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COMPACTNESS METHODS AND FLOW-TINVARTANCE
" FOR PERTURBED NONLINEAR SENTCROUPS ‘

by

Toan I. Vrabie

1. Introduction. The main result 6f this paper is a local

existence theorem for integral solutions in the gense of P. Benilan

and H. Brezisg LB:] to the initial-value problem.:

%@- € anlh) & Rloault)) ,rost el
(1)
o Jii= fu sl )e ‘D foiio citie T,

0
where A is a m-dissipative (possibly multi&alued) operator acting on

a real Banach space X, operator that generates a strongly continuous
semigroup of nonlinear contractions S(t) : D(AY —» DIAY , with S(t)
compact fer all-t>155 f is a X-valued continuous function defined on

C o,Ti}X.D » D being a given nonempty subset of X which generally is
not open, end u € T(ATOD .

Problems of this kind have been studied previously by A. Pazy [13] V
under the additional assumptions that A is linear znd D is open, by
I. I. Vrabie [147 din the case in which A is nonlinear and D is open,
by N H. Pavel [ 9] in the case in whidh A is linear and D ig 1oca11yi
closed;, and by N. H. Pavel and I. I. Vrabie [ lade. [jllj 2 [12-3
in the case in which A is linear, D is semi 1ocally closed (see Defi-
nition -3 )-emd £ iéﬁﬁemiclosed and locally bounded multivalued |
mapping ' |

We note also the pioneering work of M. Nagumo [8:] on flow-inve-
riance problems in finite dimensional spaces, and the Dapers o =
H. Brezig [5_] and R. 'H. NMartin Jr. [”7] on flow-invariance pro%lems

in infinite dimensional spaces .



We agsume familiarity with the basic concepts of the nonlineér
semigroup theory in general Banach space , and we recall for easy
references some definitions and results we shall use in the sequel.
For further details, gee V. Barbu's book [J2] g

Let X be a real Banach space whose norm is denoted by -, X¥
its dual with the corresponding norm "'“x v B LT e 2XEE the
duality mapping, i.e. : f 4
(2)  Gx) = {Fex® sz =n2 - F ),
for x€X, and <+, > ¢ X %X -—-§R given. by :

(3} Cyxd> = sup{ x*(y) ; Fealx) }
for all (y,x)€ TXX . It is well kuown (see T2 .Gh.I, §1.1,

.

Proposition 1.2) that <.,+> is upper semicontinuous on XXX, and
the followingvinequality :
(4) <y,x><€Uyhix\n ,
holds, for all (y,x)€ XXX .
Ifr)o,xex;yéX,DCXedeCX,ﬂmn;
S(x,r) represents the open ball with center ﬁ ahd radius.r -3
B(xz.1) represents the closed ball with center x and radius r ;
d(x,D) represents the usual distance between x and D ;
D represents the closure of D , and
g(D,E) represents the Hausdorff-Pompeiu distance between D and
E, 1ie. . '

(5) Q(D,B) = inf{ h>o ; DC I 8(x,h), E< \J S(y,h) § .
3 x€k y€D

DEFINITION 1. The set DCX is called semi locally closed if D
satisfies :

i) b= \JDE H
€elo,1U

(ii) for each x €D there exists r>o0, such that B(x,r)r\DE ig

closed in X for 811 €€ 30,1 L ;

(iii) for each €,€ Jo, 2L andxe De  there.exist r>o and$»0
9 O 2

such that the mapping € +—> B(X,?){\Igis continuogs in the

]
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Hausdorff-Pompeiu metric on [‘zo,fo«r S'] for each fixed o<T € r.

We recall that o locally closed set isla set_DCiX, such that

for each x€ D. there exists r>o with B(k,r)O\D - clogsed in X )

and let us remark that each locally closed set is semi locally
closed, but the converse is not true, aé we cah easily deduce from
Lemma 1 below .

Consider the following initial-value problem :

L e R e
T e wee .
ua) = u_ ,

where A : D(A)CX —>» X is a m-digsipative (possibly multivalued)
operator, uoé D(A) and f(ELl(a,b;X).

DEFINITION 2. A continuous function u : Ca,b] —> DAY is called

integral solution for the problem (6),if u(a) = u, and : %

t
(7) hult) - xU% < luls) - xh2 + 2 f<£(8) + 3, ue) - xa0 _,
S

for all a<s<t<b and (x,7)€ DA)XX with y€ Ax . g
It ig well kﬁown that 1f A ds m-dissipative, & Ll(a,b;K) and

e D(Z), then the problem (6) has a unique integral solution u on

7tiaﬂ>] . Moreover, if u is the integral solution of the problem

(6) eand v is the integral solution of the problem ;

(Q%gﬁ'eAvM)4~gﬁ), astghd ,

(7)1 =
wla) = v i

0o 9
where Vo€ D(A) and g;ELl(a,b;K), then, the following inequality : -

&
(8) Hu(t) -~ () s fuls) - v(s)l + f\\fw) - gleMae
3

holdg, for g1l aSBete b .
For the proof of this fundamental result due to P. Benilan,see

{21 ¢h.III, §2.1, Theorem 2.1



wilho

- DEFINITION 3. A continuous function u : [o0,27]—>D(E)ND is

called integral solution for the problem (1), if u(o) ='uO and :

¢
(9) Hult) - =i < huls) - =° +2f<z(8,u(8)) + y,u(8) - x>a0 ,
: S

for all ogs <t T snd (x,y)eD(A)XX with yé€ Ax .

We recall that a strong golution for the problem (1) is a

continuous function u.: [o,T]-> D(AYND which is absolutely -

continuous and almost everywhere differentiable on each compact

in Jo,2[ , u(t)€D(A) a.e. on J0,TL , and u verifies (1) .

If t € [0,7T ., h>o0 and x€TTE)N D , then ult,t+h,x) repre-

®

sents the value at t+h of the integrel solution u for the problem :
%ﬁl € hu(s) + PLE, %) b ime il
(1o) |
Bk )=

2. The main result. We begin with the hypotheses we shall use
in the sequel -

(Hl) X is & real Banach space .

(Hz) A+ D(A)CX —>X is & m-dissipative (possibly multivalned)

operator that gemerates a C - semigroup of contractions S(t) : D(X)

~—> D(&) , with S(%) compact for all t>o0 .

(HB) £ [O,TO] XD —>X is a continuous end bounded function,

M= sup{i!f(t,u)“; [, u)E [o,TO] X D}, Doe - Kl D being a sgemi
: £€lo, 1L

locally closed gubset in X .

(Hy) For each o< €<1 , there exists §>o0, guch that for each
tle LE ga8d i 0x €Dg¢, and ostg‘l‘o s One hag -
(11)  1lim £-a(u(t,t+h,%),D '

h-~-a'—o+

E'+l’lﬁi) et

-uniformly with res.pec't fotte e Jersl X€D£, and o <1 £7T

0
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We shall sece latter that the'boundedness.aésumption on the
Thnctien £ is not so_restrictive as 1t seems to be, since in many
specific problems this condition is fulfilled by choosing an appro-
priate semi locally closed subset D .

Our main result is the following :

THEOREI! 1+ Assume that (Hl)’ (Hz), <H3) and (H4) are satisfied .

Then, for each uOE;D(AT(\D , there exigts T eilo,TQ] , ‘such thet

the problem (1) hag at least one integral solution u on J;O,T]..

Proof : Let uoé D(A)ND . By (H3) it follows that there exists

£€T0,lL , withu €D

e+ Choose TG]O,TO‘] end r>o0 , such

i 0
thal
B(uo,r)/\DE- is closed in X for all. o< $< 1 ,

(12} coe  # M2 <7 ,

(313)  SMsledn s — w B+ M0 S/ 7,

for all o<t {I?, énd in addition, the mepping € v—> B(uo,r)(\Ds

i continuous in-the Hausdorff-Pompeiu metric on [;26,20+M-T'] d
We suppose also that T is small enOQgh, such that :

(14)  1im %.d(u(t,tm,z),ni+M,h) = 0.,

h ~9'0+

uniformly with respect to Zog € SEO + Mol  soxeld. and o €tsT

: €
- Fix any natural number n satisfying :
(15)  Mfp&rls £ o (T + Lal-N L

end choose the largest number d™ € Jo,1/n] . verifying :

. n
G e T e e
for all & _<£fsg +MT , x€Dg and ogtgPn
Set t? = i.d® , for 1= 0,1,...,I(n) , where I(n)e&N satisfies
€ + M-I(n)-a"<1 , (I(n)-1)-a"< T and I(n)+a®>T . Let us define

u?eDd

5 SO+M-i-dn ki T ete s B8 o e follows.:

Set ug = uo and suppose that we have constructed u? belongine

S S SR TR,



to D n with j< I(n) . Then, using (16) we easily get :

g, - d

SR —

: ’ BoA g ey = .n
U R T iy IR B P
Now, define u?+l as an arbitrary, but fixed, element in

15 : n which satisfies :
zo+M-(3+l)=d

(18)  Nu(sl,th+a™,ul) - wl Wedn S Gt

element whose existence is assured by (17)
Consider the step functions a t: Lo, —>{0,7) and

wood [o,Tj-~§fDZA5f\D given by @

; n n n et .

an(t) =47 Tfor togbgty , , 1e P
..n n'/'n SR BN 2

un(t)-~ uy for t7 <t \ti+l sl ESanlabes Atn el ;

and let us obierve that in view of P. Benilan's existence and uni-

queness Theorem, the initial-value problem :

dy, (%) e

ma B A (Ve dla (Bl () s okba @,
(19)

yn(o) = uO ’

has a unique integral solution 7. Lo, T} —> D(A) .
Using (8) and (19) we get :

(20) Mg (8) - u(t?,t,u?)\\ﬁ\yn(t?) ¥ uﬁ\ss\\'{n(t?) S

dn,u?“l)\l + \\u(t?ul,t?_l+dn,u?) & u?“ g\\yn(t?_l) —_u?_l“ +.dn/n ;

for each PR bt o o of B dua ot
From (20) we easily deduce

(2 ‘lyn(t) “ u(t?,t,u?)\i & Ba

for all t?wst <t?41\ i 1is ok fnessIb)=1l o Peladd onswhich (dn “rkew
of (13) and (15), implies :

(22) ilu? = s\iu? —~yn(t?)\l % l\yngfg) f\g(t?)uo“ +-I\S(t?)uo
s U e e “'S(t?)uo =g e MV 0 el & T e O D

e

T6a) . This, u? E.PE dipons BBl ) Bl e T e E(n)
0



L

Now, taking into account the compactness assumption (1{2),and.

reasoning as in the proof of Theorem 2.1 in. L14]- (see also the
main result of P. Baras [ 1] ), we conclude that the set {yn : néeN} |

is relatively compact in (o, TsX) . Lek {y } . be a convergent.
Yk ew o

T subsequence of { e ‘1(N %o an element U€C(0,T;X) . From (2.1) it

foi;uws that the sequence of s’cep funet blOIlS {u 3 c ; converges
; Bk EN

unlformly be.n . As (t)én‘ e (t)r\B(uo,r) for.ell o<t em,
D
- and € M—-}D ('\B(u ,r) is continuous in the Hausdorff-—Pompeiu metric

on [£,£ EaNEMAL | o saia i,
(23) u(t)éDé.oJrhI.tﬁB(uO,r)

for all o4t <T . Therefore :

(24:) « s Qi f(a (t),un G =t an( 5))
k —» 00 k

uniformly on [o,T] » and comsequently, u is an integral solution

for the problem (1) on [o0,T] , as claimed .

3. An example. Let . CR™ pe any nonémpty, bounded and open
set whose boundary I is a C - manifold, end consider the :E‘ollo-

wing nonlinear parabolic equation :

QL}D(%; = Au(t,x) + £(t,x,u(t,x)) a.e. on 3o,PLxCL
(25) 4 - "g-r% €A/ (u) a.e.on Jo,TTX T

u(o,x) = uo(X) Bege  om X} :
where £ : [o,+00l%XD%xR ~> R ig & given continuous functlon,ﬁ‘ﬁ{xl’x ;
is a meximal monotone graph with o(/}(o) A is the Laplace opera-
tos %.% is the outward normal derivative and uoé Loo(ﬂ-)

Now, using Theorem 1 one may ‘prove

THEOREM 2. Assume that f [o,+f>o[)<5_xR —> R is continuous ;/3(RKR

o
is meximal monotone with o €/3(0). Then, for esch u &L (£2), there

exists T>o0, such that the problem (25) has 2t least one strong




; \ TP = o . o
solution u 3 d 0,03 —= L (1), yerifying @
(1) uewb 2(5,151°(Q)) for all 0<S< T,

(11) /2248 éL(oTL(Q)),u(’r)éH( 1) fras o Jo,BL

)

--—?—leﬁ(u) B on JoPExT

(iii) = j | gradul dx + S-a(u)ds Euit (0,T3R), where j :+ R —>%0,+00]
\fL A .

is a lower gemicontinuous, convex function with 97 =3 .

: 1
If in sddition u € HH(Q)L) and j(u)eT ([ ), then:u gsatisfies :

(iv) p)u (S L fo, T'L ¢SL) ), -«S( gradul Bl ga(u)do& Lale iR ).
s i

In order to prove Theorem 2, we need the following lemma, which
ig dnteresting by itself.

LEMMA 1. Let Sw(o,k+l) be the open ball with center o gnd radius

: 00 e e s .
k+1 in L (Q1), where k is a fixed positive number and O 1is a

-«

measurable subset of R™, whose Lebesgue measure is finite . Then,

;*\

peestane

%ﬁ(o,k+l) ig semi locally closged in Lz(il), but is not locally
cloged in L?(Sl) g

Proof of Lemma 1 : Set Sxfo,k+l) = N./. B (o,k+t) , where Tor

_ £ejo,1L
each ¢€ 7} o,1L %M(o,k+£) ig the closed ball with center o and

redius k+¢ in fw(ilj. As Qw(o,k+i) is closed in LZQSL),‘it follows
that the conditions (1) end (ii) in Definition 1 are satisfied .
Let x €8, (osk+l) , v>o0 and denote by B ( t,r) the closed ball
with center x and radius r in L'(fl) . To prove (iii) in Definitionm
1? ke suffices to showlthat for each XE;SN(O,k+l), each Eoe:]o,l BS

with XéﬁB'(O,k+€b) and each r >0, there exists. ¥ > o, such that

the mapping ¢ —>» B (o,k+£)f\32(x,r) is continnous in the Hausdorff-

Pompeiu metric "92 on ESO,¥O+§§3 . Here §, represents the
Hausdorff-Pompeiu metric defined by using the norm of LZ(CL) . As
¢ ) ¢
T ) is continuously imbedded in L°(SL), for proving the last

asgertion, 1t suffices to check out the continuity of the mepping

LR e

s RSN

i oA R B A RS
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E 3B (0,k+8) N By(x,r) on Lf ,£+5] in the Hamsdorfs -

ey 20
Pompeiu metric §, defined by using the norm of L (L)

Let x €B (o,k+€o) , >0 , §>o0 such that k+& +8 < 1 and let

3

E>o0 be such that [B/(k+t+H)). M € v/2 for all gele € +57
Whe:r"e M =» sup { I y“IJZ(..fL.) ; yesx(o,lc+l)} , and k+7€0+ S+h<l .

Denote by

A2 = Bw(b,l—w'i)f\Bz(x,r) and

A2+h' = B (o,k+a+h)f‘lB (x,r) , where o<hg<h .
From. (5)., uaklno into account that A €l L +p @ one easily

deduce :

(26) S(AL +h> = sup { D ousul, sae :'[\é/AES_x(y,p) ?] L

We shall prove that there exists g :J c;,HJ——->R+ with

lim . glh) = o and '
h=o

(27) 5'( x e+h)'g g(h) . Por-all.ochesh .
Let yeA£+h and define

: P Gl
28) o e P e e

Define also ;

f“X e » |
if w2 <lix <y < i x=y. .1
{26y M=t 7 Joulge g aliag,

L("?.)

148 W = vl < I'/2 or il x-y H
| 12(a) iy =

< il }"'y i 2(-&1)

and let us obgerve that Alh,y)- /73 s (l AMh,y))e X €A

Moreover: ; ,
(Be) oy ,\(h,y)-yih = (1-;\(11,:\/’))‘XHL97( )s’ )\(h,y)"\l;f = Yl
+ (1**)\(1’1: T))‘“X - T 5 s
? e )

relation wthh implies

L)

]



= e

(31 )= Tyt )(h,y)yéh - (l-l(h,y»xﬂay(é)h + 2.(1;)(h,y)).(k+l) :
D
From (31), takind into account that

(32) Mh,y)> EI%TH , where K = Tig and m = L2,

we deduce :

(38) lly = M, iy, - (1"1(h’ﬁ)xuﬁ”(gljs glh) ,

where g i JO,E]-—¢9-R+ is given by

g(h) = h + 2. (1—n+h h) Crer) .

As (33) implies (27), it follows that 8 (o k+1) is semi 1ocally

closed in L ey,

Now, let us remark that for proving that %1;0,k+1) is not

 locally closed in L°(CL), it suffices %o show that for each positive

number r with :
r2
0 < ——5 < mes {»
(k+1)°

there exists a sequence } un}nééN . unE'ﬁaio,k+l)(\Bz(o,r) for
all ne€N; snd

(54) . 1mr o =wan'It(oy)
: n —>» o0 '

5] WS (oskel) .

Let )  be any measurable subset of LY with i

(36) e meg o giarL i
(k+1)

Define

=) i et o
(37)  u (x) =

0 o AR x:é;ﬁl\flo
and let us observe that { un3n€-N given by (37) satisfies (34) eand
(35), where ' A

e S e
u(x) = { o

0 ol X(&Sl\gl.o :

thereby completing the proof of Lemms 1 .

Eroof of Theéeorem 2 : Teke X ='L2(£1) s A =0  with D(A) = {u ;

|




=l

u€H2(.Q_), —-%—%éﬁ(u) ase. On r} ; .D = SOD(o,k+l) =

) B.(o,k+%) , where k =i u

' , and F:EO,T']XD-—%
£elo,1r ¥ | S i

| I (&
Lg(r.ﬂ_) , defined by :

Bltnlle) = 2lthelnE)d.

Lef j + R—>1o0,+00]1 be any convex, low‘er semicontinuous
and proper function, with Qj =3 . It “is well known that

Au = 3((2(0.) for all ué€ D(A) , wheré ? : L2(Q.) —> R 1s
given by 1 ' : : :
L S\gradu'\zd:{ + Sj(u)ds , 1f w€HY () and j(u)e LH(T)

@u) =¢ K r

+ 00 o ndregh. .

Using Y. Konishi's main result in [6] , we deduce that A veri-
fies (HZ) 4 Le_t' ug observe that F is continuous from [o,TO]KD
into Lz(Q_) (in the topology of LQ(Q.)), and also that F is bounded.

Tet M = max{sup{llF(t,u)\\.Lz(Q) RGN [o,TO—JXD } : sup{

W ECs, ) v nde Be, T TRD ﬁ} and let us remerk that the
- CEa) &

problem (25) may be rewritten as :

du(t)

= = AuCE) et on(t)) ;. ogt 8T,

(38)
ulo) = Mo
From Lemma 1 it follows that D = Sm(o,k'kl) is semi locally clo-
sed in LZ(SL), and thus (Hl)’ (Hg) and (HB) in Theorem 1 are veri*
fied .  For proving (H4), it suffices to ghow that for each Oid G 1

there exists & > o. such that for each slefle g 1 x&Bw(o,k'&-

?—’) and o<t STO , one hag
L39) sllubtatnh e S ke w bl o,
L) L

uniformly with respect to g¢'e 1€,6481 , X€B (-o,k+€3) and. o biad
Let o « €< 1 and choose & > o such that £+§ < 1 . Consider

, i '
el LE 0t 8 ] and :v:é'B%(o,kﬂ-z). As the restriction of the opera-



i

tor A to ﬁx?SEJ is m-dissipative (see H. Brezis [4f] Remarque 134
p. 60), one may assert that u(t,t+h,x) is in LQXYL) and in addition
that
(40) '\\g(t,m,x)uﬁms I u(t,t+h,x) - S(h);é\i]:‘w(gw; +\\S(h)x\\LM(Q_)
€ k+ g€ + hM .

Now, using Theorem 1, we deduce that the problem (25) has at
Tenst ione flooal) integral solution u : [o0,T] ~—9{Soio,k+1) :
which in view of 2] , Cap.IV, §2.1, Theorem 2.1, verifies (i),

(i1, i) and (iv), @ claimed .

For enother proof of Theorem 2 , see I. I. Vrabie (157 .
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