INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250-3638

ON DISTRIBUTION SEMI-GROUPS OF SUBNORMAL OPERATORS

by
Ioana CIORĂNESCU
PREPRINT SERIES IN MATHEMATICS
No.1/1980

Med 16475

ON DISTRIBUTION SEMI-GROUPS OF SUBNORMAL OPERATORS

by
Ioana CIORANESCU*)

January 1980

^{*)} Department of Mathematics, National Institute for Scientific and Technical Creation, Bdul Pacii 220,77538 Bucharest, Romania

On distribution semi-groups of subnormal operators.

Ioana Cioranescu.

Abstract.

We shall prove that every distribution semi-group of subnormal operators in a Hilbert space may be extended to a distribution semi-group of normal operators in a larger Hilbert space; as a corollary we get that each exponential distribution semi-group of subnormal operators is an usual continuous semi-group of subnormal operators.

§ 1. Introduction.

Let X be a Banach space and A a closed, densely defined operator in X with domain D(A); an $\mathcal{L}(X)$ -valued distribution \mathcal{E} with the support contained in $[0,+\infty)$ is said to be a regular distribution semi-group (R.D.S.G., in short) of generator A if \mathcal{E} and A satisfy the equations:

(1.1)
$$(A-\frac{d}{dt}) * \mathcal{E} = \delta \otimes I_X$$
 and $\mathcal{E} * (A-\frac{d}{dt}) = \delta \otimes I_{D(A)}$.

An R.D.S.G. $\mathcal E$ is said to be an exponential distribution semigroup (E.D.S.G., in short) if $\mathcal E$ satisfies the following condition: there exists a real ω such that $e^{-\frac{\alpha}{2}t}\mathcal E$ is an $\mathcal L(X)$ -valued tempered distribution, for any $\frac{\alpha}{2} > \omega$.

Distribution semi-groups were defined and studied by J.L.Lions in [7].

Let us denote $Y = \bigcap_{n=1}^{\infty} D(A^n)$ and endowe Y with the Frechet topology determined by the norms $\|x\|_n = \sum_{j=0}^{\infty} \|A^jx\|_n$.

Then the following conditions on the operator A are equivalent: (i) A is the generator of a R.D.S.G.;

the resolvent $R(\lambda; A)$ exists in a logarithmic region of the form

 $\mathcal{N} = \{ \lambda \in \mathbb{C}; \operatorname{Re} \lambda > \alpha \log | \operatorname{Im} \lambda | + \beta, \operatorname{Re} \lambda > \gamma \}$ where α , β >0, YER are some given constants, and satisfies

$$\|R(\lambda;A)\| \leq p(|\lambda|)$$
, $\lambda \in \Lambda$

 $p(\lambda)$ beeing a polynom with positive coefficients.

(iii) the resolvent set \mathcal{S} (A) is not empty and the restriction of A to Y, A_{γ} , is the generator of a locally-equicontinuous semi-group $\left\{ U_{t} \right\}_{t>0}$ of class (C_{0}) in Y.

The equivalence (i) (ii) was proved by J. Chazarain in [2] and the equivalence (i) (iii) was obtained by T. Ushijima in [11].

The R.D.S.G. ξ and the semi-group $\{U_t\}_{t>0}$ generated by A_Y may be expressed in terms of the resolvent $R(\lambda; A)$ as follows:

(1.2)
$$\mathcal{E}(\varphi) = \int \widetilde{\varphi}(\lambda) R(\lambda; A) d\lambda$$
 for each $\varphi \in \mathcal{D}$

where $\mathfrak D$ is the space of all indefinitely differentiable functions on the real line with compact support , $\widetilde{\varphi}(\lambda) = \int e^{\lambda t} \varphi(t) dt$, and $\partial \Lambda$ is the boundary of Λ ;

(1.3)
$$U_{t}x = \lim_{h \to 0} (I-hA) x \text{ for each } x \in Y,$$

where the convergence is uniform with respect to t in every finite interval in $[0,+\infty)$ (see [8] and [9]).

Moreover, we recall that holds:

(1.4)
$$\mathcal{E}(Y) = \int \varphi(t) U_t x dt \qquad \text{for each } x \in Y, \varphi \in \mathcal{D}$$

(see [11]) and that the semi-group property is given by $\mathcal{E}(\Psi \times \Psi) = \mathcal{E}(\Psi)\mathcal{E}(\Psi)$ for $\Psi, \Psi \in \mathcal{D}_{\bullet} = \{\Psi \in \mathcal{D}, \sup_{\theta} \Psi \subset \Gamma_{\theta}, +\infty\}$

Further, the following conditions on the operator A are equivalent:

(i') A is the generator of an E.D.S.G. of type $\angle \omega$;

(ii') the resolvent $R(\lambda;A)$ exists for $Re \lambda > \omega$ and satisfies

$$||R(\lambda;A)|| \leq p(|\lambda|)$$
, Re $\lambda > \omega$

for a polynom $p(\lambda)$;

(iii') the resolvent set $\mathcal{P}(A)$ is not void and A_Y is the generator of an equicontinuous semi-group of class (C_o) in Y .

J.L.Lions did prove [7] that (i') (ii') and D.Fujiwara [4] get that (i') (iii').

Finally we recall that in [3] C. Foias studied distribution semigroups of normal operators and obtained the following result:

if \mathcal{E} is an E.D.S.G.of normal operators in a Hilbert space, then \mathcal{E} is an usual continuous semi-group of normal operators .

After these preliminaries on distribution semi-groups ,we shall now give some elementary facts on subnormal operators.

Let \mathfrak{X} be a Hilbert space; a linear operator T with domain D(T) is called subnormal if there exists a larger Hilbert space H containing \mathfrak{X} and a normal operator N in H which extends T (one says olso that H reduces T). This definition is due to P.R. Halmos [5]. J. Bram [1] did show that a bounded operator on \mathfrak{X} is subnormal if and only if for every finite sequence of vectors x_0, x_1, \ldots, x_n in \mathfrak{X} holds:

 $\sum_{i,j=0}^{m} \langle T^{i}x_{j}, T^{j}x_{i} \rangle > 0.$

bounded

He also proved that if N is a minimal normal extension of the \overline{V} subnormal operator T, then \overline{V} T \overline{V} and \overline{V} (N) \overline{C} (T) (\overline{C} (N) denotes the spectrum) .

Let $\{T_t\}_{t\geqslant 0}$ be a continuous semi-group of bounded subnormal operators in \Re ; then there exists a Hilbert space H \supset \Re and a continuous semi-group of normal operators in H extending $\{T_t\}_{t\geqslant 0}$.

This theorem was first proved by T.Ito [6]; recently a short, differnt proof was obtained by E.Nussbaum [10].

Adapting coveniently the method from [10], we shall extend in this note the above theorem to distribution semi-groups of subnormal operators and as a corollary we shall get a generalization

of Foias' result to E.D.S.G. of subnormal operators in a Hilbert space.

§ 2. Main result.

In all this paragraph X will be a Hilbert space.

Proposition. Let $\{T_t\}_{t \geqslant 0}$ be a continuous semi-group of bounded subnormal operators in X; then for each $\forall \epsilon \mathcal{D}$, the operator

$$\mathcal{E}(\varphi) = \int_{0}^{+\infty} \varphi(t) T_{t} dt$$

is a subnormal operator.

<u>Proof.</u>By a result from [10], Proposition 2, for each a > 0 and each function $f: [0,a] \longrightarrow X$, we have:

$$\int_{0}^{3} \int_{0}^{3} \langle T_{t}f(s), T_{s}f(t) \rangle dtds > 0$$

$$\sum_{i,j=0}^{m} \langle \mathcal{E}^{i}(\varphi)x_{j}, \mathcal{E}^{j}(\varphi)x_{i} \rangle =$$

$$= \sum_{i,j=0}^{m} \langle \mathcal{E}(\varphi_{i})x_{j}, \mathcal{E}(\varphi_{j})x_{i} \rangle =$$

$$= \int_{0}^{ma} \sum_{i,j=0}^{m} \langle \varphi_{i}(t)T_{t}x_{j}, \varphi_{j}(s)T_{s}x_{i} \rangle dtds =$$

$$= \int_{0}^{ma} \int_{0}^{ma} \langle T_{t}f(s), T_{s}f(t) \rangle dtds > 0$$

$$= \int_{0}^{ma} \int_{0}^{ma} \langle T_{t}f(s), T_{s}f(t) \rangle dtds > 0$$

where $\varphi_i = \varphi \otimes \varphi \otimes \cdots \otimes \varphi$, $f(t) = \sum_{i=0}^{n} \varphi_i(t) x_i$ and a is such that supp $\varphi \in [-a,a]$.

q.e.d.

We shall say that the R.D.S.G. $\mathcal E$ is a distribution semi-group of subnormal operators on X if for every $\varphi\in \mathcal D$, $\mathcal E(\varphi)$ is a

subnormal operator on X.

By the above proposition, it is quaite natural generalization of the notion of continuous semi-group of bounded subnormal operators.

Then we have the following

Lemma. The generator A of a R.D.S.G. of subnormal operators is a subnormal operator.

Proof. We start by using some arguments from [2] to get a convenient form of the resolvent $R(\lambda;A)$.

Let $0 \neq a \neq a'$ and $\theta \in \mathcal{D}$ such that $\theta(t) \equiv 1$ for $t \in [0,a]$ and $\theta(t) \equiv 0$ for $t \notin [-1,a']$. Denote $\theta_{\lambda}(t) = e^{-\lambda t} \theta(t)$, $\lambda \in \mathbb{C}$. Then, using the first equation from (1.1), we get:

$$(A-\lambda) \mathcal{E}(\theta_{\lambda}) = I - \mathcal{E}(e^{-\lambda t} \theta'(t))$$

Put Υ_{λ} (t) = $e^{-\lambda t} \varphi$ (t); then in [2] it is proved that for λ belonging to some logarithmic region Λ , $\| \mathcal{E}(\Upsilon_{\lambda}) \| \leq 1/2$, that is

$$\begin{bmatrix} I - \xi(\gamma_{\lambda}) \end{bmatrix}^{-1} = \sum_{n=0}^{\infty} \xi^{n}(\gamma_{\lambda}) = \sum_{m=0}^{\infty} \xi^{n}(\gamma_{\lambda}) = \sum_{m=0}^{\infty} \xi(\gamma_{\lambda}^{+} \times \dots \times \gamma_{\lambda}^{+}) = \sum_{n=0}^{\infty} \xi(\gamma_{\lambda}^{+} \times \dots \times \gamma$$

=
$$\lim_{k \to \infty} \mathcal{E}(\gamma_{\lambda, \kappa})$$

where $\varphi_{\lambda,k} = \sum_{n=0}^{k} Y_{\lambda}^{+} * \cdots * Y_{\lambda}^{+} \in \mathcal{D}_{0}$, $Y_{\lambda}^{+} = Y_{\lambda} |_{\mathcal{L}_{0},+\infty}$)

Finally we get using in the same way the second equation from (1.1) that $R(\lambda; A)$ exists in a logarithmic region Λ and is given by

$$R(\lambda; A) = \mathcal{E}(\mathcal{A}_{\lambda}) \left[I - \mathcal{E}(\mathcal{A}_{\lambda}) \right]^{-1} =$$

$$= \mathcal{E}(\mathcal{A}_{\lambda}) \lim_{k \to \infty} \mathcal{E}(\mathcal{A}_{\lambda,k}) = \lim_{k \to \infty} \mathcal{E}(\mathcal{A}_{\lambda}^{+}) \cdot \mathcal{E}(\mathcal{A}_{\lambda,k})$$

$$= \lim_{k \to \infty} \mathcal{E}(\mathcal{A}_{\lambda,k})$$

(we used the fact proved in [7], that putting for YED, E(Y+)E(4)=

E(Y+4), we get a closed densely defined operator such that E(Y+)=E(Y))

As for each $\lambda \in \Lambda$ and $k \in \mathbb{N}$, the operator $\mathcal{E}(\Phi_{\lambda,k})$ is subnormal, it is clear that $R(\lambda; A)$ is a subnormal operator on X.

Let $\lambda_o \in \Lambda$ be fixed and let N_{λ_o} be a minimal normal extension of $R(\lambda_o; A)$ acting on a Hilbert space H.Then $N_{\lambda_o}^{-1}$ exists ,by an argument given in [10], Proposition 3 and we give it for completness. If $\mathcal{N}_{\lambda_o}^{\perp} = \mathcal{N}(N_{\lambda_o})$ is the null space of N_{λ_o} , then $\mathcal{N}_{\lambda_o} = \mathcal{N}(N_{\lambda_o}^*)$ and $\mathcal{N}_{\lambda_o} = \overline{\mathcal{R}(N_{\lambda_o})} \supset \mathcal{R}(N_{\lambda_o}) = X$ (\mathbb{R} denotes the range). Since $\mathcal{N}_{\lambda_o}^{\perp}$ reduces N_{λ_o} and N_{λ_o} is a minimal normal extension of $R(\lambda_o; A)$, $\mathcal{N}_{\lambda_o} = H$ and therefore $\mathcal{N}_{\lambda_o} = \{0\}$. Hence $N_{\lambda_o}^{-1}$ exists, is closed and densely defined and is a minimal normal extension of λ_o -A.Hence $N = \lambda_o - N_{\lambda_o}^{-1}$ is a minimal normal extension of λ_o -A.Hence $N = \lambda_o - N_{\lambda_o}^{-1}$ is a minimal normal extension of λ_o -e.d.

We can now give the

Theorem. Let \mathcal{E} be a R.D.S.G. of bounded subnormal operators in a Hilbert space X; then there exists a Hilbert space F containing X and a R.D.S.G. \mathcal{E} of normal operators in H such that $\mathcal{E}(\varphi)_X = \mathcal{E}(\varphi)$, for each $\varphi \in \mathcal{D}$.

<u>Proof.</u> Let N be a minimal normal extension of A,associated as in the Lemma to a fixed $\lambda_0 \in \Lambda$, acting in a Hilbert space Ho X. Then $G((\lambda_0-N)^{-1}) \subset G((\lambda_0-A)^{-1})$ and by the spectral mapping theorem, it results that $G_e(N) \subset G_e(A)$ (G_e is the extended spectrum). Hence $G(N) \subset G(A)$, whence $G(A) \subset G(N)$. So G(N) contains the logarithmic region A and for $A \in A$ holds:

$$\|R(\lambda;N)\| = \|R(\lambda;A)\| \le p(|\lambda|)$$

Therefore, by the equivalence (i) \rightleftharpoons (ii) ,N is the generator of a R.D.S.G.of normal operators in H, given by (1.2):

$$\overset{\sim}{\mathcal{E}}(\varphi) = \int \overset{\sim}{\varphi}(\lambda) R(\lambda; N) d\lambda \qquad , \ \varphi \in \mathcal{D} \ ,$$
 where by the Lemma, $R(\lambda; N)$ is normal. It is clear that each $\overset{\sim}{\mathcal{E}}(\varphi)$ extends $\mathcal{E}(\varphi)$, $\varphi \in \mathcal{D}$.

Corollary. Let & be an E.D.S.G. of subnormal operators in a Hilbert space X; then & is given by an usual continuous semi-group of bounded subnormal operators in X.

<u>Proof.</u> Let N be a minimal normal extension of the generator A of acting on the Hilbert space H X. Then by a similar argument as in the above theorem, it results that $R(\lambda; N)$ exists for $Re \lambda > \omega$, where ω is the type of \mathcal{E} and is majorized by a polynom.

Hence, by the equivalence (i') \iff (ii'), N is the generator of an E.D.S.G. of normal operators in H, $\mbecause{1mu}$. By the result of C.Foias, $\mbecause{1mu}$ is given by an usual continuous semi-group $\mbecause{1mu}$ $\mbecause{1mu}$ of normal operators in H.

Let $x \in Y = \bigcap_{n \ge 0} D(A^n)$ and $\{U_t\}_{t>0}$ the equicontinuous semi-group of class (C_0) generated by A_Y in Y (see (iii')); then by (1.3) we have:

 $U_{t}x = \lim_{h \to 0+} (I-hA) \qquad x =$ $= \lim_{h \to 0+} (I-hN) \qquad x = T_{t}x \qquad .$

As Y is dense in X,it is clear that $\{U_t\}_{t>0}$ is a continuous semi-group of subnormal operators on X which by (1.4),coincide, in the distributional sense with $\{E_t\}_{t>0}$

q.e.d.

References.

- 1. Bram, J., Subnormal operators, Duke Math. J., 22 (1955), 75-94.
- 2. Chazarain, J., Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal., 7 (1972), 386-446.
- 3. Foias, C., Remarques sur les semi-groupes distributions d'opérateurs normaux, Portugal. Math., 19, (1960), 227-242.
- 4. Fujiwara, D., A caracterisation of exponential distribution semigroups, J. Math. Soc. Japan, 18, (1966), 267-274.
- 5. Halmos, P.R., Normal dilations and extensions of operators, Summa Brasil.Math., 2, (1950), 125-134.
- 6. Ito, T., On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I, 14, (1958), 1-15.
- 7. Lions, J.L., Les semi-groupes distributions, Portugal. Math., 19, (1960), 141-164.
- 8. Oharu, S., Semi-groups of linear operators in a Banach space, Publ.R.I.M.S., Kyoto Univ., 7 (1971 72), 205-260.
- 9. Oharu, S., Eine Bemerkung zur Charakterisierung der Distributionenhalbgruppen, Math. Ann., 204, (1973), 189-198.
- 10. Nussbaum, E., Semi-groups of subnormal operators, J. London Math. Soc.(2), 14, (1976), 340-344.
- 11. Ushijima, T., On the generation and smoothness of semi-groups of linear operators, J. Fac. Sci. Univ. Tokyo, 19, (1972) 65-127.

