé‘%dt'}‘A(’t)Ud't + 9 ];K('t)(u)dt =) fdt-l'-dM(t)

u(0,x) = uo(x)

where .féLZ(Q), uoéLz(D)) and 1\/1":$"L2(O,’.I.‘;-LQ(D))'\lsfaw Jiener process.

Since the hypotheses of Ths 3.3,3.Tyk.2 are verifiedy it .£follows
that Eq.(§.15) has weak solutions (f:#@) -and "almost weak'" solutions
(f :{@) and moreover,that there exists uGDD such that

Eu < Eu dice. on 8

(U is a maximal solution).

Hence the variational problem:

y %’.‘ o aou) (v4+m+M-u)dxdt +

o Ju O (vem+li-u) 14 5 2
(5.16) i?%:lﬁ SQal.JaX S X dxdl + zbj})lm(i,x)‘ dx

+ -ESD[V(O x)-—u (X)‘ dx SQf(v+m+M-u)dxét

for .alt -,Veyvtmxjo,_[;ﬁov(p)), meM?(0,7;12(D)) such that :
(\6_)' vmHL < 'a.e.. on .SZxQ

(5_-17) or
V) EvSy  a.e. .on @,

has a solution u GL%(_QX]O,T[ ;H(l)(D)) which satisfies:



]

A (Sl) ugWya.e. on SLxQ in the condition (Vl),‘or

(s Bugya.e. on Q in the condition (V Nie

5)
- The weak solutions (Y) are those that satlsfy (S ) and the "almost
weak" solutions 30) are those that satisfy (S E;
(5 16 st stochastlc problem of the Dlrlchlet type, with
unilateral constraints in the interior.
Example 5.3 If in Example 5.2 we replace HO(D) with Hl(D) we
shall have a stochastic problem of the Neumann type with unilateral

constraints at the interior, for which we also find a "maximal"
solution. - |

In the context of the same spaces for VJ[O T]—~>L (T) such that
there exists v e W(0,T; 1 (D)) v lrs Y(t), B(t) = {v eut(n): EIE]!
and P(t V)= (vh.—?%t)) the hypqtheses o PRI SSREaRY 4.2 are verifiecd
Thus the stochastic problem (5.16) with boundary constraints

(Vl) (v+m+Mﬂr§ﬂ/ a.e. mn.kaO,TXxF
(5.7 - or
| (Vy) (Ev) <y avelton’ JOT R
has a solution u L%G?X}O,T[;Hl(D)) such that:

(S1) W<V a.e. on xJO,T[x[ in the constraint (V T on
3 rsY

H(5.268) .
(32) (Eunrskk a.e. on‘]o T[ I in the constraint (V,).
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