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ALGEBRAIC ANALYSIS OF THE TOPOLOGICAL LOGIC L(“)

by George Georgescu

The topological logic L(§ ) was introduced by
J.A.Makowsky and M.Ziegler in [8] and by J.Sgro in {15] . iIn this
paper we shall define the polyadic L(!.) algebras as adequate alge-
braic structures for the predicate logic L(I).

The main result of this paper is a representation
theorem for the polyadic IJ(E )-algebras (see(8] and{lé]). Another
result is an oﬁitting types theorem formulated in the context of the

polyadiC‘LLH)-algebras.

é 1. Polyadic L(8 )-algebras

In this paper we shall consider only locally finite
polyadic algebras éf infinite degree(See[?],[@]and[6]). We shall
suppose known the concepts, the results and the notations of[3] and
(e]. ‘

Let (A,I,5,3,E) be a locally finite polyadic algebra
pf infinite degree having the equalityE,Fof aﬁy p€A we shall denote

by J_ the minimal support of p, i.e. tae intersection of the supports

p
of p.

‘Let us consider a familiy ofwumany operations of A:




{I(i) A—>A: i€ 1}
such that for any i€I and p,q€A we have the following properties:

(A1) V(i) (pea)g V(i) (X(i)p > X(i)q),

(A2) I (1)pgp,

(a3) T(i)paT(i)g = X(i) (pAg),

(A4.) I(i)p € ¥(i) X(i)p,

rs) ¥(@)i =1

(A6) S(j/i) X(i)p = X(J)s(j/i)p for any €I,

(A7) If J is a support of p, then Ju{i§ is a. supporkt of. ¥(i)py

(A8) For any geI! such that o is rtnjective, we have

¢i(LiY)

E(i)S (@) = S(€) X(j) where @(j)=i.

Definition. A polyadic algebra (A,I,S,3,E) with a family

{I(i):iel} of unary operations will be called a (polyadic) L(g)-alge-—
bra if the axioms (Al)-(A8) are verified.
: We shall use the notation <A, NG i€I> o
If{a, F): iEI>, (A’, T (1) :iel) are two L( &)-alge-

bras then a morphism of L(Z:l‘)-élgebras
£: A, T(i):i€I)—>{n’, E(i):1i€I

is a morphism of polyadic algebras with equaiity f:A—> A’ such that
X(i)£(p) = £( X(i)p). OB

The Lindenbaum-Tarsky algebra- oﬁ the topological logié L(‘).
(see[8] ,[16]) has a canonical structure of L(l )-algebra .. The following
example of L(‘é.)—algebra corresponds to the concept of model for the

logic L( L.
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Let X be a non-empty set and © the Beadlean algebra{O,l}.
The set HomEns (XI ,0) of the functions XI_«->0' is a polyadic algebra
in the following way (seel6)) :

S(®p(x) = #(x7)
3(J)P(X)=\/{P(Y) 3YGXII Y‘I_J=X‘I'—J}

for anyv.p:XI—-)O ,TGII, J€I and xeXI. The canonical equality Eois
‘defined by .

0, At Xf#xj

E(i,3)4x) =
: e alad Xi=xj

for any i,jeI and 'xEXI. It is known that J is a support of amelement
p of this polyadic.algebra iff for any x,yeXI such that x\y=y\J we
have p(x)=p(y).
We shall denote by F(XI ,©) the polyadic algebra of the
elements p:XI-) © of finite support. .
: For any u€X,i€I and XEXI let (u/iz";be the element of

F(x!,0) defined by
x(3), if 3
((u/i)gx) (3) =

, if j=i.

TE (X,@) is a topological space, then for any i€I, we

shall denote by 1&§:F%XI,O)-—9-F(XI,0) the function defined by
IO(i)p(x)=l@>xi€Int{u€X :p(u/i)*x) = l}

for any p&F(XI ,0) and x€X .




(i)’:iGI> is a L( ‘.)-j-algebra.

Lemma 1. <F(XI,Q) . I@

Proof. We shall prove only (A6), (A?) and (nA8),

(A6) We have the equivalences

S(3j/i) ,Io(i)p(x)=l<:> Io(i)p(xo(j/i))=l
<= xjeIntfu :p((u/i), (xe(3/1))=1}

: I(j)S(j/i.)p(x)=l¢)ijInt{‘u: S(j)i)p((u/j)* x)=l}

o
L) xjeInt{u : p((u/jl)’;x)o(j/i))}.
But jq‘:Jp and
(/i) xe(i/iN | _53= (W/3), e (G/D)) W
for any ueX, therefore we have

pl(u/i), (xe(3/1))=p(((u/]) _x)e (j/i)), for any ueX.

It results that S(j/i) Io(i)p(x):lé,(j)S(j/i)p(x).
(A7)I§.D is a support of peF(XI ,0) then for x,yexI we have

xl;=vyl; = px)=ply).

From the implications:

X\JU{1}= Y‘Ju{i} => ((u/i)*x)\J=((u/i);})\J, for any u€X

= p(u/i) x)=p((u/i), y), for any u€x

it results that
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1;1)P(X)=Int{u': p((u/i)*x)=1}

=Intfu : p((u/i), y) = L= Ty,

Then Ju{i} is a support of L{;i)p.

(A8) Suppose that o\ is injective, then there exists an

SEAEECD
unique jeI such that g (j)=i. For any peF(XI,o)_and xeXI we have  the

-equivalences:.

CE(1)8(s)p (x)=1¢> x, eIntfu: S(6)p((u/i), x)=1}
o

<=>xi€Int{u : p((u/i%ex)oé)=l

S(g) X(3)p(x)=1<> I(j)p(x6)=1
OJ j > 03 p

<> (x6)jeIntiu: p((u/3), (xe))=1},

But ((u/i&}do€==(u/j)*(x8) then it results that

X(i)s(®)px)=S(E) L(j)p(x).
) 0

Lemma 2. Let a be a polyadic ideal of the L(R )-algebra
a2 pEhe in) . Then the quotient polyadic algebra A/a is an
L(:B)-algebra.

Proof. By the axiom (Al). we have:

E(i)pt I(1)e=1( T(i)p<> X(i)q) g A V(i) (perq) =
& _

=3(i)a (peq) =3(1) (p+q)

" Then we have

pzq (mod a) —_—-) p+tgea D3(1) (p+tg)ea =

= ¥(i)p+ E(i)gea=y ¥(i)p'=K(i)g (mod a).



Let (A+,I+,S ,3+,E+) be a polyadic algebra with equalitYand

Tc1t. We shall consider the I-compression of A%

A ={p€A+: I is a support of p} :
)
It is known [_6] that A has a structure of polyadic algebra
; _ -~
(A,I,S,3,E). Suppose that<A+, 1(1) :i€I> is an L(. §")-algebra.For
any p€A and i€I we denote X(i)p=Y¥' (i)p. Using the axiom (A%) we can

see that this definition is correct.

Lemma 3.{A, .E(i): i€I» is a L(§) - algebra.

We shall say that <a, ¥I(i) :iEI) is the I-compressionof{a‘t, . ‘.f(i):iC-I")
‘Let <A, ¥(i); i€I» be a L(%)-algebra, iCI‘*and
X", T(i) :iéf) a L(,E )-algebra such that A is a polyadic I - dila-
tion of A. If X (i)p= .I+(i)p for any p€A and ii‘:I.then<A+, ) :1€1%)

will be called a I* - dilation of <A,X(i):i€I).

Lemma 4. Let <A, E (i) :i€I> be an L(E.)—algebra and IcIT.

+
Then there exists an I+—dilation sl @) :i€I+>'of<A, X (i) :ieI> 5

Proof. Exactly as in the proof of the theorem 10.2 of

[3] we shall consider two steps.

a) Card (I+)=Card (I ). There exists a bijection{ : I+-> I and

AT=A has a structure of polyadic algebra (a*,1%,s*,3%*E*) (see (3]).
For any pGA+ and i€I' we put It (i)p="T(8(1))p.

We can prove that <A+, () ieI+> is a L(‘.‘)-algebra.

b) Card (I+)>Card (I). This case follows exactly as inD].

Let<A, J(d).: i€I> be a L(B.)-algebra annd - -




o

<{x*, ¥ (1) :i€1> an I'- dilation of <A, E(i):i€I> . If K = I*- I and
" ane S,3,E) is the polyadic algebra obtained by fixing the wvaria-
bles of K, ther; A+ is a L(8)-algebra by puting 1.1'(i)p=‘l+(i)p for
any peA+ and i€TI. . 4

' The L (8 )-algebra <A+, I’ (i) :i€I> will be denoted by

{A(K), I(i):i€I). A(K) will be called a free extension of A.

Lemma 5. Let (A, E(i):i€I) be a L(f )-algebra and c a
constant of the polyadic algebra (A,I,S,3,E). Then we have the equali-
ties .
a)-=ElihelG) = cj) (1) - for ifiie

b) e} Elip =scli) BCLNs/)p, if i¢Jp.

Proof. We shall use the proof of the theorem 10.17 of
[3]. Consider a free extension A(k) of A and let Dy-beagthe ideal which
corresponds to the filter generated by E(k,c). In [3] it is shown that
A—> A(k)—=> A(k)/n is an injective polyadié morphism. In accordancé
to Lemma 2 it results that A(k)/n is an I;(.E)—algebra and
A=> A(k)/n is a mofphism of L(’é‘)-algebras. If k is the constant of
A(k)/n induced by k then c = -l-clA (seel3]).
Since j¢i'it results from (A8) that S(k/i) v.I.(j)=,'Z.‘1(j)S (kx/1i) ,
i.e. k(i) X (3)=% X(j)k(i). From this it results ai: A

For every peA we have in A(k):

S(k/3) X (3)p = Z¥(k)S (k/3)p (k¢qp)

S(k/i) “B(1)S(i/3)p=.%(k) s (k/i)x W (i/j)p=
i Ik)s (k/j)p.

therefore we have k(j) I(j)p = k(i) §(i)S (i/j)p. Then we obtain b).

Lemma 6. Let <A‘, ¥(i) :i€I> be a L(B )—-algebra. T1hen



there exists a L('.‘f)-algebra <A', X(1) :iEI> such that

(i) A’ is a sich polyadic algebra,

(ii)a, E(i):i€I> is a L(H}.)-subalgebra of <A, 1(i):ieI).
Proof. Exactly as in [6], pPp.158-160.

§ 2. Representation theorem

For any polyadic algebra (A,I,S,3,E) we shall denote

by E(A) the following Boolean algebra

E(A) ={peA LI = & v

Representation theorem. Let A, K(i):i€I)> be a L( f)-a1-

gebra and M aproper Boolean filter of E(A). Then there exists a topolo-

gical space (X,{) and a morphism of L(E.) - algebras

@ . <A, x(i):iel)—-)(F(xI,O), 10(1):151)
such tha_t@)(p)=l for any pel'.

Proof: In accordance to Lemma 6, we consider a rich
L(l ) - extension <Al, CE (1) :iEI> of (A, 0 LGL) :i€I> . Let A be an ultra-
filter of Al such that"€A. On the set Y of the constants of Al we

consider the following equivalence relation:
cnd &) E(c,d) €A .

Denote X = Y/~ and let € be the equivalence class of

Y A 5
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ceY, If cvd, c,de¥ we shall prove that
c(i)peA &> d(i)pea

for any ieI and peAl. We recall that E(c,c’)=c(i)g¥(j) E(i,j),‘

where itj. For every ceY we have (seetjj, p.iOO):
c(1)p =3(1) (PA E(1,c)), i€I, peh,.
It results that
c(i)pAE(c,d)=c(i)(pAE(i,d))

=J(1i) (PAE (i, - C)AE(i,d))

d(i)pAE(c,d).

Since A is ultrafilter and E(c,d)€A we have

c(i)peal=> c(i)pAaE(e,d)eA
P> d (1) pAE (c,d) € A
<EShdE)pea.

I A : £
For any x€Y let Xx:I—> X be the function x+—> x(i).
Define Y: a1 —> F(XI,O) by puting

(DY () (=1 x; (i1)eeex; ()p €A
n

where {il,...,in} is a support of peA;. Exactly as inizlLp 005 it
results that Y 1is a polyadic morphism.

We shall denote



= igee
S:{{GGX:u(i)- I(i)pe A}; DéAl,ieI, Jpg{i}} -

For any i€I we define _‘I'(i):F(XI,O)—éF(XI,o) by
< .

puting
X (i)p(x)=1<.;:) there exists Ueg such that-
%.euc{lex: p(b/i) x)=1}
T a P W=
We shall prove that
. ; A : A
(2) Y (OXE)p)(X)= X' (1)Y(p) (X)
for any ieI, peAi and XexT. Suppose that {il,...,in} is a support

of PEAy, that {i,i_l,...,in} 15 g suppont -of  Kilps

We have the equivalences

.tp("l(i)p)(_}Q):l@?ci(i)xil(il)...Xin(in) I(i.)peA
&S x; (1) [I(i)‘xil(il) = .Xin(in)p €.
Jd (2 )‘P(p) (§)=1<:=> there exists Ueq such that

fievett: (o) (/1) x)=1].

Supposing ‘P( ‘T(1)p) X)=1 we have .

£ eff: ui)yrd xg (G)eeexy (ppesteq,

By exiom (’AZ) :




s

il(iix. GE R ST o SR Gl SO SR 6T o
;1 1L i, n ig l} Ty 0

then we obtain

U=§i:u() 'I(i)xil(il) ...xin(in)pea}g{ﬁ:u(i)xil(il) ...xin(in)peA}.
It results that
xevefl: wor) (/i) %) = 1%

i.e. I*(1)Y(p)(x)=1.
If X'(i)¥(p)(%X)=1, let Ueg be such that

x.evefl u@d )'xil(il) # .xin(in)pez&}.

In accordance to the definition of g, there exists reidy,

Jrg{j} such that U ={ﬁ: sl 3 I(j)reA&.For every ue Y we have:

a(d) T(Ireae ul) .Xil<i11"-xin(in>PeA ;

then
u(3) K(§ran@dxg (i) e..x; (pipeac uli) Wi5inean
n

From Lemma 5 we have u(j)~-X(j)r=u(i) ¥ ({)S(/j)r,then

(i) ( E(ISGE/D Ay (1y)e.x; (G)pe THISE/DRIEA.
1 n a e

_—

Since A4 is rich we have
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YO CRSA/Dar (). Gpes TEISE/Des

n

Applying (Ay), (A5), (A,) we obtain

VE) CTEISE/DrA TE)x; (Hy)...x; (1 )pes> T(E)S(i/d)r)ea.
; 1 n

But im a polyadic algebra we have V(i)agc(i)g for every constant c

and for every element g, then

20T (i)S(i/j)rAxi(i) I(i)xil...xi (in)pQ x. () Fli)s@/jiren .

L

A new application of Lemma 5 give

© x; (3) I(J‘)r/\xi(i) I(i)xil(_‘il)...xin(in)pe'—) Xi(j) I(jlrea,

But )?ieU:.> xi(j),l(j)reA, then we have

X5 (i)[l(i)xil(il) = .xin(in)peb,

Sile. WOE(E)p(R)=1.

In accordance to (A%), (A5), g is .a- basis of a topolo-
gy @ on X. Consider the L('.]:)—algebra <F(XI,O)-, I(i):ieI> defined
by the topology @ . . -~

We shall prove that

3} .I'(i)p(§)=l '@(i)p(g\c) for any peF(XI,D), i€l and fexl.

Since g¢c@, the following implication is obvious
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X ) p(X) =1 ilo(i)p(?():l.

If I@(i)p(§)=l then there exists Ue 0 .sucﬁ that
fevefl: plii/i), o=13,

But g is the basis of @ , then there exists Veg suéh

. that %;eveU. It results that X’ (1)p®R)=1.
From (2) and (3) we deduce that
@:q)‘A ) iery > EE 0] () €Ty
is a morphism of L( &)-—algebras.’l‘,he rest results from the definition
of@ .
Q.E.D.
The L( E)-morphisms of the form:

ﬁp . <a, T(i):i€Iy —> G0, l@(i) :i€I)

will be called L(% )-representations of <A, (i) :ieI>.

Remark. In the case when (A,.:[(i‘) :ieI) is the Lindenbaum-.
Tarsky algebra of L(-l.), the representation theorem is exactly the com-

pleteness theorem of L(B) (seelsl and[l_S]) o

§3. An omitting types theorem

In"Bl and [lS]itwas proved the omitting types theorem for

the topovlogical logic L( 5). A cylindrical version of the omitting

T R 11 PR A
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tyées theorem for the predicate calculus was given .by J.D.Mork an
{12].

The aim. of this paragraph is to ermulate and to prove
% an omitting types theorem in the context of tﬁe L(iii-algebras.

A type U(i) of the L(B)-algebra (A, ¥(i):ieId is a sub-

~set of A such that every element of U(i) has the minimal support§ i}.

We say that a L(.‘ ) -representation @ :A—)F(XI,O) omits
t_he type U(i) if for any u€X and XEXI with X;=uy there exists qéﬁ(i)
such that é(q) (x)=0.

A subset T of E(A) is consistent if the Boolean filter

of. A generated by T is proper. We shall say that the proper subset T

of A locally omits the type U(i) if for every peéA with Jp_C_,{i} we have
) 3if T‘U{S(i)p} is consistent, then there exists géU(l)such that
TU{Hi) (pa1q)} is consistent.
Theorem. Let {A, 'E(i): ieI) be a comntable L( ‘)-algebra
of countable degree. Suppose that TCE(A) is consistent and U(i) is a ° -
fype of A. If T locally omits the type U(i) then there exists a L(.n =

representation of <A, X(1) :ieI> such that

(1) 4) omits the type U(i),

(ii) d(p) =1 for any perT.
Proof. Let us consider a free extension (A (K), (i) :iEI)
of <2, TH) :i€I) whereK is countable.

We shall prove that A(K) has the following property:

(%) Foxr any reA(K) such that J. =& and peA (K) , Jpg {i}, sli TuirAH(i)é
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is consistent in A(K) then there exists qeU(i) such that
TU{rAg(i)(pA'\q)} . is consistent. |
If s=rap then we have rad(i)p=3(i)s. It is known (see .
[3]) that s=S(7)t where tenA, T is the bijection (kj,ij)e.=(k i) and
s is independent from {11,...,1 }CI We have also s—kl(ll),...,k (1 e
» From J(i)s=3(1)kq (i;) O SN E SR 23: [CH 2 (C S RpE o )t it re-
sults thélt TU{H(i)a(il,...,in)t}. is consistent. Since T locally

omits U(i) in A then there exists g€U(i) such that
TO(1) @, ... i) tan)}

is consistent. We shall prove that TV {3(1) (sA-\q)} is consistent. If

not, then there exist ul,...,unGT such that
UjA .. .Aun/\a(i) (sang)=0.
Denoting u=ujA...Au, it results that 3(i) (uAasang)=

=ua3(i) (smg)=0, then we obtain uasatg=0. But Ju=¢, J_‘q={i} and

t=S(x)s then it follows
uatAtd =uAS (®) smg=S (z) (uasarq)=0.
It results that
uA3(1) ((ig,eeeriy) tang)=3(1) a(il, ) kuAtA1q)=0
then TV{I(i) (3(il, coerip) tmq)} is inconsistent. The coatvadic *lanis

obvious. Since 3(i) (sa1q)=ra3(i) (panqg) the property () is proved.

We can deduce that there exists a countable L( ¥)-algebra

1

&2%, 1(i):ieI) of countable degree such that

e R L AR
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a)(A*, 1(i):i€I) is a rich extension of {a, X (i) :iel),
b) The property (%x%x) holds in nE '

This resﬁlts by observing that the Halmos construction of
a rich extension of A preservés the property (%x).

Consider a countable set K ={kl,k2,...} of constants
of a* such that every element of A* has a witness {kjl,...,kj}CK.

We shall construct by induction a sequence TO=T§I';15TZS..'.
6f sﬁbsets of E(Ax). .

Since J(1)E(i,k;)=1 (seel3], Lemma 10.15). TU{AL) E(1,k )}

is consistent, then there exists qlEU(i) such that
TU{A(1) (gaE (LK}

is consistent. But kl(i)’\ql=3(i)'('\qlAE(i,kl)) then we can take

T1=TOU{kl(i)1gl} . Suppose that there exist ql,...,qneU(i) such that
T = Tou{kl(il)'\ql,...,kn(i)ﬂqn} :

is consistent. From the property (*%) it results that there exists

qn-!-leU (i) such that
n ;
Tu{gkt(ih T (EOROTE R0 SRS VS, LD K 1

is consistent. Then Tn+l=Tnu{_kn+l(i)1 qn+l} is consistent. It.results

that the following set

e :
\;_Jo T =Tofky (EPvay .. kg @vageei o}

: o0
is consistent. Let A be an ultrafilter of A:t such that u T“ CA,
n=0 T




==
Consider the following equivalence relation ~» on K

kek’e=> E(k, k') €A .

Exactly as in §‘,9_M‘.we can construct a structure of L(E‘i‘)—algebra

on F((K/N)I,O) and a L(¥:)-representation

w . a¥ — AR ) - O

The L(E ) -morphism A—> Axwg-—) F((K/N)I,O) verifies the

conditions of the theorem.
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