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Iagi 6600, Romania

Abgtract. Necegsary conditions of optimality for boundary
control problems governed by parabolic equations with nonlinear

boundary value conditions are derived.

1. INTRODUCTION

We are concerned here with first order necegsary conditions
of optimality for convex control problems governed by nonlinear

boundary-value probleéms of the form
Fd]os e b
xJo,rL

i

yy + Ay =0 in Q

1}

E1s1) %‘—5 +J@(y) S in T

vi{x,0) =,yo(x) i L,

Here_jl. is a bounded and open subset of the Buclidean spacé RN,A ig
a second order elliptic and symetric operator on g and\jg is a‘
maximal monotone graph (in general multivalued) in RX R. The control
u which is exercised through the boundary [- of M2 , 1g teken from
the space I°(Z) and the functions y, end f are fixed in IL°(Q) and
_Lz(i), respectively. =)

Problems of thig type occur in heat conduction, mechanics of



fluids in porous media and temperature control trough the boundary
(see, Duvaut and Lions [710) The generalized optimality conditions
are obtained by an approach gimilar to that used in [4],[2].
Particular cases of the problem described above have been studied
in [123, [l51 among others. In particular Theorem 1 includes and
refines gome regults of [l}lo The following notation will be ﬁsed.
Tet k,r,s, be real numbers. We shall denote by HkLQ) Hk(r),Hr’S(Q)
and Hr’s(Z) the usual Sobolev spaces on (1 , [ ,Q and 2
_respectively (see e.ge [53]). By H%({D we éhall_denéte the space of
all elements of HkLQ) of trace zero on [ . Given a Banach space E we

shall denofe by Lp(O,T;E), 14&£p & o the space of all p-integrable

functiong from [O,T] to E. By C([0,7];%X) we shall denote the space

of all continuous functions from [0,T] to B. By LP(2, ILP([) and
LP(Z) we shall denote the usual space of p—integrablé real valued

' functions'on _{L,'f‘ and 2 . Given a lower semicontinuous convex
function.\f from a Banach space X to R = RU {+co§ we shall denote
by DOf) its effective domain i.e., the set {:cexg&f(x) % +_00} '
and by-ﬁ3kf(xﬁ'the subdifferential of &f at x. We refer to the

vooks [3) , [5] » [§] end to the survey [14] of Rockafellar for

concepts and basic results on convex analysis relevant to this paper.

2. DESCRIPTION OF THE BOUNDARY CONTROL SYSTEM

Tet (L be a bounded end open subset of R with a suffi-
cently smooth boundary r o Let A be a gecond order differential

operator on _(L of the form

i}
(20 Ay = - 2[:° (ai.yX )X L ay __-°
- e

_ s s .
where aijecj.‘(@), a€elL (O, 833 = 84y for all i,j and for some
w> o0,
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Z 8y 4 }i },j ?,”wl\j‘z C o Be€s 0n ﬂ}}é, B,

We shall denote by Q/’BV the outward normal derlv tive
corresponding to A and we shall denote by a: Hl(_(l-) X H (JZ) i

the biliniar functional

- N i
(f2s2) a(y,z) = Z g(al yx e ayz)dx § ¥,% GH]‘(.Q_).
| , 1,3=1 J i -

Let us now give a meaning to gtate system (‘101) where
u,£€1°(ZX) and y € L. 4 .

By definition, a function yéL (0,15 Hl(_ﬂ)) is a solutlon to
(1.1) if there exists a function vE€12(L) such that

(2.2) v(&,t)ej?(y(cr,t)) e (G,‘t)_e 2

and

: ' 1 : ;
(2.3) .-g vf, axdt+ GS a(y,\f)dtntzj—(v-u—f)‘j’ al at =jyo(x)\f(x,.Ov)dx
for ell \f £ 7°¢0, T),Hl(_(l,)) such that "f_tEL (Q) and \f (x,1) = 0w

We see that %E yGL (0,1 ;(Hlm_)) )o Hence in particular y € ¢([0,7];

LZ(,IL)) and (2.3) can be equivalently defined as

%%- (y,\if) + a(y,'\,’) + S(V-u—-f)\ffd@' = 0, a.e.t€]0,T[
(2t r ‘

go) - 5 - on _f2
for all ”‘ffe Hl(_ﬂ.), where (.,.) denotes the usual inner product
in I8V, .
o0 , S
Let \P be a C~ =~ function on R satisfying: \?(Y)d" =
o
\g}) 0, support \?CJ-—I,l[ and J)(x) ~\y(-x) for Bl

We define for every &)O

(205) ff (¥) - M’a(y-am P@ne, yex



where
Cg ) =t - +e§)"1y>, v . R
&

and f is the maximsl monotone graph arising in Eq.(1l.1). |

Obviously, for each £ >0, (? " is a monotone increasing C°°-func‘tion
on R. Moreover dgi is Idpschitzian with Lipéohitz consgtant 1/€ o »
Then by a standard fixed point argument it follows that thé bdundar&

value problem

yt‘ Ay =0 in Q

13
(2.6) ﬁ;g +_€§ bt e
¥(0) = in L

has a unique solution yt ¢ o(fo,r];n (Q_))[)L (0aT's e WQ)) (e
y0€ H/z(_Q,) then by Theorem 15.2 in [_9] it follows that

yte.Hyz’y4(Q)o) Since (f is maximal monotone, there exists a
lower—-semicontinuous convex functions j:R —> § =']- o0 ,+ c@]

uniquely determined up to an additive constant such that dj = Og

(70 j denotes the subdifferential of J).

PROPOSITION 1. Let u,f€L?(E) and y_ € I°(LD) be given

Plncuu RN oo Svoolih et
such that j(y )€ 11 ((L). Then problem (1.1) has a unique solution
%F C([O,TJ;LQLQ))[7L2(O,T;H;(1D)¢ Moreover, we have

(2.7) Vv -0 s +I\ e ge

3 ¢(Lo,T] ;12 () h 2(0 il H cay)

]

Proof. Without any loss of generality we may assume that
)
%ueffil(Q) (this can be achivied assuming for a while that y ,f

and u are sufficiently regular). Then by (2.6) it follows that

; |
‘ 2 e
(2:8) [l 3 ("o ) ¢ g“ O C(“u\\zﬁ(z) iau



and

e

: 2 Z% 3
(2s9) My G- y/\(f)u-Lz(m +iy, ' - y,\“’ 120,158 ()

¢ : .
+ C g(f‘(y,_) —f(y,\)) e y/\)dﬁ'dt 0
- |

for gilel o o6 ,)s > 0, where C 1ig a positive constant independe:rit of
¢ ,)b and u. Next we multiply Eq.(2.6) by Cfg(y&) and integrate

over Q. By Green's formula we get

: 3 : :
(2.10) S\je(y&)dzw Sf (ye)(f(ya)-f-u)dcdt égjs(yo)dx~
L z 5

where

T S A8

By (2.8), (2.9) and (2.10) one finds by a standard calculation

involving (2.5),

. hy
(2.11) |\ yt(t) 2 # f(ye) 12 (%) h y&"Lz(o,T;Hl(iD) =

cull . 4 1)
R0
and

(222) Wy (015, (W2 5 Ay, =5,

B coe+n),t e lo,7]
A o 120, TN () T e

where C is a positive congtent independent (L3 SER § and u. Hence

y = lim ye exists in the strong topology of QoL T ;LQCQ)) N
L0

[\ L2(O,T;H1(_ﬂ.))° By (2.10) we maﬁraISO suppose that

_ (3
(2413) .f (ye) w weakly in Lz(Z)

(24

for § > 0. Since the realization dg of 4g=in'L2(Z)X.L2(Z) is a

(4 A



SoTiigh e

(o4

maximal monotone graph we may infer that [y,wj G\rf', Toehy

(2.14) (0 € BGE 8 awe. GNET.

Then letting & tend to O in Eq.(2.6) (under its weak form) we see
that y is a solution to (1l.1l). As regards estimate (2.7) it is
implied by (2.12).

Remarks 19,, Letting ¢ tend to zero in Idequality (2.11)

.we See that the solution y to Eq.(l.l) satisfies

~L +

R
+h
047200, 05t )

2l \ y ()N
@s15) W )\LQUD +1 y“LZ(O,T;Hl(ﬂ))

+“g@ (y)“LZ(Z’) & C(“uHLZ(i) +1) for all 1‘1€L2(Z).

In particular this implies that the map u —> y ig weakly
continuous from L2(Z) to LZ(O,T;HlLﬂ)) and compact from LZCZ) to
1P(om

2°. It must be emphasized that more general boundary

control systems of the form

i Ay = F in Q
> ry i ’
(2.16) - o +ﬁ3(j) 2u +» £ i 2
el = 9, e il -

where FEL(Q) and £ €I(Z) ocan be put into the form (1.1) where

Tt Nz + u and zé¢€ H2’1(Q) is the solution to
: ]

By & bz = F in Q P
2.17) z = 0 i e

z(0) = 0O dney (@




- T —

In particular, it follows by Proposition 1 that for every uGLz(.Z),'.
Eq.(2.14) has a unique solution v € o([0,13;12 (@) N 12(0, 2sHH (L)) -

3, THE MAIN RESULTS

 We shall study the following control problem: minimize '

(31 % gf(x,t) (y(x,t)=y4(x,1) 2axdt+ Sg(d,u(o’,t))dfam \f(y(.o,*z_*)),
ses all  mEE 9B) and w6 o(T0,1] ;12 () NT2(0,T;H () subject to
state equation (1.1) where ¥ and f are fixed as in Proposition 1.
In problem (3.1) yq is fixed element of LZ(Q), ‘f ig a continuous

: D f o ‘ . :
convex function from L (D to R and €1, (Q)./ is & @iven: funcition.
As regards the function g: fxg — R it is a convex normal

integrand on r)"\ R in the sense of Rockafellar, ioc€e,

(i) PFor each Ge i ,g( @ ,.) is convex, lower semicontinuous

and $ + R o

(ii) g is. measurable with respect-to the 0 -field of subsets
of T X R generated by products of Lebesgue gets in " ana Borel

gets dn Re.

(1ii) There exist ~ ol € 12(T) and 4, € 11([) such that

(302) @) 3 S @ 4@ meeCET, R

The first optimality result is concerned with the situation

in which (‘? is loecally Lipsohitzia{h on R and satisfies the condition

(3.3) f'(y)\ & C(\f(y)\-‘r y 2+1) 8. yER.



o -

t : : :
Here \(f denotes the derivative off and C ig a. positive constant.

THEOREM 1. Let (y',u*) be an optimal pair in problem (3.1)

where the functions g, satisfy Assumptions (i) up to (iii) and 3‘?

is a monotonically non decreasing locally ILipgchitzian function

satigfyine condition (3.4). Then there exists a function pGLZ(O,T;

rh@)Ne(o0,73;1° (D)) with p, €T5(0,T5(HN@) ") @ggge 11D which

satisfies along with y¥ and v’ the gystem

(3.4)  yo+ Ayt =0 in Q

(3.5) -Y— +f Y 2w o+t S i

(36 ) o5 (o,o) = ¥, i in __(Z.

(3e7) ' p, = Ap = (vayd)iE B in . Q

(3:8) SE+RBG"I D0 in T

(3%9) — plel) +‘Dj‘><y"<o,m>) 30 i |

(3.10)  p(G,4)€ D e(T " (G ,1)) ace. (G,0)€ 2 .

Here ’3(? denoteg the generalized gradient of 00 in the
sense of Clarke (see 7], [13)) end "0 g is the subdifferentisl of
u —> gleyu)e Egs. (3.8), (3.9), (3.10) can be also be interpreted

in the following weak sense
(301) Sp\t’t dxdt + j a(p,")V)d’c +L4‘fd@dt =
gf(y -yd)‘*f’dxdt jv\f(x T)dx

for all '\re @ (Q) with "i/(x 0)=0. Here r&eLl(Z) and ')JG LZ(,Q)
gatigfy ‘

Gy ;Mx,t)e%’(y*‘(x,t))p.(x,w aves (x,4)€ 2



.- 9 -

(3.13) V@ € -0, (1) ae.xefl-

We shall consider now the situation in which the control
problem (391) is governed by the following unilateral problem ("the
Signorini problem") .,

yy + Ay = 0 in Q
(3614) y(ig% - u = f) = 0; yvgo,rfg-% ~-u=-£f20 on Vs

) = m (1

It is well known (see e.ge [5]) that problem (3.14) can be written

under the form (1l.1) where the graph O@ is given by

0 RS
(5.250 4 f (pdi=r + J5em ,0] if r =0
g 18 n 0

According to Proposition 1 for existence we must assume that
Yo € L2(.(l), fGLz(Z) and yo(x) 20 e o

The optimality theorem in this case is

THEOREM 2. Let (y‘,u”'} be an optimal pai{r for problem (3.1)

with state system (3.14) and under assumptions (i), (ii), (iii).

Then there existg a function p€LZ(O,T;HI(_(Z))(]C([O,T];Lz(ﬂ.}) with

ptE LE(O,T;(HI(_{D)’) and%% € () satisfying alonz with yd end u”

the following system

(3.6) yi + 45" =0 ' et

roy? ¥ Q> “® :
(3.17) yy.(,a—,%- 3 u'=f) =0; ¥y ;O,Q—g— - usi=£2,0 i 2
(3.38Y  FE00 =5 im0
(2199 pPesiip=ls ~de£ i @



= 15{@) -

(3020) (,-bw;} >a = 0 °8e ON {(6 ’L)GZ ',jfd> 09 o
(3.21) p =0 a8, on{ O}[\{(O’,u)éz,u —/2-:);}’--—17}05.
(522} p(.,T>+fo<y“<o,T>>a 0o T (ks '

(3.23) @, 0e £(G,u” (6,%)) 8 .00 (0, t)En,

Here (,a ) denotes the absolutely continuous part of the measure

all bounded Rzdon measures on 2, o

L

P and M(Y) is the spacse o

Y
4, THE APPROXIMATING CONTROL PROCEHS
Consider ‘Ehn control pioblem: Minimize
(4.1) 5 ff(; 6) =yl “azat + I(g (Gym)+ %Imu‘le)de.m\fL(y(T))

e : :
over all ye (Lo, 1)L (_Q,.))(TL (\,,~,"‘1(Q-)) and u€ 12(2'_') subject to
state systen B plangye and a sfined by
tate system (2,.6), Hex & and \f& re defined .by

(4.2)
and

.(403) \f&(y) = inf{l\y»zll?‘LEL@/?‘&-kgf(z);zELg(_Q)B : 3/'€:L2(J?,)q

ga(ﬁ,u) = duf {iu - vlz/EL-’r glGiv) & veRl 5

Since ss remerked eaxrliexr the map u —> y is weakly continuous
from L?('Z) te L (O,T;ﬁl(_ﬂ)), problem (4.1) h

£
(3 sug) - Using the fact thet g, o a_,f are differentiable,it
follows by a standard dev:Lce that there exists p 6L e, r,**l(ﬂ))/)

has at teest one solution

¢([0,1];1° () with T € 12(0,7; (HYUD) ') such thet

(pa) f(‘f "'Jd) sghaee i)
(4.4) 55 * § (,f&)pa =0 in i
pa(o,i) +9T&(y£ D)) =0 Sl

(#:5)  p (6 8) =By (Guel6, ) (G0 (61 aw. ()T .

Hio (jé&(y) = f-ﬁ f (3



- 11 =
IEMMA 1. For €—> O we have

(4.6) U —_— strongly in L2(Z’)
(4.7) Te —_— g ¥ strongly aia) C(tO,Tjg Lz(.Q,))
and weakly in L2(O,'I.‘;H1(_{D).

Proof. We have

(4.8) %gf\ye ~y |? axat + S(ge(G,ui)+ X, - ﬂ%a@am\f(yem.))é
5 3

A % ~Qg]ﬂzt_«ydl2dyd‘c+ jgﬁ_(ﬂvf’ yabat + \fa(za(T))

where ZE jg the seolution te

(Z&) ot AZE- = 0 in Q

(-5"‘“ § (Ze) = u + f Aok Z ;
ZL(O) =T Saies S0

By Proposition 1 it follows that

(4.9) 1z, —> y° strongly in o([0,11;1(@) 1P (0,73 ().
Then by (4.2) we have

(s (0 Jag s L sup (2 gfly yd\ dxdt + g(gﬁ((,uf_)dr liu —u’| 2 aFat +
bl : 'Z:

\f (ya(T))) gf\y yd\ + ggr(cf,u )dﬁ’dti—‘f(y (T))
58
In particular it follows that %u&Sremain in a bounded subget of
L2(Z). Thus selecting a subsequence we may assume that

~J

: (4ieilil) ug > u * weakly in LQ(Z).




- 12 -
Then by estimate (2.15) we may also suppose that

(4.12) —— 5“ weakly in LZ(O,T;Hl(Jl))-

v,
3

s,
(y&' )t — 'yvt' weakly in LZ(O,T;(Hl(.(L) Dise

Tn particular it follows that ¥ * is the solution to Eq.(1.1) where

~
u-=u and

-ye_(g,T) = ??.,T)_weakly in LZ(__(),).

Since (y%,u”) is a minimum point for functional (4.1) and by (4.11)

1im inf jge(@,ué)dﬁdt; gg(G ,U*) a6 at
£E—>0
Z = =

(this is an easy consequence of the weak lower éemicontinuity-of
the convex integrand) by (4:,10) it followsd(4.6)s Now using estimates
(2.8) and (2.9) where u = u® = and arsuing as in the proof of
Proposition 1 we obtain (4.7). |

We notice for later use that by (2.15) and (4.6) it
follows that »

b ,
(4.13) {_(f(yt) 5 ig bounded in L°(Z) and therefore on some
& & o Dur? ' PR
subsequence (y,) —> u'+f = == yweakly in I°(X).
q g e ~ y Z

LEMIMA 2 There exists a positive constant C independent of

gsuch that

(4.14) G | I Ao R0 1 = [To
Gl e g L

ST EN ) D

Gl e
‘ p& U“LC(O

(4.16) S \ dé%yt)pe\dfdt 40
' z

Proof. Multiplying Eq. (4.4) by p£~ and integreting over



15,0800 Q, one gets
S
1 2 i 1 2
(4.17) 5 |\p£(}t)“ A + {;Y a(pi ,Pg)dsl.: 5 “p&(’l‘)” S +

+ éf(ye ~yd)p£ dxdt.
Q-
Let be & C- ~ approximation to sgn. We multiply BEq.(4. 4) by

'f(pa), use Green's formula and let ?f‘ tend to sgn. We have

(4.18) j /f(ye) p, dfate f\y -yd\f dxat+ S\p (T,x)| dx.
Z i \

Next ‘by definition of%fa one has
: : ¥ § s r.,c :
(g (a3, () = (D) <f¥)2 )De(yE(T)) PACHENED

- for all v€L e, I)VH | ¢1 and some f)O Since ya(T) —> 5 (D)
in 12(Q) end \j’ is 1ocaﬁy bounded on L (), it follows that

)' (T)S is bounded im Lo(@). Along with estimates (4.17) and (4.18)
the latter implies (4.14), (4.15) and (4.16) as claimed.

In perticular, it follows by (4.14) end (4915) that % pE} ig
precompact in L. (04T 5T 6_ for any O & § £1. By the "trace"
theorem we may therefore conclude that % pes is compact in LZ(Z‘)O
Hence extracting a sequence (again denoted & ) followsbby Lemma 2

that there exists some function pé€ L2(O,T;H1(ﬂ.)) with
- 1
p, € 12(0,T5 (AT () ) such that

(4.19) g cmp eskly: dn 15 (0, TsHH @) and
strongly in L (0,0 H =Ein)

(4,200 (pe ; ,\p_b weakly 1n L (O T (}IICR)) )

(4e2l) V' pé_ — D strongly in e () . '

In particular it follows by (4+19) and (4.20) that D€ c([0,1];12 @)

and.



ae Tl
(4,22) p, (t) — p(t) weakly in 12(F) for every 1€ [0,T7].

: . ‘e ;
Pinally, estimate (4.16) shows that the set %Gg (e )peg is bounded
in ﬁl(Z) and therefore it is weak-gtar compact in the space M(Z).

Thus there exists r‘ € M(Z) such that on some ﬂsubsequence g—> 0,

A€
(4423) : \{3 (v )p& w)')"-p' weak star in M(X).

Letting €  tend to zero in Bq.(4.4) it follows by (4.19) ~ (4.23)
that p is the solution to

P, = Ap = 37" - 74 HHE0
A ny .
> - =0 2
(4.24) . sy r‘-p | in
p(.,m)ﬂ‘g(y*(.,m))a O% . dniedll s
while by (4..5)‘we have

Gz PO R0E DG SAE T LR G e 2

Eq.(4.24) can be interpreted either in the weak sense or (see (el

(4.26) %g(p(’c'h*f) ~alp(E)Y ) + P (51 = C§14(y"--:>rdL)‘f’dtxd’c

p(0,T) €~(a\j>(y”‘(-,’i‘>) T Y€ cl(A)

where (o,e) is the inner product of Lz(ﬂ_)) and r(p(\r) ig the value

of r‘p at BAO\Y (the trace of '\f ong ).

Be PREOCE OF THEOREM 1 -

It Cﬁ is a locally Lipschitzian function on R, the

generalized gradient fa in the sense of Clarke of f is defined
by (see bél- 1 13))

. :
(5.1) rbf(y) ={conv %ZGR; 7 = 1lim f(yn>3 vE R,



e a9k -
(By :P we shall denote the ordinary derivative bff JEs

:
Tet Jg be the Punctien.defined by (255, 1a8e,
e .

(5.2) $w - ~L§£<y -£©)0(8)a6 ,  yeRr

. ol =1
where = £ 1~-(1+ .
, ﬁ GE &dﬂ )
Ve begin the proof of Theorem 1 with the following

technicall lemma (see [23)

LEMMA 3. TLet E be a locally compsct space and let a

positive measure on E such that Y (E)L oo, Let {y65CL1(E) be 8

sequence guch that for & -—> O.

(5.3) 'ya —3 y gtrongly in 11 (B) and
(5.4) \F(yﬁ) b wenldy in LE(E).
Then '

(5.5) g(x)e’af(ym)- V-see. xEE,

Proof. By Ll(E) we have denoted the space of all real-valued

v ;-measurable functions y(x) defined _V -ga.e. on E such that
| ¥(x)| is VY -integrable over E.

Selecting a subsequence of %yea we may assum_e- that

(546) y&(x5 -3 y(x) V-a.eh xEE.

Next by (5.4) eand the Mazur theorem it follows that

(527) g = lim g strongly in 11 (®)
M= T

 where %gmBC_Ll(E) are of the form



.8 o
(5.8) 1€I f (Ye

Here I 41g a finite subset of natural numbers 1n the interval

Lm, cp[ and o{m >,0, Z c(l 1 are real .numbers.

€Im

According to (5.7) we may also assume without any losg of generality

-that

> g(X) V—a.eo xER.

(5.9) L

We fix x€E such that k596) and (5.9) hold, and consider a
sequence %zns of real numbers such that dé(zn) exist eand
e y(x) forn —>co, We get y; = yai(x) and notice that by
(5.2) we have

e

o= ;
: =3
(510) f e ij.(yi— €.0) 5 (®ae.
e 5

On the other hand, we have

J@(z ) «55((14- e,§>“1<y - &en +f<z )(zy -

S € ysm 5890+ W (00 (ay~(1+ &) T (3, -€,09)

where W, (0) —>0 for 0;= 7;~(1+&8) 7 (y;-§,8) —> 0,

Along with (5.10) the latter ylelds
(Y e. S
(5.11) \&3 ) =\53(z ) -\j?(z ) Sfé Gy, G)f(@)de =

S 0, (8 (2, ~(1+ §6) 7 (33§, e>>5<e>de.

Since CF ig locally Lipschitzian, 1% follows by (5.6) that
fei(yi" 618) m)f(y(x)) uniformly on E-{L,l:\ o
On the other hand, z; can be chosen sufficiently close to y; in &

such a way,-
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‘yl"zl\/ﬁl"‘"‘>o Tor™ i =—e>icals

Then (yl — 0 for i ——> oo and equality (5011) yields
| 3 & o 5
\’F Gt = f(zi)\*—") 0 for i —> o8

Along with (5.1) and (5.8) the latter iﬁplies g(x)éﬂ%f(y(x))‘as

claimed. '. |
Now we continue the proof of Theorem 1 by observing that

by conditionv(BoB) it follows after some calculation involving

" formula (5.2),

(5.12) \ fg(y)y\s— C(lf%y)“ ey

for'gll y€ R and £>O, where C is a positive congtant independent
of e °

For each € >0 and natural number n one defines

BY = | (x,00e Zs |y (9] € mf

Since O@ is locally Lipschitzian we have .

Q& : 8
\f (ye(x,t))\é C, for (xgt)€ b,

Let Zo be an arbitrary measurable subset of 2 . We have

‘£ .6’ :
(5.13)‘ ?___S \pb(x,t)\\f (yE(x,lt))\dxdt&Z_Slpe}ga(x,t)\f (ya(x,t))dxdtﬁ

0 O A

.“ 5
+ [pe‘(}:,’c)\f (yL(X,t))\dth £ Cnylpa(x,t)ldxdt +

it -
Z OnVEn A Z_o
L L ' : o
+ Cn” S‘J(ya(x,t))\ | p, (%) daxdtsc S |3, (x,6)1 axat +Cn™
) : 3 e “ X
BNL, EENE,

Since by ‘(407), (422, Ena a0 ), %yd, I(\/?a(y&)l)' anc‘i% pLB are

bounded in L2(T), it follows by inequality (5.13) that the family
/C{"‘,a,/\/‘ >l e U i
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.e t
S~ pE\F (y )dxdt B is equicontinuous. Hence by the Dunford-Pettis

Lo

criteriony ~the family ‘pe g (y£)3 is weakly compact in L (). Then
by (4.23) it follows that rpe i (Z) and

(5014) | <§é(y£) Pe . )ﬁb weakly in Ll(ZD.

On the other hand it follows by (4.7) that ‘%yég is bounded in
= ;
LB(O,T;H/z(F)) and therefore ; yés ig compact in LZ(O,T;Lz(F)).

Thug selecting a subsequence 1f necessary we have

v

yt(x,t) —> ¥ (x,t) asee (x,1) € 2

and by Egdfov‘s theorem, for each 7':>O there.exists a measgurable
subset E,( C L such that m( LM E,l) & WL (m is the measure on Z.

induced by the Lebesgue measure dxdt), Ve is bounded on EZ and
s ii5) ¥ Grpt) =0 ¥ (x,t) uniformly on By -

E 5
Next, since QCF (ya)s are uniformly bounded on E?. we may assume

(extracting further subsequence) thet

‘ (5416) (F (v ) —> g weakly in Ll(EY)-

(actﬁally weak-gtar in L (E?)). Then by Lemma 3 it follows that
g(x,t)e’bfw“(x,t)) aeee (x,8)€ By .

Now by (4.14) it follows that { QLS is compact in Lz(z). Then again
by the Egorov theorem we may assume that %.-~¢ p umiformly on E? °
Along with (5.15) and (5.16) the latter implies that r% gD

on E7_o Hence
;&p(x,t)ep<x,t>’a§(y”<x,t)> S EE,

Since m (Z\IE?) can be made arbitrarily small we may conclude that

R € 2 R B Gk e | sapeil ) €F
D .




e
Thus the conclusions of Theorem 1 follow.by Eqs.(4.24),
(4.25),

Remark. Arguing as in the proof of Theorem 3 in [2;)it

follows that for a general locally Lipschitzian mapping one has,
(5417) db (X,t)@p(X,’G)’()f(y“(x,ﬁ)) ace.(x,t) & 2

where (r%) € Ll(E) is the absolutely continuous part of the
a - :

measure er.

6. PROOF OF THEOREM 2

ity :f is the graph defined by (3.15) then \f% e =
o i

e G@E(y).= e (y-€6)f (8)a® for £20, pen
respectively,
\(fe(w g f©)rae .
é-ly
Hence
oo

.{ 3 S . o ¢

6.1) |5, Bp » frol=ln, ) §emadlelfiinle.
, Te. o ;

On the other hand, arguing as in [13 we find that .
¢ ‘e i '_ '
(6:2)  \p, £l )\e za\f(szgpﬁ\q: ey, %) eceoon I

whexre :
0 if |3 @, s\ >E
§ (€,t) = 20 i
£ ¢ 1 if |y, ()1 €€

and
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‘ 0 if-y&(rf,-'u):» - £
V(1) = ‘
. 1f g (Gthe =% &

(3
Tnasmuch as by (3.14) %f (yt)s is bounded in Lz(Z) and by Lemma 2 -
.E 3 v
{(? (ye )pe?) is bounded in Ll(z) we see by (6.2) that on some

subsequence > 0 we have
(603) pE &%ye) "'"""‘“"> O Qoo on Z e

On the other hand, we know that ft(yg) — u""—-f«-r,%%r weakly
in LQ(Z) and Pe ) ‘p étrongly in Lg(}:). This implies that the
sequence I]pc fa(ye )3 is weakly convergent in Ll(z) to

p(u® -f’~%—§i) and by (6.3) it follows that

t 4
(604) p(u‘-—f-—i%—) = 0 Be€o on‘ Zz

and therefore

.
pé\%(ye) —=> 0 gtrongly in Ll(z:).

" Then by (6.1) we see that

) ya'\jB&(ya)p& —> 0 strongly in Ll(Z:).

- the latter yields

Next by"ehe Egorov theorem, for each 'z.> 0, 4 E‘l a me’asurable' subget
of 2 such that m(Z\ E,z) .‘:’z ; yt-—-—-——) v¥ uniformly on E,l gnd y* 18

continuous on E,Z (m denotes the Lebesgue measure). Along with (6.5)

i

L 3 ; i
G - 31? y“ds(y£ )p, = 0 strongly in Ll(EZ).
= 0 3 R

Denote by Ez,é- the following subset of &
Bt = | (G006 By AT G0 |2 i

By (6.6) it follows that for each &> 0, r»&p = 0 on B?,A’ and
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therefore (f"-p) =@ on E,Zf){((f,ﬂéz; y‘(f,ﬂ £ OS « Since
a
m(Z\ ﬁ()———-) @ = for T——-—-—-) 0 we may concludg that

| (]“'p)a =0:: . 0m { (G,1)eL; y*(O’gt)} o}.

Along with Eqs. (4.24), (4.25) end (6.4) the latter complets the '

proof of Theorem 2. .

Remark. If %yes is a compact subset of 0(Q). then it
follows by (6.5) that Pb y‘ = 0 and therefore (3.20) beéomes‘

:%S =10 on % ny()S.
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