ON NECESSARY CONDITIONS FOR STOCHASTIC CONTROL

PROBLEMS

by C. VARSAN

Abstract

We are concerned with necessary conditions for stochastic
control problems whose dynamics are described by nonlinear Ito’s
equation. It is shown that general methods used in deterministic
optimization problems are applicable in stochastic case also,
even if the diffusion coefficients are depending on the control
variable. The adjoint system defines a non-anticipative process
with a prescribed final value.

Generally, maximum princinle and adjoint system in sto- ..
chastic control problems are equivaleﬁt with Euler’s inequation
(see (22)). ;

gl. Introduction

We consider a class of stochastic differential equations
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1) acftxui)ds> g @txuawa @, tele,el,  xer’,
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with given initial condition .x(0)=x_& R", where B(t)=(B,(t),...

..,Bk(t)) is a k-dimensional Brownian motion and the control u
is a stochastic process over the probability space%:a ,GF, P} J
FEor each (t,x,0) € (to,tl xR xR™ ,Qf aqé_gi are random veétors
and it is marked by exnlicit dependence on buegg As admissible

controls. we allow any non-anticipative bounded process

; m
U(t)=(ul(t),...rum(t))é U, where U is a convex subset in R .



Assume that £, ay satisfy some growth and Lipschitz con-
dition in x uniformly with respect to (W, t,u)e S x[to,tilx U, and
as random processes they are non-anticipative for each (x,u)e-RnxU

with respect to G -algebras E;LQGF; generated by\{p(s),ta&sgt% .

For an admissible control u there is an unique non-anti-
; ; u ; : . : 52
cipative process x verifying (1) in integral form a.e. on .
whose trajectories are continuous functions.
As the functional to be minimized we consider

t
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where G and L verify polinomyal growth conditions.

In {21 it has been given a general characterization of
the optimal element in terms of the dynamic proaramming equation.
Unfortunately the method used in 121 is not abplicable in our case
since the control variable is entering in diffusion coefficients.

When éonsiderinq stocﬁastic control equations with
diffusion coefficients depending on the controi we are facing

: dmuolh
with two alternatives: to use eitherfggagack controls or open
loop controls given by non-anticipative processes. In the feed-
back smooth control case there is a Pontriagin’s maximum principle
given in [3] bﬁ£ the adjoint system doesn’t define a non-antici-
- pative solution.

Deterministic optimization methods in. stochastic control
probléms have been used in [}1 where by convex analysis the
Pontriagin maximum principle is obtained for the problem where
G=0, the functional L is convex and the sy;tem<il) is linear in
O

In our opinion, the Pontriagin type variations (or Mac




Shane variations) are not suitable in nonlinear étochastic control
problems since the drift and difussion terms get different orders
of variation corresponding to the same.variation of the control.

Moreover, @ven if diffusion . .coefficients aré?ot de?endinq
on the control variable, the adjoint system is not defininq'é
nonanticipative process (see BL.

The most suitable control variations are those gméll in
LK)—norm.

In this paper we get first order necessary conditions
converting the optimality property into the Euler inequation on
a Banach space (the Lagragean form) and using the Wiener integral
reprezentation of a square integrable martingale we obtain the
adjoint system and the Hamiltonian eypression of the optimality
(maxiﬁum principle) . '

'Since we use local variations in original problemg the
maximum principle has .a local form.

In a forthcoming paper introducing relaxed controls in
stochastic control problems we shall get the global maximum

principle.

éZ. Some definitions and notations

In order to list the conditions under which (1) has an
unique solution we need to state more pnrecisly the problem we
are concerned with.
2l s
et Cr / : ; ;
On the probability spacezd»,f,PS a k-dimensional Brownian
motion B(t)=(B, (t),...,B (t)) te [t ,t;] with Bt )=0, is

considered and let SELQQZ be the increasing family of & -algebras

j&ﬁzuﬁzl by EB(S), téésétf. Denotezﬁk the U —algebra of Borelian sets



in Rk, S=g[?x[to,tl] and consider on S the ff—alg_eb'ra product

N 3
,}_/@£1 generated:by the.sets C=A.x.B, Ascd , B a Borelian set in
ftsutyds
Let égbe the G -algebra consisting of all measurable

sets E.6 }“g 531 such; that

1) 5 =l [ o] seopeionlle @ eor fon we
11) B = (ol 0, ) Bl for all telt,,t ]

m

On the space.S x RP™ i+ is considered the G-algebra

QY ®Bn+m generated by the algebra S X‘Bn+m'

‘Assume that £, ,gi:S ble Rnﬂp._____g, R" are 05 x'\BnﬂLm—measurable.

By definition, for each (t,x,u)é[to,tl] xR?xU fixed the
functions £, g, are :It-measurable and therefore fg;)',,/x,u) ; g:{»,'c.,’);’iu)
are non-anticipative.

Assume that G:QxR™_, R and L:SXRnﬂEW.; R are ?@Bn and
5 ®Bn+m measurable respectively. ‘ 5

For each s&S, £, 9sr G and L are continuous in (x,u) and

they have continuous first derivatives in (x,u)eRanm such that

: S
Hl) the matrix valued functions c—2—(s,x,u) ;. —(s,x,u) are

?
QS@J?}H_I_m—measurable and n’%—g(s,x,u)“ +“%‘—'—E—(s,x,u)ié1<,

(%) fsy x,;m) €65 & R" x U for some constant R)b, where h=f, gy

H,) {lh(s,0,0){[é L (¥) seS, for some constant L50,

1!

where h=f, g;i
) | 2 2h -
H,) “ ,:)—E(s,x,u)“’ +[( %a(s,x,u)“ . he(ss il éL2(1+ =B+ l(u“P) :
(¥) seS, for some constants L2>O, p>l, where h=G, L.

The simbel ([« || = means the nerm of a (nx1)-matrix considered




o nl
as . a vector in R,

The admissible class of controls consists of all bounded
QS—measurable functions u:S —» U, where UC_:Rm is a convex set
and denote it byfaé. By definition any}Je@éis a non-anticipative

—~

process with respect to the family ‘%3£§. of G —algebras. .

Under the hypotheses (Hl) and (Hz),'for each uéQb, there:
exisfs a non?anticipative process x" (t) with continuous-trajec— 
tories, verifying (1) in integral form a.e. (P) with respeét

to ¥e, and E sup [x*(t)l <o .

F &
tol;t ~t1
The uniqueness of the solution x? must be understood in
the following sense: any other process x verifying the same con-

ditions as x” satisfies P|sup ix" () -x (£)l>0{=0. Since (¥,) and
kst ;
1

(H2) imply a linear growth condition
3) i h(s,x,uﬂ}é<f(1+ iixy ) (¥) seS, for h=f,gi i

where E;max(L1+L fuli , K), the existence apd uniqueness of the
solution x" in (1) is shown in a standard way (see for example
[l pan.

From ‘fiow. on we shall omit to write-cexplicitely the depen-—:-

dence of &) .

We construct a sequence

€ i

xo(t): X e Xj+l (t) == jt f(‘z:,xj (e) ,ulz) )d1;+i:1 Jt g ('C,xj ey i) )aB, lek
fo) Lo
ks 2 S bwia

and it follows E [* ix (t)l “at<¥, E [x

Jatl to
et -t )} : 5
i for any j;1, where Mymax (2K (1+t, -t ) (1+ |x_}{ )i

j+l(t)—xj ()l “<

~2 e ;
2R (4t =t )), Komasa(lh-tKamas uls)t . K) .
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Since
: > .
2 2o (e 2
igi uxj+1(t)—xj(t)h ¢ 2(t -t K 5 1\xj(t)-xj_1(tn] dt+
Z t
ek o
, i : s 5
+2 P RAVAYD SR YN -g, (2 ,x. =) 1 .
izz 2 [?l(z x5 (1), ue))-gy (€rxy (@) u(=))]as; O
we: find
: =
E (50297 (i 2orPreoselproliniynd (£) sxgulvei] e
sup | J+1 Xj | = 150 { J J-1 ;
tet, &
(0}
o {@(t e 17
29K° \E Wxy (£) =% l(t)\\ dt G € ,
4 = 3!
o
- where C=2K2(t1—to)(tl—to+4)
It follows -
Py, é [M(t -t )lj
P2 'sup = EEY = (e > ==l 3
)L t<tl\( o s e J!

and using the Borel-Cantelli Lemma we obtain that the sequence

_ j-1
xj(t)=x0+;§0(xp+l(t)-xp(t))

converges a.e. (P) and uniformly with respect to. t éﬁ}o,ti\
Denote x" the limit process and it willVa nQn—anticipative one

with continuous trajectories a.e. in LUGSQ. 2

t
By definition g 1{(xu(t)wm2dt<iﬂa a.e.(P) and the
e e s
integrals @
t
{ £ %), ueNde, {9, @ @ uE)d, (@
t S8 =

(@)



are well defined.

Moreover, for almost allu&ﬁa we have

Db e e ) et e,

j’?eo

Lim g, (t,%7 (&) ,ult))=g, (£,x" () ;u ()

J>e0

uniformly with respect to t‘fttortil and hence

1 ;
1
Lim. \‘gi(t,xj(t),u(t))—qi(t,xu(t),u(t))u 2 3t=0
in probability.'
Therefore x~ is a solution in (1) .
t :
: 2 2 i 2 :

Saneel Binjo.. - (E)| 3¢ €1+ Uz N )sEC S-E uxj(r)u dz , where the

FJEril
tO

constant C is depending on.E, (tl—to),_and the norm of the bounded:

control u, by induction argument we get

: 20 ] 2
E g{xj_l_l(t) | <c(1+ yx i “Vexp Clt -t ) .
Using Fatou’s lemma we conclude

" E hxu(t)“ %;C(1+ “Xo“ 2)exp C‘t1‘t6)

and therefore xu(t) belengs to Lz(ﬂb for any téfzio'tll :

Actually, we have

4) E sup [|x (t) <loo) for any integer 1, 131 .
tLt
=5

In order to prove (4) it is enough to consider 1 even.



Denote yj the j-component of x". We have

1
< k 3
£ (0 ugfac > 9y 4 (2 ) yu(2) B, ()

J =
i=1 to

t
At)==x_ .+

L= {:

o

‘and using HOlder’s inequality for p=1, q=—l~ it fol lews
_ =1

: e
Lo Al b &l i Y o : %3
(yj(t)) <5 ,onj+(t1 .to) g fj(u.,x () yuie )de +
) tO
t
k
axt lé’; ( g'«qi-éz,xu(‘c),u('z;))dB.(r))l1
i=1 J 1 .
£
Using (3) we get
1 u 1 u al:
5) gij(t,x () u e, fj(t,x @i A e L i
£ : 1. o it :
or some constant C3» 0, where m (t)= sup y. ()
J=1; %0 J
Tet
We conclude that
t 1: ' u e 1k
@ (e, x (z),u(x))dz{ C | (1+m (c))de
it t

O o]

Now, we shall estimate zl(t) in Lz(ﬁb, where

7) 2(t)= ) g, (e,x" (), u(7))dB, (z)

O

5 by o

Denote G.=inf |t é[to,tl] , 1z (B ?A}‘, gEl= (z)qij (z,% () ule))

A A
[to’QAI
NG
and Z. (t)= f < (€ u(‘) &) YdB: (2)
n A = i ‘gij Oy xpilg) usie A %
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e ‘ 1 i escoes
Em (t)501(1+ 1%l 4G, gt Em~ (2)de

)

and by Gronwall’s Lemma
Eml(tkéc(1+ ﬂxo“ l)

which completes the proof of (4).

§ 3. Some auxiliary results

Let (i&t)/ﬁ(t)) be optimal in the problem. defined by the

dynamic (1) and functional (2). For u&%{define
ug(t)=u(t)+£(u(t)—u(tﬁ, for ge[p,l],

Sincetwfis convex we have u259é and ug ‘ge@,ll“are uniformly
bounded. |

_ It is desirable to know the dependence on & of the solutibn

14

X, in (1) corresponding to u.

_Lemma il

Assume that (Hl) and (H2) hold. Let kb

.andwglbe the solu-
“tions in (1) corresponding- to the controls u_ and-u.

Then lim E sup uxb(t)—QYt)u 2

£-0 t&t1

Proof

We have



By definition Z, is bounded and

t
2 (E)= S( g, (&) dB, (%)
t

@)

Using Ito"s formula we get that

o )
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and E Zi(t)_is increasing in t.

By HOlder's inequality for pzi%i 3 q=%
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and hence
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Finally
§oi e i '
E 2z, (£)4C(D) & EgA(%)d14:UJ [ (1+Em™ (®))dg
(@) tO i
and by Fatou’s Lemma
0 1 £
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In, conclusion
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t 3
Xg (t) —;(t)= gt [.f (a’xg (2) rug’ (o) )J=filz IQCJ('Z) IE('Z:) )] dz +
o
o ot :
+f§1 i [gi(r,xf(t),ug(t))—?i(z,x(:),ugg){gdBi(c)

Since each stochastic integral is a continuous martingale we get

- ‘
C2(tt)E (| flzx (@) 0 (0))-£(c,X),T) | “dr+

E sup{ x, (t)-x(t) | 2
LT )
k T ' y 5
kS E g, (@x (@), )-g; (5,x@),4()] "de
il t
O -

Using (Hl) it follows
& t

-1
g(t)_;;(t) 1 § ha(”d”EZN ) E lut) ] %t |,
t £

hg(TYéEsup il x
&
=T o o

where N=8(k2+1)K2(tl—to+l)

and by Gronwall’s lemma

£
h (T)gazN 5'1 “u(t)—f{(t)}( 23t exp N(t,-t ), for all
t

)

The proof is complete. e300 f
Further we shall prove that xi(t)-fulfils

: o/ ==
8) xg(t)=x(t)+8x(t)+§16,t)

where lim sup E ﬂgié—-
Benledit £

r) “ 220, and ¥(t) is the solution of the
following stochastic equation with random coefficients



= g e

S e . T
9)  dx= A§t)x(t)+B(t) (u(t) -3(t)) at+ ;{cl (£) x (£)+D” (£) (u(t)-u(t) )]dB:.L (t)
: i=1

x(to)=0'

wherevA(t)g;f;(t,%(t), (v, B(t)=%§(t,'§<j(.t), T,

0
!

1iey=
€ (t)—(aX

5 % : ol % 58
e S (e}, nit))y, Dt xt),ule)).
2 :

To prove (8) we need the following lemma.

Let (S,g 7&)‘ be a measure space with OC/L(S)C"O

Lemma 2

Let fls,y)::5 = Rk—a R be,§ @ %gk—measurable and continuous

=5 ;
iniy for edch S lcE y,yn:S»--> Rk ke g—measurable and such that

~ - A%
i) ’ L (8;0) , lim y =y in L (S:/3)

Yr¥, €L, (S/pt nl_,aoyny 1 (S
1) £(s,y_(s))<h(s), sgS, where heL_(§,£)  (p31)

Then f(s,y(s)) is (§—measurable, FOT e ;'/, and

lim £(s,y, (s))=£(s,¥(s)) in L_(S,i)
e D

Proof

The proof is almost obvious. If y:5-— Rk"is (g-measurable

A :
then g(s)=(s,y(s)) : S—S x Rk is Qg—measurable, where on S x Rk

One considers the J/—algebraé\ @Q& generated by the algebra S X'(Bk‘

Since the familly of sets Cé'(g@?gk verifyin q—l'(C)QS is a




§ -algebra contalnlng the sets C=A x B, A(jd; BGESB it feollews
Sae SKB ) |

By hypothesis f(s,y) is c§(9<fgk—measurable and therefore
f(g(s)) is(§~.measurable for g=gn(s)§(s,yn(s)) and gﬁg(s)g(sfy(s)).
In order to prove convergence in Lp(S;ﬂ)lof f(gn(s)) wg notice
.that any subsequence of yn(s) contains'a sequence that converges
a.e. 90) o ;%s) and since £(s,y) is continuous in y we get the
same éroperty fo; fn(s)=f(gn(s)) and %%s)=f(3%s)). Using (ii)

and dominated convergence theorem we obtain the conclusion.

In order to get (8) we have to estimate #m

-

ov £
xét)—x(t)—ix(t)

h (t)= in LG ,p) .
3 £
Lemma 3
. M R ..
Assume (Hl) and (H2) hold. Eet X and x be solutions in
a/
(1) corresponding to u_  and u. Then sup E[(h (t)u = 0 for
- Lty
e ot .
Proof

Denote p__ (t)=<§<t>7qxét>-x<t)>, a’<t)474z<u(t)-a‘<t))) ;

-—L
‘Aa(tyu)/ax(t p /p(t)), B (t/K) (t,p (t)),

G =t )izf{i(t (t)) D Gt —’—*~(t o (E))
[ < ,pefv v /‘) ‘ /L .

By hypothesis f and g; are of class Cl e ) Dang it

follows .

10)  f(t, X (t), ML(t)) g ol x(t),u(t))*' 5 E? (t/z)(x (£)=X(t))+¢B (taﬁ)(u(t)-

'—u(t){]dfb



: Ied. : :
g ~/ o 1
1) g (e, (E)u, (0) gy (500 )= ) [ eap) (x (61 F D (1) (ult)-
—ﬁ(t)ﬂd/i

Using (19) and (11) we get .

x, (g)-xte) e
g5ijrioh (t)— ]5( g[(A (@)= +Be<z/u(u(fz,)—u(fc>)3d/§dz+

rr\'ﬂrr

i
I\ =

1

| i o Jeo bl
: . ; = - it S 0
Adding and substracting 'L Lg tAg(z ,/L)X(@)Q}Ll(%ﬁjél {ODOCE (z,’?u)x(,,)v(}a:{dBl(z)

(®)

in (12) we get

; i y

2oy e i1
.+ jizo{fOLAi(g(ﬂ)—A(zﬂx(@%pg% {Oi jolce(?"’/*).'c (z)_]xﬁz)d/.&dB (2)

i=1

t 1 i =k 1 :
- B (2, 0-Bl)] @()-0&)) %cm > ¢ § [[Plep-0t @] -
Ic: %%[g /1 d] i t{o[b /i ]
o _ o
—ﬁ(@))dﬁ«§dBi('z) :

All integrals with respect to nE [0,1] in (13) ar Riemann integrals
and they are defined a.e. in (@,’E)(:SB, x[to,tl/_‘ with respect to
the product measure dpP (8 dt.

Since the integrals in (13) are §:mea§ﬁrable for each
lléLO 11 (see Lemma 2) it follows that Riemann 1ntegrals define

Q?—mesurable functions. On the other hand all matrlces i (13 i fcdre

deflned by partial derivatives with respect to xl or uj and they

i, s, R




are bounded by the constant 2K (see (Hl)) and go to zero when £—0.
Therefore all Riemann integrals in (13) definefglmeasurable
functions bounded by 2K |h_(2)]f for the first (k+l) terms, by
ZK{(ECE)H for the next (k+1) terms and by 2Ki(u(w)ia(tn{ . for
the last «(kt+l). terms. It follews. that-all Lebeséue or Wiener
integrals in (13) exist. Denote by I the first kk+l) terms énd
by I the. last 2(k+1): terms in (13).
We.have

o b o
14) E Il “2x8 § Efh =) “a® ,
t

o

where N=(k+l)K2(tl-tO+l)

Let Ri(@), i=1, ..., 2(k#+l) be the Riemann integrals in TEL.

We obtain

’ T e
15) BRI e i = B § RO e,
i=1 t
(@]
where Nl=2(k+1)(tl—to+1).
2

Ans ‘R%( ) i fulfils the conditions in Lemma 2 with
Y | S \€ L S ¥

lim uRECE)H 220 a.e. with respect to the measure W=dP (® dt and
€ =0 —

we get
; 2 :
16) lim E JII || “=0 : :
£ 0
Finally, using (14) and*“(15) , FromE(13) we get
; el & =1y 2
17) E [\h (&) [ “<on [ B |h (=)l “det2E NIT
' £
(@]

and using Gronwall’s Lemma it follows



18) sup E jlh_ (&)l 24 2E )IIH exp 2N(t1—to)
tkt

The conclusions (16) and (18) complete the proof.

Lemma 4

Let (x,U) be optimal and assume that (Hl), (H,) and (H3)
hold. Then

t

ra—<x(t ), T e, D+ 5 (L(t X(6) ULy, X () +

é%) de(,Uru)*E %

( t x(t (t)) ’ u(t)—u(t))} dt 2°> 0
for any uéQé, where %" is the solution in (9) corresponding to u.

Proof

By hYpothesis the conditions in Lemma 3 are satisfied and

hence the x,. in (1) corresponding to u;(t)=g(£)+8(u(t)fﬁ(t))

i

o :
fulfils x .(t)=x(t)+x(t)+&(g,t), where llm E 1 =0 uniformly
&

with respect to té[ﬁo,til s
Since,uaeCué, we have
o
g (& )4 (x, ) _

9) lim - - 20
' €30 €

1f this limit exist (actually lsxgnough to exist -a sequence bn—é 0
J(x, su, )-gx,0) ;
such that the-l1im L exiists .
%f?o £q = 5

We shall show that the limit in (9) is equal to the expresssion

[L nJ n ~ ;
in the statement. Denote pe(t x(&+4( (t%ﬁdtﬂ, uﬁjjﬂ&hﬂt%ﬂﬂt)ﬂ




and since G and L are continuously differentiable in (x,u) we get
. : -
20) Gl (t))-c(E,))= %%?g(%wl)wxg(tl)—x(tl)), x, (£)) (8> du
T e £(t),Te)= :‘l‘r@-Ii(t (E4)), x (D)) +
X (8) 0 X () ,ult))= jgggx (2 Ells % (HrB)

X, (£)-X(t)
Using Lemma 3 we have lim : =x(t) in L2 (E,B) uniformly with
: : E>0
respect to té[to,tﬂ i -
By hypothesis (see (H ))?G }E and 12 fudifi lva polynomial
= Sl e

growth condition and since u. (/_.l—,t) is unifqrmly bounded for sc g,
/Aé{o,ﬂ ; Eé[(),lj it follows that they are bounded by C(1+ lixg}ta,,t),h' D)
where C0, 'p;l dre constants.

Using -(4) we get that the partial derivatives in (26) -and
(21) are bounded in L2 Q) uniformly with respect to teﬁ:o,tl-l,

g ,/Qé[o,l]. On the other hand for any seguence €n~9 O sueh that. .

xz (t)—'}\cJ(t)—'a 0 ase. 1w we ( 7 and uniformly with respect to té[to,tﬂ
; n (}

: G, v QL

it follows that,)—x(x(tl)+g(x£(t1’) —x(tl) ) fg‘g(trpa(t'/*” and

=

% (t1p, (t/)) converge to%%(f(t i %—i—(té () T (t)) g—ﬁw&’ (0) k), -

for all + £ I£o’tl:( and w4;17O(P(4’ZO)=O) uniformly with respect:

to ﬂ(é[o,l]. Using dominated convergence theorem we get

1 SRR
lim fé—ﬂg(f(tl)t/t(xg(tl)—;(tl)),‘x‘(tl))d >G(>¥<tl>> in L(()
£-—>0 o -

oy
1i L(t, (B, ), X(£)) e (£, X(0) T (), X(t) L, (S)
. J_I(I)l jé%-x. p£ /a) X > <)x X u X ) in I,

Ateoc (6635



SodB =

4
- lim §<'D [’E)/L (t/u)),u(t) u(t))d)b (f(t x(t) u(t)) Gt ) = u(t)) in [[5)7

€20 ©

x, (£)-X(£)=EX () _ ¢ ; Y ghomn,
Sinee 11%) —E;—ﬂ—~—€fﬂ—f”“ 0 in LZ(SBL uniformly

in talt tix leldlnq {5 (2005, 6(2Y). by £ and letting ¢>0 we get
the convergence of these expressions in Ll(ﬂb to

{Efic ZtEn, T(ta)7 amd
o

£, ' EEia et
S [ oL ¢ ut}),::/tb f’< — C £ ) ALlED, wlf)-alt) > de

respectively. The proofisis comnlete.

§4. Necessary conditions
" under the conditions in Lemma 4 we have

: tf
22) BLA Xtk E j [(ngtey, 2% (£)pat £¢by, (L) w(t) -a(e)>]atp0

for all %P(bé , where xu' is the solution in (9) corresponding to
the control % and A./gé(x(tl)), i (t) fglit ey u(t)),
Lt =25, X () Fe).

To obtain the corresponding maximum principle from (212)
and (4 ) is nd£ possible -since we don't knowﬁygt~what the adjoint
system is in our ‘stochastic problem. As we can Se€ Jlater even_if we
know the adjoint system, we cannot get directly the maximum princi-
ole from (9) and (22). First we have to replace (22) and (9) by the
corresponding Euler’s inequation fox all (x(ti,u(t);ait)) verifying
Ej{uxtf)ll 2l ceo, well. ST
a In order to get Euler’s inequation (a variational inequali
ty) sk s suitable to work on the Hilbert space of the square inte-—

grable and é;- measurable functions (classes) x:S-m,Rn, wherecgh is
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the 0 - algebra.é;completed with respect to the measure product
nggf and endowed with the usual inner product (x,yp =

= {E&@),y(t)>dt

Denz%e ﬁhe measure space (S,gdPOdt) ﬁy'g-and L2(§1Rn) the Hilbert
space.

Thier funetional E(X,x(tq))doeshft~have any meaning for-
xeL2(§,Rn) and we shall convert it into in integral form for o
solution'inv(9). ; .

Since 1 is iﬁé— measurable and Eu)4ﬁ1190 it fol lows
that there exists Qf— measurable functions hiéLZ(éan),

i l,...,k (see for examnle[}l) such that

-

23) A= ﬁ 0 Z J h, (t)dB, (t), /1 E,{] E(/\/F =Mty , '/l(tl)e/\d

=1
0

Since XW(t) verifies (9) in iﬁtegral form it follows °
t -
24) E<k, xMty))= fE(,{ A(£)TME)+B (£) (u(t)-ul )Iydt +
€,

}kigéfbi(t),c (£) () +DT () (u(t)- —a(t)))at
(‘,:4 {:0

Taking into account that ECA;E(t)E E (N, £()y/F)=
= BEO/TE ) S DERLA(E)  £(E)) A £(E) is 9;— measurable then
_changing accordingly the integrand in the first term in. (24) we
get
Pty
25) EQLXMtq))= £E<X(t),A(t)§u(t-)+B(t) (u(t), = W(L)pdt +
2 e i B ok :
25 j E(hi(t),.C (k) %o bE)iHDE () E)iis su b)) dt
;—,{ .0 A
- i s . ; ;
Hence E{X, X (tl) has an integral form given in -(25)
% ) i
forany colution X% in (9). =~ =
A o5 '

In nlace ofsthe funetional (22) we shall stake itsgequi-

valent expression
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26) E g &’ﬁ;{(t),?"(t)}dt +<,]'_\.’u(t),u(t)—?1/(t)>]dt20
,[c) :

for any uGQ{o, where X" is in (9), and

> 4
27) /ﬁx<'t) = () + A vaw) + ,Z Bloieeiy
& ;g
L (t) = (t)+\(t)B(t)+ Zhl(t)D (t)

t=1

The simbol "x" means transnosition of a véctor.
Now the functional (26) has the advantage that it is defined for
all XQL2(§:Rn). Indeed, A,B,Cl and D! are Lounded by the constant K
(see (Hl)), and L_, L farc I L2(S) (see (Hl) and (H3)); it fols

= S . =
lows that LX and Lu are in L2(S).

Define A,C : L2(§,Rn)_-.——>L2(§,Rn) by

- t L iRed
27") (Ax) (t)= /A(“c)x(?:)d‘):, (Cx) (t)= 2 gcl () x(#)dB; (T) .
£ (=1 ¢

[/

LetlméLz(g}Rn) be arbitrarily fixed.

We are looking for xeL2(§}Rn) such that
28) x'=rAx +9Ex+"m iin L2(§,Rn).

It ié‘easy to see that the solution® xi inc{28) is unique in
L(5,R"F #EKiEonreds]
The ‘definition of ‘a’/solution in (28) is made in a stan-

dard way.

T 45

Define a sequence{k }in LZ(S,R

P

29) X =m, xl=Axo+Cxo+m,..., e

: + o ey
D41 Axp an m,

We prove that {x,{ has a limit in L,(§,R") and this




e o
limit fulfily (28)3 By'definition
Xpe1 (£)=x, (£)= (A, () +(Cx) (1)
and hence Xoa] (BF= (£) 15 continuous in té{to,tl] for almost

all we |

By induction argument we get

2

. ' WA e
30) E 347 (B =%, () <K Tmy

where K =)K”(L+(t-t_)).

In addition

31) E sup '\xp+1(t)"x (t) 42K (t1-t, ,gE“x (t)—xp_l(t)uzdt +

tit, > e
1 :
L ZKZLE{,xp(t)—xn_l(t)ﬂ dt{k; (E fi¥p (8) =xp_y (B e
et ksl e L0830
Bl o
R " —— = c X
(p=1)! (p-1)!
where C = %Kiqmuz(tl—to), M = Kl(tl—to).
Using (31) we obtain
-1
A Ml ] 2 ,
P{sup [i%, 41 (Ehmx (t)H) =Hee) Sy MM, 29, ¢pac

't‘-ff

and from Borel-Cgytelli’s lemma we get thqt Eor 17%3 “)65?\522

where'PS%ﬁO, there is N(v) such that

(L

sun “ +l(t) -x (tﬂ 5

Hlt,

for any p,N W)

We conclude that the sequence {Xp(t)} pyl’

4
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XP+1(t) = Xo(t)+(Xl(t)—xo(t))+...+xp+l(t)—xp(t)/

converges uniformly in te[to,tl] v Eorgall QMESB\E;%.

Let x(t)= lim x (t)  for each (@,tlc (DQ) x[ty,t1]-

o0 .
By «definition,#x is é?— measurable, and the integrals-

< T

‘{(A(zj)X("é)d“é » [Cwix)de exist for all té‘[to,iti] and @¢ Q=52

- £

(4

Since{kn(t{Z converges uniformly in tél}o;tl] we get

t e © Z |
1n {a@)x @as £ A@x@)az , lin [clax @az=[C@rrmde
oo B e e o L, 3 Z

uniformly in té{?o,til for gl a)Elz\l%.
T, ;
i Thercfore ‘4f912)x003)dBi(T) converqges in probability
5 (= ¥
to ‘£C (€)x(2)dB, (z) uniformly in teLto,tl‘l :

S Letting p—c0 in (29) we obtain

x () =(Ax) (£)+(Cx) () +m(t)  for all W, )€ (1=t ;1.

By construction

o + e ¢
i P 2 | : i 2‘ D y 2
Ej“xpﬂ(”é)n d’é\@[JéEllm(Z)u ;dz+{j’Ez]AxD(z)“ dig o fE‘HCX'p(T’)” dc]
’[O o (74 2 éo '
and
22 4 2
E|ax, (£)|| LK (tl-—to)jf %, (@)1 “a,

v

t
BfCxy (0] Lx* [B)x, @) Pax .

D

Finally we obtain




) i

A ' |
(4;+l(t)= E”x +l(€” chgEum(@hl Cj;%(z)dz_,
5 el

where C23(K2+l)(l+tl—to), and by induction arqument if follows

¢ -
: , + p+1
. o) P (t=to)k 12

J E”Xp+l (Z)“ dZé(l'}'C(t"to)'f‘. se W )Cj E{,m{gm' dze
o 2 °

14

Using Fatou’'s lemma we conclude
+ ,- ik £

{ Biix (2)) 2age Lim fEuxDH(z)qzdzgc( Bjmi(z)| *d; exp C(t;~t,)
o Pﬁw t; “ ‘{-D

and hence XeLz(Ean) The proof is complete

Lt
Define (Bv) (t) fB(f)l(”’)dZ,(DV) (t)-ZfD (2)v(2) a8, (3) .
2

Lemma 5
Under the same conditions as in lemma 4, the conclusion

() helds: if rand. only if there exists neL2(§)Rn) and nonanticipati

ve such that

i +
a) Ej<L (t)x (t)pdt + Ef@(t) x (£) = (Ax) (t) - (Cx) (t) >dt =
=/

° for any x¢L, (§ rR™) ( A and C are defined in (277));

+
b) ELQL (t) ,ult) - u(t’)dt Ef%n(t (B (u-u ))(£)+(Dfu—z))(th>dt30
f ' j

T
v for any u el
W

A
where LX ands the eperaters A, C are.definedjin (2R), (27")..

e
In addition, there is an Ito process Q«t)— %O+¢[n65)dé+

-+ZEJL’(;)dB (@) isuech that y;é?f& ?%t ‘WG X Mi(t) Jis

7
=1 to - s X
ncnant1c1pat1ve M CL S,R ) » and

< (t ¥4t) M(t),%(t),U(t)),u- u(t)}»O for all uéUz a.e. (dPgydt)
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where H(tﬂf, M,x,u)=%f(t,x,u)fngiqi(t,x,u)+L(t;x,u)

(%, Mi are line vectors).

Proof‘
We proved that the conclusions in lemma 4 are equivalent
with (26) under the conditions x° is a solution‘in (9) .

The equations in (9) and (26) can be represented by
~J
32) T(xu, u-u)=0, l(x_u,u,—?f)ZO for: any ué%,

where 1 is a linear continous functional and T is a linear conti-
nuous operator from L2(§;Rp)xgw(§,Rm) to L2(§,Rn). With the above
notations (see lemma 4) T(x,v) =(I-A-C)x - (B+D)v and
i t
- | = ]
Jo(c ), o= E[i(Lx(t),x(t)') dE +l<Lu(t),v(t)7dt i
) 2

Since T(x,0): L2(§:Rn)«9L2(§:Rn) is a surjective one
(see (28)) we claim that applying a separation -theorem for convex
sets from (32) we get that there exists neLz(éjRn) such that

e ik

33) l(x,u—u)+n(T(x,u—Gﬁ);O for all xeLz(S,Rn), uéfZé

Indeed, define the convex sets Cl,C2 in R X L2(§3Rn)
Cl= (h'lo)r’l\o I C2= (l(Xlu_u)+£l T(Xlu_u)):xﬁLz (SIR ),USQé, £>Oz-

We have ClACZ'iﬁfotherwise one. centradices £(32)"

Moreover int C24y5 AbTe R L2(§:Rn). Since T(-,0) is a

surjective application we get that

i1 ; i:

e e B A A A AR AN A I



Lot

{'T(x,O):UXﬁél%z{y:ﬂyﬁ4g%, for<§>0 sufficiently small and-in additic

Lé(x,oﬂ<(r.for all“x“(l, if >0 is sufficiently large. Therefore
(x,9) xiy :HyU<J£QC2 and we can apply a separation theorem for Cy
and C, in R x L2(§,Rn), We get that there exist'%;o and/ﬂei?(éth)

such that
34)%41¢M>O,X(l(x,u-ﬁ)+£)7ﬂ(T(x,u—ﬁ))20 fonsall ue@%, xeLz(éjRn)

and s> .0,

We have K5 0 otherwise {=0 contradictinq (34) .

1

Hence we can divide by« in (34) and letting ¢ 0 we .get
(33), where Hj=;£;.. Since REI?(E}RH), there is a QY - measurable
function n such that n(s)=h(s) a.e. (dPE dt) .

Taking u=§ in (33) we obtain (a) and fof x = 0 we get
(b) . The sufficieny follows by‘adding (a) and (b).

Eherlast part in statement we obtain in the followinig
way ::. . Define k(t) k + ]!nG*)d% and we are looking for k eR
andg;;—nonant1c1pat1ve n- df;en51onal processes Hi(t), =y o ol
such that the Ito process ‘ '

k 4
35) p(t) k(t)+Z fH (2)dB; ()

L—‘f

fulfis pCL, (S,R"), p(t;)=0. .

Since Ek(t ) must be zero we choose k = B vfn(t)dt
On the other hand k(t ) 1s‘f” ~measurable and we get

1
the Wiener integral reprezentation (see for examnle [S])

(1
36 ~ e =[§ {Hi(t)dBi(t)

where Hi are n-dimensional non-anticivmative nrocesses.
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Define p(t)=k(t)- E(k(tl)§() and we qet (35)
Denote y¥(t) = ftB(o) (u(z)- ufz,)dz;+Zf D (&) (u( )= u("f)dB e=)
Since o(t ) =0, applylnq Ito’s stochastlc rule for compu-

tation of <b(tl),y (tl)> we get

1 k.

= Ekn(t),, W)yt = j&mt) B () (u(t)-G()y+2 i, (£), D' (t) ()~
L, (=1
0 : aE) )>]dt.

The conclusion (b) is equivalent with
. L .
kL (t)+p (t)B(t)+ZH (£)D* (£) ,u(t) u(t)>dt)0 for any ué%
7 t=1

[~

as
and recalling L  in (27) we:obtain (b’) whexre

o) —p* (1)) and M, (&) = BE () + n¥ (o)

The proof is complete.

The main result is contain in the following

Theorem
n o . &
Let (x,u) be ootimal. Assume that (Hl)'(Hz) and (H3)

hold. Then there exist. n—dimensional nonanticipative processes

YV(t), Mi(t), J =1 etk sueh that

k

a) ay= - 28, pue) Ko Sen+ 2 ny (0dsy (o)
r V
X

Wit :(%—f( (%) * -

and
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b)( S(Eap (), () x(t) u(t)), u—u(t))) N For® any uéU
d.e. in @, t)c Qx[to’tlj with respect to the measure dP‘@ it

Proof

By hypothesis the conditions in lemma ‘5 are- satlsfled=‘”
Since (b’ ) in lemma 5 is (b) in theorem. we have to prove that (a)
in Lemma 5 is equivalent with adjoint system.

W‘e'shall transform the terms in (a) using the reprezen-—
tation of p(t) as an Ito’s process (see (35)).

Integrating by parts we have -

c

3 & ]{mt /A(Z)X(")dt>dt =

Y
E(k(t i é A(t)x(t)at - E/(ku:) Alt)x(t)yat

(%
for any %L, & nt. 7 T,
Since /f (Z)dB (2) = ff ('z')dB (%) - ff (z:)dB (%)
using condltloned exnectatlon w1th respect to Ft we get

f E(n(t>, 2}C (2)2(2)dB, (z)) at =
b=wy "t‘

—/E<n(t ) § Efc‘(c)m)dBi[g;}dt-f 0
z

2-;

and

38) Ef<n(t) Z fc (fmx(z:)dB (@)D at =

= E(k(t4 , Z fc (t)x (£)dB, (t) D

for any x6L2(§,_Rn) 5
Using (37) and (38) , the conclusion (a) in lemma 5 beco-

mes
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.
EJ(L (t)+n(t) 1% (£)) dt+E f(k(t) A(t)X(t)>dt 5
/”A(t)x(t)dt . E(k(t ) Z]/C ()% (£)dB, (£)>= 0

o £/o

- E<k(tl),

for any X€L, (SR .

Replaeing ki(t) dn(39) by plt)= ijﬁ (z)dB (7) we get

‘el
1 T drog
40) E {x (%) ,A(E)x( U)thf@ﬂt)A«ﬂx(ﬂ)thZ{h{(UdB(t)
e (=1 %
4 jAwh<udt>
%
and using p(tl)=0.we obtain
s T
) Blk(ty), 2 Jetxwras, ()= -2 2 [, ©),ct@x()at

L (=4
o %

The equation (39) has a simpler form using (40) and (41

‘k |
42) EJ(L (L)En(t)+p (+)A(t)+22H (t)C (el x(t)\dt =0
t, : =1

for all xeLz(S,R )i

Therefore we have

b

43))£X(t)+n(t)+p (t)A(t%+§_H (e fe)=0
S v=4

a.e. with respect to dPg;dtv and R R

s ‘ t é i
44) Bt /n(z)dc+l/§ Z)A(z)de+ j L (g)dz+ 2_/h Z)C (z)d¢=const.
7k £ % G
where pozkdERn. ¢ 1 ¢
Recall that p(t)=po+_fn(w)dz+ éjj% (& )dB (z). and
(A4 z {o
L. is defined in (27). .

X

J
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’ A
Let A (t) and hi(t) be those that.define LX. Denote
{'
45)~)[) (t):\px (t) +)X (t), Mi (t) =Hi (t) +hf-(t) :

and from (44) by computation we obtain ..
bt
46)\/’(t)+ J%(Z)A(é)dm L,ZfM (v)ct (7) daz+ /L (z)d” .

k
JﬂM Gz)dB (z) f>— const.

(«"' v

By definition Y(t;) =X (t)) =£§G(x(t 19 % (see (23))
and (46) stands for conclusion (a) in the statement.

The proof is complete.

Remark
The conclusions (a) and (b) in theorem are equivalent .

with (a) and (b) in lemma 5 and with (#) in lemma 4.



= 30 =

RESE SERREE: RESHING GHES

}IﬁJ.M.Bismut, Conjugate Convex Functions in Optimal Stochastic
Control, J.Math.Appl. vol.44, 1973.
zi}M.H.A.Davis, P.Varaiya, Dynamic Programming Coﬁditions For
Partially Observable Stochastic Systems, SIAM

J.Contrelt vol .11, Ne. 2,973,

Zj]H.I.Kushner, On the Stochastic Maximum Principle: Fixed Time

of control, J.Math.Anal.Appl., vol.1l1l, 1965.

[4]1.I.Gihman, A.V.Skorohod, Stochastic Differential Equations,

Springer-Verlag,1972.

{5} i Theory of Stochastic Processes, vol.ITII,p.320,

Nauka, 1975.




