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1. INTRODUCTION

It is the purpose of the present paper to invegtigate non-

linear differentiel hyperbolic systems of the form

2 u ? -
< (x) =t /D§ + Au > £(t,x), ;
- ‘ : {1.1)
2 Q yo e
plrbrvgasiam GEL2 S0
: for o0<x<1 =and t>o0
with the initial data
u(o,x) = uo(x); v(o,x)svo(x), oL XL .(102)
end the boundary-value conditions
(u(t,0), -u(t,1)) € L{v(t,0), v(t,1}), t>0 . (1.3)

For the sake of brevity we gimply begin with the enumeration

of some basic assumptions which will be used in that follows.

(Hl) Both A and B are maximal monotone grephs in RxR,
R ;:]—Qp;oo[ ;'In other words, there exist two lower semicontinu-
ous proper convex functions jf°1): R —e>;]foo;oﬂ 'such that
A ;Qja, B -}(9)0; Here (930 and 9}’/ denote the subdifferentials of

ja and’y . Moreovef, we assume that
(1) '~D(¥/)=R, where D(yb)s { g e ﬁ}' V’(r)<; +o0}

(so in particulsr V/ 18 continuous on R),
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(11) There existé a function u*e-Hl(o,l) such that (u'*(o),
- u¥ (1)) €R(L) (the range of L) end W (x)€Int D(¢)
{interior of D(j’));.for all x<5[o,iL Implicity, we
have assumed Int D((f ) % ¢ , thet is D(jo) is not a

singleton,.

(HZ) The graph of the (multivalued) function L: RaElld R2,
2 ; | > 05 T0do
R = RxR is maximal monotone IaeR” x R

Ttz ds weliéknown that many boundary conditions cgn be expree-
ged in the general form (1.3). For example, it 1L é gf';‘where
'£: R2-ﬂ_]~°o;o§ is defined by

.-{(x,y) ’ o, for x=a, y;b; a,b €R and ;tx>§therwiée (1;4)
ihen (1;3) becomes: - o

v(t,o)ma,Av(t,l)zb (two-point boundary oondifions).

Teking I as the subdifferential of the indicator.function of the
first biseetrix of the plane we obtain periodic bbundary

conditions.

(Hﬁ) The functions « and § belong to L% (0,1) and . besides
there exists some constant C> 0 such that o«(x)>c¢, $(x)> C,

for a.e. xe]vo,l[.}
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In the previous papers [?, 4, 12, li] it has Dbeen discussed
the existence, regularity and asymptotic behaviour of solutions

for hyperbolic systems of the form (1.1) where A and B were assum-

ed to be single-valued functions, A:A(x;ﬁ); Béﬁ(x,v) f?om lo,1L xR
into R tha§ sat;sfy conditions of Caratheodofy type, It is |
pointed out there the physical signifieance 6f such systems,

"The multivalued casg;present@d in this paper is motivated by
an example given in the last section and perha%ps there are many
other physical meanings of the pfoblem.

The plaﬁ of the paper is the followiﬁg. In Section 2 we shall
state and prove an existence and regularity result (?peoreﬁ‘z;l);
The soiution obtained satisfies the“sygtem in a generalized sense

®

which will be precised in the statement of Theorem 2.1, In

Section 3 we sha;l'31sg;§s on the asymptotic behaviour of
golutions.
The laét section is devoted to an example of interest iﬁ
electrical network theory.
2. EXISTENCE AND REQUI;AﬁITY'OF SOLUTTONS
Assumé famiiiarity with the notation, c9ncepté, and ba§io

results of the theory of monotone operators and differentiél
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eéuations developed on general Bénach gpaces.‘ All the results
in this field we shall use in the sequel without particular
references .can be found in the books [2, S 61. We also refer
the reader e.g. to [2, i] for the usual notation cf funct1on
spaces and WP spaces, However, we recall that BV(0,1) is the
space of all teal~valugd functions of bounded variation defined
on {0;1]; M(o,1) denotes the space of all Radon measures over
[0;11; i.a;-the dual space of C[O,l]. It is well-known that every
function v €¢BV(o,1) generates a measurs Dv given by
] :
Dv(h,) = Sah(x)dv(x), Mneclo,1]

and, conversely, evVery measure can be expressed by means of the
Stieltjes igtagral associated to some function of bounded
variation,

In'keeping with the notations introduced in Section 1 wé
define the operator %t allogt] s M(o,is by

1
Aua{/\AeM(o 5 /\k(u-v g ﬁa(u(x )dx-
5 ¢ (v(x))ax, for every veclo, 1]} _ (2;1)

with

D (1) ;A{ i Cptilond |3 Au 7£ 95.}. : | 2.2

s T i (o) Wil e denoted by B. In'cther
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words)ﬁ‘represents the subdifferential of the function TIT:LE(o,l)

: g
,.5>-]~cw,+0§ ‘defined by

4 .
‘*{](v) = go”\//(v(x))dx, if ")L(v)eLl(o,l), and

= +%, otherwise.
2 2 ' e
Let >< denote the product space L“(o,1)x L°(0,1) endowed with
the usual scalear product and Hilbertian norm. We recall that
2 e ' 2 pl
L°(o,1) 1s a space of equivalence classes, L (e,1) n:Qf (0,1)/~z,
P ' ‘
where 36 (0,1) is the space of all functions u: [0,1]—> R, of
square Lebesgue summable and as usual uasv iff u(x)=v(x), a.c.
x¢ Jo,1] (with respect to the Lebesgue measure).
Define the multivalued operator ﬁg: % > ¢ bye D(jg)z
= {(u,?)é;X; ué&Hl(o,l), the equivalence class v contalns at
least a function vlézBV(o,l) and there exists /ueru such that
4 : _ » ,
(u(0),-u(1)) €L(v; (0}, vy (1)) and k-Dv;eLZ(0,1)}. (23)
For each. (u,v) fixed in D(f%»), let K = {Dvlk, i,e. the set of
all measures Dv; given in (2¢3). Then, let

JQ( e (Kyyriu) N 1%(0,1)

: .. for all (u,v)GSD(fz). (2;4)_

-u' + Bv - =

The space Lg(o,l) is identified with its own dual, The derivative

u' is understood in the sense of distributions. If hel?(o,1)
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and h contains a function hy€C[o,1] then h is ldentified with
hy so that in particuler h(o) and h(l) make sense, i.e. h(o)zhl(o)

and h(l);hl(l). Then, one has

Cg (o1} C Co,l C 1%(0,x}c Mo, 1) < ;ﬁ'(o,l);
élgebraically and_topologically. The fact that‘/u;Dvlé:Lz(o,l),
means that this measureé can be extended to a functional belonging
to the dual space of Lz(o,l)° We also note fhat the restrictiQn
of Dvy to ng(o,l) coincides to the distribution vf; A natural
Question is how meny elements there are in K o (see (2.3); (2 )
So let vy, VZGEBV(o,l) belong to the equivalence class V. It is

jmmediate that the function vy =y is identically equa} to zero

on the set of its continuity points. Then, according to [}4, Ds

lil] it follows that vy and v, generate the same measure, i.e.
Dv; = Dvy,, if and only 1if vl(o) = vg(o) and vl(l) = vz(l)c Theref
fore the set K, may generally have more than one element, How-

ever, if L"l(u(o), ~u(1l)) is a singleton then X o is a singleton
t0o.

The following lemma is essential in our treatement.

LEMMA 2.1. Assume that hypotheses (Hl) and (H2) hold, Then,

_the operator f% defined by (2.3)_ and (2,4) is maximal monotone.




SOk
Proof., First of all, we note that D(f%) is nonempty. Indeéd,
let v eHY(o0,1) such that (v (o), v (1)) €D(L) end (o), -uT (1))
. * f * ,
€ L(v (0),v (1)), where u 1is the function appearing in hypo-
thesis (Hl) (11). By an elementary afgument involving (Hl) it
: - :
follows that the set \\// A u (x) is bounded, So it is apparent -
~ o¢xl . G :
4
that (u",v e nidtl,

The operator\%ﬁis monotone. The verification of thils fact is

only a simple exercise involving the hypotheses and the following

‘formula for integration by parts
1

pv(h) = v{1)h(1) «v(o)h(o)= Sov(x) h/

(x)dx, &5
: 11 (2:5)
for veEBV(o,1) and heW *(o,1). ol

In order to prove the maximali?y o% f@ we shall show that,

-for each pair (p,q)é;><; there exists (u,V)GéD(f%) such that
u-K , + Au > p,
v - u' 0 véaé.

Iﬁ is easy to show (see [13] ) that the qﬁerator T X—>X

defined by

u wv' ‘ '
T( v) = ( ~u'> , for every (u,v)€ D(T), ~(2.7)-

p(T) = {(u-,V')EHl(O,l)i g (0,1); (ufo),-u(1)) o

e nlallaa)
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{s maximal monotone on ><, Cansequently, Tor each SX>,0, the
following approximating boundary-value problem

e R n e e xe]o,1[ )

X xRN
4 | (2.9)
W =il BRI, G, e e eyl
(o) - w (1€ L (nfolyw, @) (210]
3

> =

‘has & unique solution (ua)vh)etﬂ.(o,l)x H (0,1), Here A, and B,
are the Yosidsa approximations of A and B respectively (see .8

[2 s Do 5@]), According to a standard device we‘do_not reproduce
here it follows by (2.9) and (2.10) that

{u)} and {v% ape Dotnass Yn L-(o51] . (eait)

The system (2.9) cen be put 1ﬁto'the equivalent form
u‘)~ = Q‘{/x(v,x) + v%-q s 8o€e xe]o,l[) \

? ; ] _ (2.12)

g i

iy, =’9?;(vx+zwug, aves mejonil

where ﬁ& and Y&‘mean the regularized functions assoc?ated to ff
. . X
and'% , respectively, while f%'is the conjugate function of &3'
(see ecgo [2, Dpe 92, 57]), In order to obtain an estimate for
v& 1t is useful to define as in [4] the following function:
o ER S SRR 0
P (r,s)= \}/(I‘)‘P L ]rwaz + 30*(3+p-u ) (2.15)
r % e e At

0f course, P%' also depends of X by means of the functions p,q

e e R

SEE———
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and U, but for the seke of simplicity the variable x is omitted.

It is apparent from (2,120 end (2.13) that
[ 1 3
(ux,ux) G(QP>L (vl,vx )i (2.14)
We then have

) +

?k X

(V,V)\P(v,z wp U

+ ul (vk-v*) & W AN - z 4+ p = u, ) &

T RS AT NCR R
che - :

[(“xf‘ ) (ka- v*)]. + (u*)f (v?h - v*) +

% Wy ¥ o2 X o\ :
+.u7‘(puz +(v))fu (v,lhvl) 3
! * = ;
for every z € R. _ (2415)

. . = : > *- -
It is convénient to choosse z" = z;i (x) = Axu {x)s*hen by .(Hl)

(11) end the wellkknowm property |A r‘\é: \Ar\ , ¥ reD(2) we infer

that Yz, } is bounded in 17 o, 1 ) Moreover, (see [5 s Do 9]])

x 6 X%
lg* Jimz. B = Tx(u ) :
eﬁk o ’ (2,16)
¥ *- al >
L, 0o 3"((]&7&3) w).
But —jﬁ is sublinear, therefore we have.
‘f)f (z;i ) £ conste 5 Be€e xé]o,lt_ {2:17)

On the other hand, by definition of conjugate function, we have

Pl «fx((um e, Jopou vl spmu. )
(2.18)

+f‘v;v +p-u>v, - Ef(u-rfwk),

il D e )



A
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Let us note that y'(u +§wa )éconsto) for @.e. x ¢Jo,1l and S)> 0

small enough (see (Hl) (11)). Thus by combining the inequalities

(2,15); (2.17), (2,18) and integrating from o to 1 it follows

iyii is bounded in Ll(o,l). (2.19)
By a similar device we also derive
Xui} is bounded in Ll(o,l) e (2.20)
Since : ' 1
. ES - : ;
ul(x) So(x W ) ax v gxux (g)dg

from (2.11), (2.19) and (2.20) we derive

auk}‘, {vik are bounded in C[b,l] , (2.21)

Since B is everywhere defined on R it is bounded on bounded

L

sets, Thus using (2.21) and the second equation of system (2.9)
we may infer that

{ui} ~ is bounded in Lz(o,l), _ (2.22)

We are now able to apply Arzelé-Ascoli Criterion (see (2,21) and

(2.22)) and to conclude that, on a subsequence,

Uy —> U, @s X oy MmO o] (2.23)

Concerning the sequence’ {vi} we have only proved its boundedness

in Ll(o,l) and this seems to be the best possible estimate we can
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obtain, However, by Helly's principle it follows that,there exist‘sv

vlé BV(o‘,l) such that, on a subsequence, we have

vx(x).__,>vl(x), ag A—>:0, fof every xefo,1]. (2;24)
Taking into account (2,21)Vand (2024) one gets by Lebesgue
dominated convergence theorem
e strongly in Lp(q,l), lépé oo . (2;'25)
of course, in (2.25) v represents the.eduivalence class of vy
with respect to ﬁ&&”.while, according to tpe usual conventilon,

the class of oy Ns identified with v7L . Furthermore, we have, on

some subsequences

vy —> Dvp ~vaguely in M(o,1), (2.26)
Ay us () -—a»/« vagl.l_ely in M(o,1) . o L2eer)

: ~ 5 . ‘ :
Ve assert that /ké Au, Let (ijz B lol) .,—73..00,4-@ be the
: y : ;
function defined by 8@ (u) = g jﬂ(u(x))dx‘)if (f(u) eLl(o,l) )
o

MOL = + 02, otherwise.

We intend to pass to the limit, as X — o, in the inequality

4 .
%0 AK“?\(X)_ (u%(x)—h(x))dx > CTP%(u% ) = %X(hi
21(_)\ \\ux" (I+ 'XA)ul u)‘\\Lg(o’l) & % ((I*")\-A)“l \.1')'(0)>

~§>(h). ~ for every heD(CE{), o earel)

=
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From (2.23), (2;2?), and (2.29) by a straighfférWard
reasoning one deduces that
(I+'>(A)f"lu%(.;) el as; A— o, strongly in Lz(o,l).
Now.by passing to the limit‘in (2;23) we conclude that/px;iﬁ, .
éé ciaimed; From (2625); (2025), and (2;10) one gets
i) . Swtal) & Ty vy LR -~ e
On the other hend, froﬁ (2.22), (2;25), (2;25}, (2;26), and (2;2?)

one obtains ‘
u f Dvl +/u = P
ve-u'+BvV 3>dq.

Summarising we have demonstrated that (u,v)é:D(f%) and satisfies

(2.6), Thereby Lemma 2.1 is completely proved.

Remark 2.1, Leﬁ/u belong to M(o,1l) and let g €BV(0,1) so that

/us Dg. Then we have the decomposition

/ “‘/O(av*'/‘ls X (2550)
: . 4 ‘ X ; ?
| where /ﬂaa q,/usn Da s qs(x) = q(x) -qujg)dg , that is q_ 1is
the singular part of g. Here d is the ordinary derivative of q
_ : :
which exists almost everywhere on ]o,l[,, and is in &f(o,l),

According to [}1,‘1§X, 1f//zeAu then we have

//&a(x)e:Au(x), 8080 X'e]o,l[ 5 (2.31) .

and
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/u (unh) >0, for every heC [o l] such that

—er

D), ¥ x e o, 1] (2.32)

< : ‘
The operator A defined by (2,1) and (2.2) is also considered

in Ki, 16] , in a different contexte.

THEOREM 2.1. Assume that hypotheses (Hy ) (£,), and (H5) hold.

Qe

Let £f,g be given in w (o,T;Lg(o,l)) and 1et'(uo,vo) belong to

D(f%) defined bz(&,})o Then, there exists a unigue pair of

functions (u,v) euf* (o My L (o108 such that
wver®(Jo,rlxlo,l); L= “ (0, 1312(0,1))3 (2.33)

for each te[o vl , v(t,.) EBV(o,1) and we have

& .

o< (x) ?a% (et} _.{rx(t,x)w*Au_(t,x)af(t,x), B xé]o,l[) (2.34)
o~ 9 |

3“ ,a'{ o ) g—q;%(t,x-)_ +BV(t,%) 2 g(t,x), 8,60 x €]0,1[ (235)

.

D, v, (%, ) (u(t,e)-0, e iolo il n(x)eﬁ@,o cxel;  (2.36)

in eddition u, v satisfy cond itions (1,2) and (1.5}«

-

,a%, /,aaz denote the right. partial derivatives of u,v:

Here
[b,T[:-%7L2(091) for each te;[p T[  ,a“(t,o) is the distri-
butional derivative of v, ) wWhile %X(t,,) denote the ordinary
derivative of v(t,«), whiohbdoés not coincide to the distri-
butional derivative of v(t,.). The notation %i is chosen to

point out thig distinction, Of course, (t,o) coincides to

2w
fax
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ﬁx(%,o), Finally vs(t,e) {5 the singular part of v(t,.), i.€e
%

vs(t,x) = v(t,x)f go 'Uﬁg (t,% hig 5

and, D, vs(t,.) is the measure generated by vs(t,,),

Remark 2.1, In fact, in Theorem 2,1, for each t, the equi-

valence class v(t,;) contains a function Ql(t;,)é?BV(o,i) such
that u(t,;); vl(t,,).verify (1;3) and (2.36). Clea?ly v4(t;;)

i{s determined on [p;i} apart from a countable set of x € [o,1].
Ir L"liu(o,t),uu(l,t)) is a singleton then vl(t;,) ié determined
up .to the Qlass ofAfunctions'of bounded variat;on belonging to

v(t,.) and generating the same measure.

proof of Theorem 2.l. Firstly, we assume that oc{x) =;ﬂ(x)=l,

3

g.6. x€ Jo,1[ . Let us reformulate (1.1), f1.2), (@@ es tho
following abstract Cauchy problem on the space X = L2(o,1) X

Lg(osl)ﬁ
= u(t) +pﬂ(u(t)> 5 £(t) (2,37)
at (v(t) v(t), glt) ) » v :
(J‘O) g (VZ> . . (2.38)

According to Lemma 2.1 the general tneory"éf ordinary dif-

ferential equations'associated to monotone operators can be

applied to obtain partially the assertion made‘in.the statement

st
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of Theorem 1. Thus there exist: U, véW % lonills La(o 1)) which
satisfy (2.37) eand (2. %8) Therefore, for each t e[p T[', v(t,,)

_econtains a function vl(t,.) € BV(o,1) such that ul(t,.), Vv (t,.)

% : |

satlsfy (1.3), and there exists /a(t)eAu(t,,) such that
i
ey

‘QF#
[P

(ty0) - val(t,,)at/u(t) gl ], dn Belo, 3l

O
nx

(ty0) = (t,.) + Bv(t,.)2elt,o), in 12(0,1). (2.39)
Since /dt) « D vl(t,o) € L%(o,l) it follows that

D v (ty0) - st tefo, [ . 4l (2a40)
Therefore by Remark (2215 (2.34), (2.%5) and (2.36) are fulfilled.

Ta . order to prove (2.33) we intend to use Theorem %.16 in [é, Do

1021. Let us denote by-fz the operator defined on X by

X/u ~-v' + Ay U ' :
}% ( ) - (2.41)
5 syl iBpm | ,
with D(j% = D(T) (see»(2,8))° A revision of the proof’ ofiLemma
1 shows us that
e D ‘ = P :
(1+f) (q) s (Tt . ( q) , 88 A->o0, strongly in X.

Therefore by the above cited theorem‘the solution (u)fyk) of

the approximating Ceuchy problenm

At (5)\ , phfunlt) k)
T o jﬁ\l (“k ) O e, A
'vx(t) v, (t) g(t) &
u u - ‘
( A (o) = ( Qo (2.43)
o ol N Vo ; : '
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converges in C([b,T]; X ) to the solution (u,v)of (20377, 2, 259,

By a standard argument it follows that
{a$—~ vy is bounded in L (o,T;X) . (2o44)
Thus, by the procedure used in the proof of Lemma 1 that we do not

repeat here it maj be obtained the following estimates

5 i : ,
%',}XA} is bounded in LDO(O,T;La(o,l)) - &(E,QS)

{ui} and ivﬁ are bounded in LOQ(JO;T[‘E eIl ) . (2;46)
From:(Z;AS); (2;47) one obtains (2;55);
The general caée when cr,j; are not identical}y eéual to 1
reduces to the above one, Indeed, it suffices to divide both

equations of (l.1l) by « and‘? y Tespectively, and to observe that

the operator

1l s :
o~ - - + w Au ~
& Suy' &
A(“>= , with p(fl)= n(A)
k. ~Eu + iy
$ $

is maximal monotone on the weighted space L2(0,1;<x(x)dx)x
Lg(o,ls:ﬁ(x) x). The Theorem 2,1 is now completely proved,

Remark 2.2. The roles of A and B can be reversed, Specifically,

e

assumptions (1) and (ii) of (Hl) become

) 'D(y) =R,
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(£1)* There is a function Y&G;Hl(o,l) such that (v*(o),vx(l))

€D(L) and v, (x)c Int D()b ), Verielony e

0f course, this change produces the reversibility of properties

of u end v, where (u,v) represents the solution of (2.37), (2.38).

Remsrk 2.%, Theorem 1 remains true if B is replaced by a

gingle-valued function By (x,r): Jo,1[ x R—> R which saetisfies

Caratheodory conditions-and is increasing with respect to the

second variable, In fact, with the exception of some minor modi-

fications, the same procedure is applicable to this cases

Remerk 2.4, The assumption D(39)7é R we made in Theorem 2.1
generétes one of the main difficulties of the problem., Of course,
essuming D(§0)=R the reasder cen easily observe that in this simpler

case the solution (u,v) is of olassical type.

Remark 2;5, Oour treatement can alsé be applied to the systems
of the form (1.1) with 2n equations, specifically, when A and B
are subdifferentials from R® into itself. Since this extension does
not generate new aspects. or aifficulties we have confined ourselves

to the simplest case of 2 equations.
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BoJASYMPTOTIC BEHAVIOUR

We begin this section by assuming that D(ff5 = D(yf)nRa Then it
is not difficult to show by using the procedure in the.proof of
Lemma 1 that the resolvent of j% is a completely continuous operator
(see also [12]‘) and even more (i+j%)fl maps bounded<subsets of X
info bounded subsets in Hl(o;l) % Hl(o,l); This fact together with
the assumption o ¢R(A) assures (see [9] ) the precompactness for
the orbits of the semigroﬁp {S(t); t)-o} generated by -;Q and
defined on 5???3 which is actually equal to X ; Then, sufficient
conditions assuring the strong convergence of solutions in the
topology of X, as t approaces o2, cdan be formulated in a menner
similar to that of [12]. Moreover, if (uo,vg).is teken in D(f)
then the associated orbit O S(t)(uo,vo) is bounded in H;(o,l) x

t2o0 v

Hl(o,l) so in perticular it is precompact in C foid] = o I

The last assertion is a consequence of the following simple equality

s(t)(uf)) = (et (S(t)(uo>” 2+ sit) (u"))- 5 B8
v : b :

o VO v

Under the weaker hypotheses (Hl) we failed in attempt to prove that

(Ifj%)'l is completely continuous so the technique of Dafermos

. and Slemrod [9] connot be applied to this case. However, in the




- 21 -

sequel we shall state an asymptotic result using the concept of

ndemipositivity" introduced by R.E.Bruck,Jr. [7] .

DEFINITION %.1. Let M be a monotoné operator on a real Hilbvert

c u™to which

space He Then M is demipositive if there exists ¥y,

®

satisfies:

(A) the conditions x, —> X weakly, v, €M X , fv,y bounded,

and 1im (¥, Xy = yo>H = o imply o0 EAX.

n—»o0
Hore <oy >y denotes the scalar product of H.
THEOREM 3.l. Assume that (Hl), (Hz),‘(HB)Ahold; (uo,vo) &

CQD(%);if.geLl(o,oo; 1ol L s (o,o)eL[o,o),'_a_[_}_g_ Tk ;{o},

Bflo'z {o}, Then,

tntoe .y strongly in Lz(o,l), (Z.1)

u(t,.) —> 0, 28

v(t,;) —> 0, 88 t—>00, weaglz in La(o,l), (3;2)
(Le2), (1a2]

where (u,v) is the weak solution on Tosool of (A1

corresponding to (uj, Vi £,8)e

If in sddition (ulo,vo)ep(goc) and f,g'ewl'l(o,oo-,x,z(o,l))

then

At ) —c, gt T ooy, weakly in Hl(o,l),
“""(301) '—

and so in particular strongly in gifiobad

» » :
The symbol (L~ means the clesure in T el o X L2(o,l).
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A weak solution of {1.1), (1.2), (1.3) on [b,T] is the uniform
Yimit in >< of any sequence of solutions obtained by Theorem 2ol

corresponding to initial data in D(f%) and to right-hand sides

il

in Wl(o,T;1%(0,1)) (see [2, p.134])

Proof. To prove (%.1) and- (3 2) we may assume without any loss

of generality that of(x :ﬁ (x) =1, a.e. x€lo,1] and f=g=0 (see

800 [}2]‘), Clearly we have

' -4
o0 >€;Jq/ o)
e
Ve assert that ﬂ;is demipositive, To show this let (un,vn) and

(zn,wn) be some sequences such that

2 u, zZ, : v
( ) c J%( > and {( )}"is bounded in X (3.3)
L v W ; . /

n n
= =i 2
o oy Uy, W sy T weakly in L%(o,1}), (3.4)

and

Zn un
lim, < ( ) : =¥gll 3 : (3.5)
n— oo wn Vn - :

By means of (2.5) this becomes

lim {{: ~u (1)v ] /un(u 8 5\(x X)dx}z 0, (3;6)

where /u eAu and S er 4

Let us assume that ?(o) = \y(o)zo, Then (3.6) leads us to :

lim g/‘ <f(u (x))dx = 1lim g ‘\f(v x) dx.= Q.
0

n—> 00 0070

R ———

R—
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This together with (3.4) ylelds

T(E(X)) =\r(?(x))zo, a.e. xgJo,1[ , so that
u(x) ;V(X)zo a;e, xelo,lt . - (3.7)

From (3;5),.(5.7) and Lemma 1,3 in K?, yo 4é]it follows that
(@7 eDf). | |

So‘ﬁfis indeed demipositive and in particular f%fl('g) .
()1 '

0

The result of Bruck [7] can beAapplied to obtain the weak
convergenceof solutions. In order to prove (5;1)' assume (ﬁo,vo)
E}D(}{ cand T ge;Wl’l(o 0o § Lg(o l))° Let us again consider the
problem (2;42), (2,437 this time on [0, ~[. By a standard device

one obtains

t) -
{f%?_ <llk-( )} js bounded in L (o,oo;L2(0,l)).
(t) g '

By the same reasoning as in the proof of Lemma 3.1 one deduces

that
9\1

€ 17 (0,005 22 o d)

e e e i (0,1) and (3.1)' is now
: 2

proved because we know ult,o.) —> 0, as t > co , Weakly in Ve lo, 0 )

Then (3.1) follows by & simple completion arguments

Theofem 3,1 is now completely provedo'



- PUEE

4, AN EXANPLE

A mathematical model of trensmission line phenomena (see

Cooke and Krumme [8] ) 1s the problem

where

I,%%—-ﬁ~%}% + Ru + e(t,x)=0, s
: (4.1)
.ng%w - %}% + GV =0
ﬂg oZLxLk, Yo,
1ﬂxw)=-doﬁd; vkmo)zvou), o dxdl, (%2)
v(t,0) = R, g ~u(t,l)élfo(v(t,15)s t>o0 (4;5)

i= - u represents the current flowing in the line and v

is the voltage across the linej the constants R and RO, TG, C

are resistances, inductance, conductance, and capacitance; e 1s

the voltage per unit length i{mpressed along the line in series

with it. By physical reasons 1350 0 Zio 1 RH05 Ro> 0, and G 0.

The multivalued function f (whose greph is assumed here to be

maximsl monotone in RxR) represents a nonlinear resistance,

Let us require that u(t,x)=-i(t,x) deviates as little as possible :

from a prescribed interval K= [a,b]CLR. To achieve this we shall

interpret the term e as & feedback distributed control.

8o let us choose e to be the multivalued function e(u):’BIK(u)o

Tn this case (4.1) becomes

e



- -

Pw Dy
L — - + B 49T (n) > @ |
aE e : (4l
v gu : ‘
C --—-——--(B.e - 7)7; + Gv —— 0 o

Recall that IK(u) = o - if uek, and : %50, othérwise. Theorem‘é.l
cen be direotiy applied to the problem (4.1)’ 1 d.2), (as ). Th,é
céntr§1 is achieveé becauée ( see (2.34) ) for each t 2¢9,
u(t,x) éD(Q Ig) f[:a,b] s a.e.‘xelo,l_tl: .

The above_controlvproblem was suggested us by [10,'9.21]
where the "ﬁhermosﬁatic control” for the hgat equation is

discussed, .
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