INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250-3638

ALGEBRAIC ANALYSIS OF THE TOPOLOGICAL LOGIC L(T)

by .

George Georgescu

PREPRINT SERIES IN MATHEMATICS
No.21/1980

INSTITUTUE WATIONAL
PRINTIPICA SETEMBER
STUNTIPICA SETEMBER

HUTUNIFEM TEG TOTAL PARTY AM

8200-0653 8221

A COLUMN DE LA COLUMN DE LA COCOLUMN DE LA COLUMN DE LA C

an appearable symmetric

CONTRACTOR OF CONTRACTOR CONTRACTOR

ALGEBRAIC ANALYSIS OF THE TOPOLOGICAL LOGIC L()

by

George Georgescu

April 1980

ADDIDITION ANALYSIS OF THE TOPOLOGICAL LOCAL LOC

VI

ndestach strout

SEPT SLANGA

ALGEBRAIC ANALYSIS OF THE TOPOLOGICAL LOGIC L()

such that for any isl and p.geA we have the following properties:

{ I 91 : A - A: (1) I }

q(1) (1) (2) (3) (3)

bra if the axioms (A1)-(A8) are verified.

by George Georgescu

The topological logic L() was introduced by

J.A.Makowsky and M.Ziegler in [8] and by J.Sgro in [15]. In this

paper we shall define the polyadic L() algebras as adequate algebraic structures for the predicate logic L().

The main result of this paper is a representation theorem for the polyadic L()-algebras (see[8] and[15]). Another result is an omitting types theorem formulated in the context of the polyadic L()-algebras.

§ 1. Polyadic L()-algebras

If (A, I(i): 161), (A', I(i):161) are two L(11)-alge-

In this paper we shall consider only locally finite polyadic algebras of infinite degree (see [3], [4] and [6]). We shall suppose known the concepts, the results and the notations of [3] and [6].

Let (A,I,S,3,E) be a locally finite polyadic algebra of infinite degree having the equality E. For any $p \in A$ we shall denote by J_p the minimal support of p, i.e. the intersection of the supports of p.

Let us consider a familiy of unany operations of A:

$$\{I(i):A \rightarrow A: i \in I\}$$

such that for any i€I and p,q€A we have the following properties:

- (A1) \forall (i) $(p \leftrightarrow q) \leqslant \forall$ (i) (\mathbf{I} (i) $p \leftrightarrow \mathbf{I}$ (i) q),
- (A2) I(i)p≤p,
- (A3) I(i)pAI(i)q = I(i)(pAq),
- (A4) $\mathbf{I}(i)p \leq \mathbf{I}(i) \mathbf{I}(i)p$,
- (A5) I(i)1 = 1
- (A6) $S(j/i) \mathbf{I}(i)p = \mathbf{I}(j)S(j/i)p$ for any $j \notin J_p$,
- (A7) If J is a support of p, then Ju{i} is a support of I(i)p,
- (A8) For any $G \in I^{I}$ such that $G \setminus G^{-1}(\{i\})$ is conjective, we have

 $\mathbf{I}(i)S(\mathbf{G}) = S(\mathbf{G}) \mathbf{I}(j)$ where $\mathbf{G}(j)=i$.

<u>Definition</u>. A polyadic algebra (A,I,S,3,E) with a family {I(i):iEI} of unary operations will be called a (polyadic) L() -algebra if the axioms (Al)-(A8) are verified.

heorem for the polyadic L(1) - algebras (see[8] and [15]). Another

We shall use the notation (A, II(i); iEI).

If $\langle A, I(i): i \in I \rangle$, $\langle A', I(i): i \in I \rangle$ are two L(1)-algebras bras then a morphism of L(1)-algebras

polyadic algebras of infinite degree (see [3], [4] and [6]). We shall

f:
$$\langle A, T(i) : i \in I \rangle \rightarrow \langle A', T(i) : i \in I \rangle$$

is a morphism of polyadic algebras with equality $f:A \rightarrow A'$ such that I(i)f(p) = f(I(i)p).

The Lindenbaum-Tarsky algebra of the topological logic L(1) (see[8],[16]) has a canonical structure of L(1)-algebra. The following example of L(1)-algebra corresponds to the concept of model for the logic L(1).

Let X be a non-empty set and \bullet the Bæcean algebra $\{0,1\}$. The set $\operatorname{Hom}_{\mathsf{Ens}}(X^{\mathsf{I}}, \bullet)$ of the functions $X^{\mathsf{I}} \to \bullet$ is a polyadic algebra in the following way (see [6]):

$$S(\tau)p(x) = P(x\tau)$$

$$J(J)p(x) = \bigvee \{p(y) : y \in X^{I}, y |_{I-J} = x |_{I-J} \}$$

for any $p:X^{I}\to 0$, $\tau \in I^{I}$, $J \subseteq I$ and $x \in X^{I}$. The canonical equality E_{o} is defined by

$$E_{o}(i,j)(x) = \begin{cases} 0 & \text{if } x_{i} \neq x_{j} \\ 1 & \text{if } x_{i} = x_{j} \end{cases}$$

for any i,jeI and $x \in X^I$. It is known that J is a support of an element p of this polyadic algebra iff for any $x,y \in X^I$ such that $x \mid_{Y} = y \mid_{J}$ we have p(x) = p(y).

We shall denote by $F(X^{I}, 0)$ the polyadic algebra of the elements $p: X^{I} \rightarrow 0$ of finite support.

For any $u \in X$, $i \in I$ and $x \in X^I$ let (u/i) = x be the element of $F(X^I, 0)$ defined by

It results that S(j/i) T(i)p(x) = T(j)S(j/i)p(x).

$$((u/i)_{\cancel{*}} x)(j) = \begin{cases} x(j), & \text{if } j \neq i \\ & \text{of gent} (0, x) \text{ tog to singular a all (ALVA)} \\ u, & \text{if } j = i. \end{cases}$$

If (X, 0) is a topological space, then for any iel, we shall denote by $F(X^{I}, 0) \to F(X^{I}, 0)$ the function defined by

$$\mathbf{I}_{\mathcal{O}}(i) p(x) = 1 \iff x_i \in Int\{u \in X : p(u/i)_{\mathbf{x}} x) = 1\}$$

for any per(XI,0) and xex.

<u>Lemma 1.</u> $\langle F(X^{I},0), I_{O}(i):i \in I \rangle$ is a L(I)-algebra.

Proof. We shall prove only (A6), (A7) and (A8).

(A6) We have the equivalences

$$S(j/i) I(i)p(x)=l \iff I(i)p(xo(j/i))=l$$

$$\iff x_j \in Int\{u:p((u/i)_{*}(xo(j/i))=l\}\}$$

$$I(j)S(j/i)p(x)=l \iff x_j \in Int\{u:S(j/i)p((u/j)_{*}x)=l\}$$

$$\iff x_j \in Int\{u:p((u/j)_{*}x)o(j/i))\}.$$

But j∉Jp and groupe a all to have made at the Table base that yet

$$(u/i)_* (x \circ (j/i)) \setminus_{I} -\{j\}^= ((u/j)_* x) \circ (j/i) \setminus_{I} -\{j\}_* (x) = (x)_{I} = (x$$

for any uex, therefore we have

 $p((u/i)_{*}(x \circ (j/i)) = p(((u/j)_{*}x) \circ (j/i)), \text{ for any } u \in X.$ It results that S(j/i) I(i)p(x) = I(j)S(j/i)p(x).

(A7) If J is a support of $p \in F(X^{I}, 0)$ then for $x, y \in X^{I}$ we have

Por any ugx, it and xgx let (u/i) the the element of

$$x|_J = y|_J \Rightarrow p(x) = p(y)$$
.

From the implications:

$$x|_{J \cup \{i\}} = y|_{J \cup \{i\}} \implies ((u/i)_* x)|_{J} = ((u/i)_* y)|_{J}, \text{ for any } u \in X$$

$$\Rightarrow p((u/i)_* x) = p((u/i)_* y), \text{ for any } u \in X$$

$$T(i)p(x)=Int\{u: p((u/i)_{*}x)=1\}$$

$$=Int\{u: p((u/i)_{*}y)=1\}=T(i)p(y).$$

Then $J \cup \{i\}$ is a support of I(i)p.

(A8) Suppose that $\sigma \setminus_{\sigma^{-4}(\{i\})}$ is injective, then there exists an unique jel such that $\sigma(j)=i$. For any $p \in F(X^I, 0)$ and $x \in X^I$ we have the equivalences:

that this definition is co

$$I(i) S(\sigma) p(x) = 1 \iff x_i \in Int\{u: S(\sigma) p((u/i)_{*} x) = 1\}$$

$$\iff x_i \in Int\{u: p((u/i)_{*} x) \circ \sigma) = 1$$

$$S(\sigma) \quad I(j)p(x)=1 \iff I(j)p(x\sigma)=1$$

$$\iff (x\sigma)_{j} \in Int\{u: p((u/j)_{*}(x\sigma))=1\}.$$

But $((u/i)_x x) \circ G = (u/j)_x (xG)$ then it results that G = I(i) S(G) p(x) = S(G) I(j) p(x).

Lemma 2. Let <u>a</u> be a polyadic ideal of the L(1)-algebra $\langle A, T(i) : i \in I \rangle$. Then the quotient polyadic algebra A/\underline{a} is an L(11)-algebra.

Proof. By the axiom (Al) we have: Disable Market

Proof. Exactly as in the proof of the theorem 10.2

$$I(i) F = (p \leftrightarrow q) (i) I \Leftrightarrow q(i) I \Rightarrow q(i$$

Then we have

$$p = q \pmod{\underline{a}} \Rightarrow p + q \in \underline{a} \Rightarrow \exists (i) (p + q) \in \underline{a} \Rightarrow$$

$$\Rightarrow \mathbf{I}(i) p + \mathbf{I}(i) q \in \underline{a} \Rightarrow \mathbf{I}(i) p = \mathbf{I}(i) q \pmod{\underline{a}}.$$

Let $(A^+, I^+, S^-, \Xi^+, E^+)$ be a polyadic algebra with equality and ICI^+ . We shall consider the I-compression of A^+

 $A = \{p \in A^+ : I \text{ is a support of } p \}$

It is known [6] that A has a structure of polyadic algebra (A,I,S,3,E). Suppose that $\langle A^+, I(i):i\in I \rangle$ is an L(I)-algebra. For any peA and ieI we denote $I(i)p=I^+$ (i)p. Using the axiom (A7) we can see that this definition is correct.

Lemma 3. (A, I(i): i \(\) is a L(\) - algebra.

We shall say that (A, I(i): i \(\) is the I-compression of (A⁺, I⁺(i): i \(\) I \(\) Let (A, I(i): i \(\) be a L(\) - algebra, I \(\) I and

(A⁺, I⁺(i): i \(\) a L(\)) - algebra such that A is a polyadic I - dilation of A. If I(i)p= I⁺(i)p for any p \(\) And i \(\) I. then (A⁺, I⁺(i): i \(\) I \(\) will be called a I⁺ - dilation of (A, I(i): i \(\) I).

Lemma 4. Let $\langle A, I(i):i\in I \rangle$ be an L(I)-algebra and ICI^+ . Then there exists an I^+ -dilation $\langle A^+, I^+(i):i\in I^+ \rangle$ of $\langle A, I(i):i\in I \rangle$.

Proof. Exactly as in the proof of the theorem 10.2 of [3] we shall consider two steps.

a) Card (I⁺)=Card (I). There exists a bijection $\delta: I^+ \to I$ and $A^+=A$ has a structure of polyadic algebra $(A^+, I^+, S^+, J^+, E^+)$ (see [3]). For any $p \in A^+$ and $i \in I^+$ we put $I^+(i) p = I(\delta(i)) p$.

We can prove that $\langle A^{\dagger}, I^{\dagger}(i); i \in I^{\dagger} \rangle$ is a L(I)-algebra.

b) Card (I⁺)>Card (I). This case follows exactly as in[3].

Let (A, I(i): i (I) be a L(I)-algebra and

 $\langle A^+, I^+(i): i \in I \rangle$ an I^+- dilation of $\langle A, I(i): i \in I \rangle$. If $K = I^+-I$ and (A^+, I, S, \exists, E) is the polyadic algebra obtained by <u>fixing</u> the variables of K, then A^+ is a L(I)-algebra by puting $I'(i)p = I^+(i)p$ for any $p \in A^+$ and $i \in I$.

The L(\blacksquare)-algebra $\langle A^+, I'(i):i \in I \rangle$ will be denoted by $\langle A(K), I(i):i \in I \rangle$. A(K) will be called a <u>free extension</u> of A.

Lemma 5. Let (A, I(i):iEI) be a L(I)-algebra and c a constant of the polyadic algebra (A,I,S,3,E). Then we have the equalities

The state of the s

- a) I(i)c(j) = c(j)I(i) for $i \neq j$ of j and j a
- b) $c(j) \mathbf{I}(j)p = c(i) \mathbf{I}(i)S(i/j)p$, if $i \notin J_p$.

Proof. We shall use the proof of the theorem 10.17 of [3]. Consider a free extension A(k) of A and let \underline{n} be the ideal which corresponds to the filter generated by E(k,c). In [3] it is shown that $A \to A(k) \to A(k)/\underline{n}$ is an injective polyadic morphism. In accordance to Lemma 2 it results that $A(k)/\underline{n}$ is an $L(\underline{n})$ -algebra and $A \to A(k)/\underline{n}$ is a morphism of $L(\underline{n})$ -algebras. If k is the constant of $A(k)/\underline{n}$ induced by k then $c = k|_A$ (see[3]). Since $j \neq i$ it results from (A8) that S(k/i) T(j) = T(j)S(k/i), i.e. k(i) T(j) = T(j)k(i). From this it results a):

For every p∈A we have in A(k):

 $S(k/j) : \mathbb{I}(j)p = \mathbb{I}(k)S(k/j)p$ $(k \notin J_p)$ $S(k/i) : \mathbb{I}(i)S(i/j)p = \mathbb{I}(k)S(k/i) : \mathbb{I}(i/j)p =$ $= \mathbb{I}(k)S(k/j)p.$

therefore we have k(j) I(j)p = k(i) I(j) S(i/j)p. Then we obtain b).

Lemma 6. Let (A, I(i):i(I) be a L(I)-algebra. Then

(At, I, S,3,8) is the polyadic algebra obtained by fixing the varia-

there exists a L(1)-algebra (A', I(i):iEI) such that

- (i) A' is a rich polyadic algebra.
- (ii) $\langle A, I(i):i\in I \rangle$ is a L(1)-subalgebra of $\langle A', I(i):i\in I \rangle$.

The L(M)-algebra (A*, T'(1):161> will be denoted by

Proof. Exactly as in [6], pp.158-160.

§ 2. Representation theorem

For any polyadic algebra (A,I,S,3,E) we shall denote by E(A) the following Boolean algebra

constant of the polyedic algebra (A,I,S,E,E). Then we have the equal

$$E(A) = \{p \in A : J_p = \emptyset \}$$

Representation theorem. Let $\langle A, I(i):i\in I \rangle$ be a L(I)-algebra and I approper Boolean filter of E(A). Then there exists a topological space (X,I) and a morphism of L(I) - algebras

b) c(j) I(j)p = c(1) I(i)S(i/j)p, if i(i).

$$\Phi: \langle A, I(i): i \in I \rangle \rightarrow \langle F(X^{I}, 0), I_{0}(i): i \in I \rangle$$

such that $\Phi(p)=1$ for any $p \in \Gamma$.

<u>Proof:</u> In accordance to Lemma 6, we consider a rich L(...) - extension $\langle A_1, I(i) : i \in I \rangle$ of $\langle A, I(i) : i \in I \rangle$. Let Δ be an ultrafilter of A_1 such that $\Gamma \subseteq \Delta$. On the set Y of the constants of A_1 we consider the following equivalence relation:

$$c \sim d \iff E(c,d) \in \Delta$$
.

Denote $X = Y/\sim$ and let \hat{c} be the equivalence class of

1.e. k(1) % (j)= l(j)k(1). From this it results a):

ceY. If cwd, c,dex we shall prove that

$$c(i)p\in\Delta \iff d(i)p\in\Delta$$

for any $i \in I$ and $p \in A_1$. We recall that $E(c,c')=c(i) \not c'(j) E(i,j)$, where $i \neq j$. For every $c \in Y$ we have (see[3], p.100):

$$c(i)p = \exists (i) (p \land E(i,c)), i \in I, p \in A_1.$$

It results that

$$c(i)pAE(c,d)=c(i)(pAE(i,d))$$

$$= \exists (i)(pAE(i,c)AE(i,d))$$

$$= d(i)pAE(c,d).$$

Since Δ is ultrafilter and $E(c,d) \in \Delta$ we have

for any ist, pear and rext. Suppose that digg.

We shall prove that

$$c(i)p \in \Delta \iff c(i)p \wedge E(e,d) \in \Delta$$

$$\iff d(i)p \wedge E(c,d) \in \Delta$$

$$\iff d(i)p \in \Delta.$$

For any $x \in Y^I$ let $\hat{x}: I \to X$ be the function $x \mapsto \hat{x}(i)$. Define $\Psi: A_1 \to F(X^I, \bullet)$ by puting

(1)
$$\psi$$
 (p) (x) =1 \Leftrightarrow $x_{i_1}(i_1) \dots x_{i_n}(i_n) p \in \Delta$

where $\{i_1,\ldots,i_n\}$ is a support of peA1. Exactly as in [3], p.103 it results that Ψ is a polyadic morphism. We shall denote

 $q = \{\{\hat{u} \in X : u(i) \mid I(i) p \in \Delta\}; p \in A_1, i \in I, J_p \subseteq \{i\}\}$.

For any if I we define $T'(i):F(X^{I}, 0) \to F(X^{I}, 0)$ by puting

I'(i)p(x)=1 \iff there exists Ueq such that

 $\hat{x}_{i} \in U \subseteq \{\hat{u} \in X: p(\hat{u}/i)_{*} x) = 1\}.$

We shall prove that

(2)
$$\Psi$$
(I(i)p)(\hat{x}) = I'(i) Ψ (p)(\hat{x})

for any $i \in I$, $p \in A_1$ and $\hat{x} \in X^I$. Suppose that $\{i_1, \dots, i_n\}$ is a support of $p \in A_1$, that $\{i, i_1, \dots, i_n\}$ is a support of I(i)p.

= d(1) DAE(c,d).

We have the equivalences

$$\Psi(\mathbf{I}(i)p)(\hat{x}) = \mathbf{1} \Leftrightarrow x_i(i)x_{i_1}(i_1) \dots x_{i_n}(i_n) \mathbf{I}(i)p \in \Delta$$

$$\Leftrightarrow x_i(i) \mathbf{I}(i)x_{i_1}(i_1) \dots x_{i_n}(i_n)p \in \Delta.$$

I'(i) ψ (p)(\hat{x})=1 \iff there exists Ueq such that

$$\hat{x}_{i} \in U \subseteq \{\hat{u}: \psi(p) ((\hat{u}/i)_{*}x) = 1\}.$$

Supposing $\Psi(\mathbf{T}(i)p)(\mathbf{\hat{x}})=1$ we have

$$\hat{x}_{i} \in \{\hat{u}: u(i) \mid I(i)x_{i_{1}}(i_{1})...x_{i_{n}}(i_{n})p \in \Delta\} \in \underline{q}.$$

$$\mathbf{T}(i) \mathbf{x}_{i_1}(i_1) \cdots \mathbf{x}_{i_n}(i_n) \mathbf{p} \leq \mathbf{x}_{i_1}(i_1) \cdots \mathbf{x}_{i_n}(i_n) \mathbf{p}$$

then we obtain

$$U = \{\hat{\mathbf{u}} : \mathbf{u}(\mathbf{i}) \ \mathbf{I}(\mathbf{i}) \times_{\mathbf{i}_{1}} (\mathbf{i}_{1}) \cdots \times_{\mathbf{i}_{n}} (\mathbf{i}_{n}) \, p \in \Delta \} \subseteq \{\hat{\mathbf{u}} : \mathbf{u}(\mathbf{i}) \times_{\mathbf{i}_{1}} (\mathbf{i}_{1}) \cdots \times_{\mathbf{i}_{n}} (\mathbf{i}_{n}) \, p \in \Delta \}.$$

$$\hat{x}_{i} \in U \subseteq \{\hat{u}: \Psi(p) \mid (\hat{u}/i), \hat{x}\} = 1\}$$

i.e. $I^*(i)\Psi(p)(x)=1$.

If $\mathbf{I}'(i)\Psi(p)(\hat{x})=1$, let $U\in \underline{q}$ be such that

$$\hat{x}_{i} \in U \subseteq \{\hat{u} \mid u(i) \mid x_{i_{1}}(i_{1}) \dots x_{i_{n}}(i_{n}) \neq \Delta\}.$$

In accordance to the definition of \underline{q} , there exists $r \in A_1$, $J_r \subseteq \{j\}$ such that $U = \{\hat{u}: u(j) \mid I(j)r \in \Delta\}$. For every $u \in Y$ we have:

$$u(j) \mathbb{I}(j) r \in \Delta \Leftrightarrow u(i) x_{i_1}^{(i_1) \dots x_{i_n}^{(i_n)} p \in \Delta},$$

then

$$u(j) \mathbf{I}(j) r_{\Lambda} u(i) x_{i_1}(i_1) \dots x_{i_n}(i_n) p \in \Delta \iff u(j) \mathbf{I}(j) r \in \Delta.$$

From Lemma 5 we have u(j) I(j)r=u(i) I(i)S(i/j)r, then

$$u(i)(I(i)S(i/j)r_{\Lambda x_{i_1}}(i_1)...x_{i_n}(i_n)p \leftrightarrow I(i)S(i/j)r) \in \Delta$$
.

Since A₁ is rich we have

 $\forall (i) (\mathbf{I}(i)S(i/j)r_{\Lambda}x_{i_{1}}(i_{1})...x_{i_{n}}(i_{n})p \leftrightarrow \mathbf{I}(i)S(i/j)r) \in \Delta.$

Applying (A_1) , (A_3) , (A_4) we obtain

 \forall (i)(\mathbf{I} (i) \mathbf{S} (i/j) $\mathbf{r} \wedge \mathbf{I}$ (i) \mathbf{x}_{i_1} (i₁)... \mathbf{x}_{i_n} (i_n) $\mathbf{p} \leftrightarrow \mathbf{I}$ (i) \mathbf{S} (i/j) \mathbf{r}) $\boldsymbol{\epsilon} \Delta$.

But in a polyadic algebra we have ∀(i)q≤c(i)q for every constant c and for every element q, then

 $x_{i}(i) \mathbf{I}(i) \mathbf{S}(i/j) \mathbf{r}_{A} x_{i}(i) \mathbf{I}(i) x_{i_{1}} \cdots x_{i_{n}}(i_{n}) \mathbf{p} \leftrightarrow x_{i}(i) \mathbf{I}(i) \mathbf{S}(i/j) \mathbf{r} \in \Delta$.

A new application of Lemma 5 give

 $x_i(j) \mathbf{I}(j) \mathbf{r}_{\Delta x_i}(i) \mathbf{I}(i) x_{i_1}(i_1) \dots x_{i_n}(i_n) p \Leftrightarrow x_i(j) \mathbf{I}(j) r \in \Delta.$

But $\hat{x_i} \in U \Rightarrow x_i(j)$ $I(j)r \in \Delta$, then we have

 $x_i(i) = (i)x_{i_1}(i_1)...x_{i_n}(i_n)p \in \Delta,$

.i.e. $\Psi(T(i)p(\hat{x})=1.$

In accordance to (A3), (A5), \underline{g} is a basis of a topology \mathcal{O} on X. Consider the L(\overline{t})-algebra $\langle F(X^{I},0), T(i):i\in I \rangle$ defined by the topology \mathcal{O} .

We shall prove that

(3) $\mathbf{I}'(i)p(\hat{x})=\mathbf{I}_{\mathcal{O}}(i)p(\hat{x})$ for any $p \in F(X^{\mathbf{I}}, \mathbf{0})$, $i \in \mathbf{I}$ and $\hat{x} \in X^{\mathbf{I}}$.

Since aco, the following implication is obvious

$$\mathbf{I}'(\mathbf{i}) p(\hat{\mathbf{x}}) = 1 \Rightarrow \mathbf{I}_{\mathcal{O}}(\mathbf{i}) p(\hat{\mathbf{x}}) = 1.$$

If $\mathbf{I}_{\mathcal{O}}(i) p(\hat{x}) = 1$ then there exists $U \in \mathcal{O}$ such that $\hat{x}_i \in U \subseteq \{\hat{u}: p((\hat{u}/i), \hat{x}) = 1\}$.

But <u>q</u> is the basis of $\mathcal O$, then there exists Veq such that $\hat{x}_i \in V \subseteq U$. It results that $I'(i)p(\hat{x})=1$.

From (2) and (3) we deduce that

$$\Phi=\Psi|_{A}:\langle A, \Psi(i):i\in I\rangle \rightarrow \langle F(X^{I},0), \Psi(i):i\in I\rangle$$

is a morphism of L(\blacksquare)-algebras. The rest results from the definition of Φ .

Q.E.D.

The L(1)-morphisms of the form:

$$\Phi : \langle A, I(i) : i \in I \rangle \longrightarrow \langle F(X^{I}, 0), I(i) : i \in I \rangle$$

will be called L(1)-representations of <A, I(i):i(I).

Remark. In the case when $\langle A, I(i):i\in I \rangle$ is the Lindenbaum-Tarsky algebra of L(1), the representation theorem is exactly the completeness theorem of L(1) (see[8] and [15]).

§ 3. An omitting types theorem

In[8] and [15] twas proved the omitting types theorem for the topological logic L(1). A cylindrical version of the omitting

types theorem for the predicate calculus was given by J.D.Mork in [12].

The aim of this paragraph is to formulate and to prove an omitting types theorem in the context of the L(1)-algebras.

A type U(i) of the $L(\frac{1}{2})$ -algebra $\langle A, I(i):i\in I \rangle$ is a subset of A such that every element of U(i) has the minimal support $\{i\}$.

We say that a L($\overline{\bf l}$)-representation $\overline{\bf d}$: A \rightarrow F(X $^{\rm I}$, $\overline{\bf o}$) omits the type U(i) if for any u \in X and x \in X $^{\rm I}$ with x $_{\bf i}$ =u; there exists q \in U(i) such that $\overline{\bf d}$ (q)(x)=0.

A subset T of E(A) is <u>consistent</u> if the Boolean filter of A generated by T is proper. We shall say that the proper subset T of A <u>locally omits</u> the type U(i) if for every p(A with $J_p \subseteq \{i\}$ we have

(*) if $TU\{3(i)p\}$ is consistent, then there exists $q\in U(\lambda)$ such that

T:U{3(i) (pang)} is consistent.

Theorem. Let $\langle A, I(i): i \in I \rangle$ be a countable L(I)-algebra of countable degree. Suppose that TCE(A) is consistent and U(i) is a type of A. If T locally omits the type U(i) then there exists a L(I)-representation of $\langle A, I(i): i \in I \rangle$ such that

- (i) Φ omits the type U(i).
- (ii) $\Phi(p) = 1$ for any $p \in T$.

Proof. Let us consider a free extension $(A(K), I(i):i\in I)$ of $(A, I(i):i\in I)$ where K is countable.

We shall prove that A(K) has the following property:

(**) For any $r \in A(K)$ such that $J_r = \emptyset$ and $p \in A(K)$, $J_p \subseteq \{i\}$, if $T \cup \{r \setminus J(i)\}$

is consistent in A(K) then there exists qEU(i) such that TU{rA](i)(pAqq)} is consistent.

If s=r^p then we have r^J(i)p=J(i)s. It is known (see [3]) that s=S(\gamma)t where t\(\epsilon\), \(\tau\) is the bijection (k_1,i_1) . (k_n,i_n) and s is independent from $\{i_1,\ldots,i_n\}$ \subseteq I. We have also $s=k_1(i_1),\ldots,k_n(i_n)$ t.

From $\exists (i) s = \exists (i) k_1 (i_1), \dots, k_n (i_n) t \leqslant \exists (i) \exists (i_1, \dots, i_n) t$ it results that $\exists (i) \exists (i_1, \dots, i_n) t$ is consistent. Since $\exists (i) \exists (i_1, \dots, i_n) t$ omits $\exists (i) \exists (i_1, \dots, i_n) t$ is consistent. Since $\exists (i) \exists (i_1, \dots, i_n) t$ omits $\exists (i) \exists (i_1, \dots, i_n) t$ is consistent.

is consistent, then there exis
$$\{(prAt(n^i,...,i_n)E)(i)E\}$$
 ut

is consistent. We shall prove that $T \cup \{3(i) (s_n \neg q)\}$ is consistent. If not, then there exist $u_1, \ldots, u_n \in T$ such that

 $u_1 \wedge \dots \wedge u_n \wedge \exists (i) (s \wedge q) = 0.$

Denoting $u=u_1\wedge\ldots\wedge u_n$ it results that \exists (i) $(u\wedge s\wedge \neg q)=u\wedge \exists$ (i) $(s\wedge \neg q)=0$, then we obtain $u\wedge s\wedge \neg q=0$. But $J_u=\emptyset$, $J_{\neg q}=\{i\}$ and $t=S(\neg r)$ s then it follows

untang =uns(t)sang=s(t)(unsang)=0.

It results that

that the follow
$$0 = (pr \wedge t \wedge u) \cdot (a_1, \dots, a_n) = \exists (a_1, \dots, a_n) \cdot (a_n, \dots, a_n) \in A_n$$

then $TV\{\exists(i) (\exists(i_1,...,i_n) t \land i_n)\}$ is inconsistent. The contradiction is obvious. Since $\exists(i) (s \land i_n) = r \land \exists(i) (p \land i_n)$ the property (**) is proved.

We can deduce that there exists a countable L(1)-algebra (A*, I(i):iEI) of countable degree such that

a) <A*, I(i):iEI is a rich extension of <A, I(i):iEI.

b) The property (**) holds in A*.

a rich extension of A preserves the property (**).

Consider a countable set $K = \{k_1, k_2, \dots\}$ of constants of A^{\bigstar} such that every element of A^{\bigstar} has a witness $\{k_j, \dots, k_j\} \in K$.

We shall construct by induction a sequence $T_0 = T \subseteq T_1 \subseteq T_2 \subseteq \dots$ of subsets of $E(A^{\bigstar})$.

Since \exists (i)E(i,k₁)=1 (see[3], Lemma 10.15). \exists (i)E(i,k₁)} is consistent, then there exists $q_1 \in U(i)$ such that

is consistent. But $k_1(i) \exists q_1 = \exists (i) (\exists q_1 \land E(i, k_1))$ then we can take $T_1 = T_0 \cup \{k_1(i) \exists q_1\}$. Suppose that there exist $q_1, \ldots, q_n \in U(i)$ such that

$$T = T_0 \cup \{k_1(i_1) \neg q_1, \dots, k_n(i) \neg q_n\}$$

is consistent. From the property (**) it results that there exists $q_{n+1} \in U(i)$ such that

$$T \cup \{ \bigwedge_{t=1}^{n} k_{t}(i) \gamma q_{t} \wedge \exists (i) (E(i,k_{n+1}) \wedge \gamma q_{n+1}) \}$$

is consistent. Then $T_{n+1} = T_n \cup \{k_{n+1}(i) \mid q_{n+1}\}$ is consistent. It results that the following set

$$\bigcup_{n=0}^{\infty} T_n = T \cup \{k_1(i) \rceil q_1, \dots, k_n(i) \rceil q_n, \dots \}$$

is consistent. Let Δ be an ultrafilter of A^* such that $\bigvee_{n=0}^{\infty} T_n \subseteq \Delta$.

Consider the following equivalence relation ~ on K

 $k \sim k' \iff E(k, k') \in \Delta$. The second state of the second second

Exactly as in § 2 we can construct a structure of $L(\mathbb{R}^n)$ -algebra on $F((K/\!\!\sim)^T, 0)$ and a $L(\mathbb{R}^n)$ -representation

 $\Psi : A^{\star} \longrightarrow F(K/\sim)^{\perp}, 0)$.

The L(1)-morphism $A \to A^* \xrightarrow{\Psi} F((K/\sim)^I, 0)$ verifies the conditions of the theorem.

Q.E.D.

" fled 16735

REFERENCES

- [1] C.C.CHANG and H.J.KEISLER, Model theory, North-Holland, Amsterdam, 1973.
- [2] C.C.CHANG, Modal model theory. Proceedings of the Cambridge Sumer School in mathematical logic, Lecture Notes, vol.337, (1974), pp.599-617.
- [3] A.DAIGNEAULT, <u>Théorie des modèles en logique mathématique</u>, Les Presses de l'Université de Montréal, 1967.
- [4] A.DAIGNEAULT and J.D.MONK, Representation theory for polyadic algebras, Fund.Math., L II, (1963), pp.151-176.
- [5] G.GEORGESCU, Monotone quantifiers on polyadic algebras, Preprint Series in Mathematics, INCREST, BUCHAREST, 55,1979.
- [6] P.R.HALMOS, Algebraic logic, Chelsea, 1962.
- [7] H.J.KEISLER, Logic with the quantifier "there exists uncountable many", Annals of Math.Logic, A, (1970), pp.1-93.
- [8] J.A.MAKOWSKI and M.ZIEGLER, Topological model theory with an interior operator, preprint.
- [9] J.A.MAKOWSKY and A.MARCJA, Completeness theorems for modal model theory with Montaque-Chang semantics, Zeit.f.math.Logik und Grundlagen d. Math.R3, (1977),pp.97-104.
- [10] J.A.MAKOWISKY and S.TULIPANI, Some model theory for monotone quantifiers, Arch.f.math.Logik, 18, 3/4, (1977), pp.115-134.
- [11] J.D.MONK, Omitting types algebraically, Ann.Sci.Univ.Clermont, Fasc.16 (1978), pp.101-105.
- [12] J.D.MONK, Some problems in algebraic logic, Colloque international de logique de Clermont-Ferrand, Éditions de CNRS, 1977.
- [13] Ch.C.PINTER, Algebraic logic with generalized quantifiers, Notre Dame J.Formal Logic, XVI, 4,(1975).
- [14] J.SGRO, Completeness theorems for topological models, Annal. of Math. Logic, 11,(1977), pp.173-193.

- [15] J.SGRO, The interior operator logic and product topologies, preprint.
- [16] J.SGRO, An application of topological model theory to Chang's modal logic, preprint.

Institute of Mathematics, Str.Academiei 14, Bucharest, Romania. [15] J.SCRO, The interior operator logic and product topologies, preprint.

[16] J. SCRO, An application of topological model theory to Chang's model logic, preprint.

Institute of Mathematics, Str. Academiel 14,