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ON M-SPECTRAL SETS AND RATIONALL? INVARIANT
SUBSPACES

C.Apostol B.Chevreau

1. Introduction. Let H be a separable, infinite dimensio-

nal, complex Hilbert space and let L (H) denote the algebra of all
bounded linear operators on H O T Avdsia subalgebra of L(H) a

nontrivial A-invariant subspace is a subspace M of H such that

(0)#M#H and such that AMc M for each A in A. If A is the algebra
of all polynomials in o fixed operator A aﬁ A-invariant subspace

is exactly an invariant subspace and if A is the commutant of A

an A-invariant subspace is exactly an hyperinvariant subspace for A.

One of the most recent tools used to establish the exis—
tence of invariant subspaces fistithe technique'introduced by
S.Brown in prov1ng that every subnormal operator has a nontrivial
invariant subspace [7]. This technique is particularly appealing
for the class of operators A for which there exist a bounded
open set G in C such that G 1is an M-spectral set for A (i.e.

Hr(A)” M sup [r(x)l for every rational-function r with poles
off G ) and Such that GNo(h) is domlnatlng if Geddeen

Whi = sup (3 Eoryany function in H”(G), the Banach
rig g (BING

algebra of functions bounded and analytic on G equipped with
the supremum norm) . Nevertheless, so far, positive results "have
been obtained only w1th considerable restrictions on G and/or A;

for example A is a contraction and G 1is the open unit disk in [8],



o (A)=G in h3], this latter caée but with M=1 being previously
solvend in [1]; see also [2]), [3), [4], [9]. Another disturbing
feature of most of these results is that subspaces invariant

only under A are produced while one would expect to obtain RG-(A)-
invariant subspaces; that is subspaces invariant under the algébra
R —(A)*{r(A) r rational function with poles off G }.

By studying representatiors of ) (C) into L(H) the authors
JionE [9] offered an approach which, when it works, automatlcally
produces an RG—(A)—invériént subspace. In this paper we are able
to apply successfully this approach to a fairly brcad class of
sets G,fnamely those bounded open sets G such that R{G. ). is
pointwise boundedly dense in H®(G) and such that R(3G)=C (3G)
(Theorem 4.1). (FOf a compact set X in C we denote as‘usual by
C(X) the algebra of coﬁplex continuous functions equipped with
the sup norm and by R(X) the closure in C(X) of the algebra of
rational fﬁnctions with poles off X). In particular we show
(Theorem 8.1) that this class of sets includes any bpunded open
set G such that G has a finite number of holeé.

This result generalizes Theorem 4.2 of [9] which covers
the case when the boundary of G consists of a finite number of
Jordan loops. Our second application refers to the case when
o(A) is an M-spectral set for A. We improve Stampfli'’s result [13]
" by showing (Theorém 8.2) that for.any finite set of-holes in
ckA)'there is a nontrivial subspace of H invariant under any
rational function of A withlpoles in the union of these holes.

The paper is organized as follows. The first four sections

are dedicated to the proof of the basic result (Theorem o)
To apply Theorem 3.1 of [9] to our situation we need first to :

extend the representation of R(G") into L(H) (obtained from the




fact that G is M-spectral for A) into a representation of H (G)

and next to show that this extension satisfies the proper hypothe-

ses. These two problems reduce essentially to establishing the
wg—S.0.T. sequential continuity of the corresponding representa-
tions. (We say that a representation is wyx-S.0.T. sequential oon—
tinuous if it maps a sequence of functions that convergés to 6 in
the weak « topology into a sequence of operators that converoges
to 0 in the strong operator topology). Of course these continuity

" difficulties appear more or less explici£ly in any application of

the S.Brown technique. So far they have been solved by tiansfering

the problem to the unit disk where a result of Nagy-Foiasg (Theo-
remslL 5.4 of [14]) enables oné to assume fhat either 2% ox i
tends to 0 in the strong operator topology. This going back to
the unit disk is precisely the basic limitation of previous
applications of the S.Brown technique (especially with regafd to
the type of invariant subspace produced). Our main innovation is
to deal directly-with the continuity dlfficulties via a result '
(Coroliary 3.2) which, roughly speaking,.genéralizes the above
theorem of Nagy-Foiag and enables us to exhibit a nontrivial
hyperinvariant subspace for A whenever the wx—=5.0.T. sequential
continuity property is not satisfied. The proof of Corollary“
3.5. is broken into two steps. In §2 we show how the Wa— SO
sequential discontinuity implies tﬁe éxistence of nontrivial |
intertwinings between A and M% on R(3G) on one hand and oetween
a* . and M, on R(3G*) on the other hand. In §3 we show how these
intertwinings lead to a nontrivial hyperinvériant subspace for A.
Here the hypothesis R(3G)=C(3G) plays a crucial role via the
characterization of closed ideals in C(X). The first author was
initially leod to Corollary 3.2 wvia:local spectral theory tech-

niques; we briefly sketch this approach of the end of §3.



_Section 4 completes the proof of Theorem 4.1. The applications

of this theorem that we give rely Heavily on the results‘of flﬂ
on pointwise bounded approximation and Dirichlet algebras. The
basic definitions and results that we need are~presented in §5

in a . form suitable to our purboses;as a tool for generalizing
Stampfli’s result and in connection with Dirichlet algeﬁras,

we develop in §6a,natural(and, we believe, interesting in its
an right)paftition of the set of holes of a connected compactA
set in the plane. Before concluding the proof of the applications

in §8 we need a few additional results on H" (G) which we bresent 5

Tk,

2.'w;—S.O.T; sequential discontinuity of representations

-and intertwinings

'Thfoughout this section G is an arbitrary bounded open set
of v C, A is an oéerator in L(H) having ¢~ as an M-spectral set,
A is a subalgebra of H~ (G) containing R(C ), énd ¢ is a bounded
linear map from A into L (H) such that o (rf)=0(r) o (£f)=29(f)a (r)
and ¢ (r)=r (A) for any r rational with poles off-G and for any
f in A. Furthermore we assume that for any ﬁ in ¢ and any £ in A.

the function fu defined by

{3 =f (w)

f (\)==—r—"" =f' ,

u( ) = AFL fu(u) _f (n)

dlso ‘belongs: to: A fThouqh A will be either R(G_) or H (G) which
clearly satisfy the above conditions we need this general setting™
to avoid using nearly idehtical arqguments in two different places;

note also that ¢ is not required to be an homomorphism; in fact

it will be a consequence of the results of this section that,




under the additional hypotheses of Theorem 4.1, & can be assumed
to be multiplicative].

Finally, naturally associated with ¢ is another representation

o* defined as follows. For XcC we set X*={{:5G XY fafideifiE is a
Funstion on . Roke define & onXr by f~(5)£f(%)—; then 0* is defined
on AA.={f:f e A} by o* (F)=0 (£¥)*. The following is the key result

of this section.

THEOREM 2.1. Suppose that A has noeigenvalues
and.that‘é* is not wx—-SOT sequentially continuous. Then there
is a nonzero operator T from R(3G) into fl ‘such that TM$=AT g
(M% denotes the operator df multiplication by 5).

Before proving this theorem we establish two lemmas.

LEMMA 2.2. If ©* not wg—SOT sequentially continuous
then there exists a sequence of functions fﬁ in A converging
pointwise boundedly to 0 and a sequence of unit vectors X, imH

such that @(fn)xn converges weakly to a'nonzero vector Y.

Proof. If &% is not wx—SOT sequentially continuous then
fhere exists a sequence fn in A converging pointwise boundedly
to 0 and a vector X in H such that (@(fn))*x does not tend to 0.
(We use here the obvious fact that the map £ —7 £% . 1s an.(isc-
metric) weak + homeomorphism of A onto A*; also recall_that‘for
sequences in B’ (G) weak x convergence to 0 is equivalent to
pointwise bounded cqnvergence to OJ

By dropping to a subsequence we mayrassume that
lim |1 (e (£ ))*xI|=a>0. Let xn=(q>(fn§)*xr;7 | (8 (£))*x, 11 ¢ the
sequence <I>(fn)'xn is bounded and, again by drobping to a subsequence,
we may assume that it is weakly convergent to some vector y. The

Al it+dioa



(y,x)=lim (¢ (f )x ,x)=1lim (xn,é(fn)*x)=lim |I®(fn)*xll

show that (y,x)#0; consequently y is nonzero as.desired.ﬂ

The operator T of Theorem 2.1. will represent a sort of
R(3G)-functional calculus for A but localized on y. The following
apprdximation lJemma will enable. us to "remove" the undesirable
poles of rational functions in R(8G) (that is the péles that

are in G).

L BN A 02,36 ket fn be a sequence in A converging
pointwise boundedly to 0 and let ¢ be a rational function with

poles of 3G. Then there exists a sequence of polynomials Pn such

that:

1) lIPnIIoo tends to 0 as n tends to ~, and:
2) @(fn—Pn) belongs to A and converges ﬁointwise boundedly

to 0 as n tends to «. *

Proof. Let kl,...,xk

G and let al,...)uk be their multiplicity. (Of.course if ¢ has

no poles in G we set Pn=0). By {12] ; Chap.V, §2) we can find

a system of polynomials L. . such that Lgﬂ?(x
Jr3 J.1

m)zéj,ﬂéi,m

for 1<i, m<k and 0<{, jSai (here 6 is the Kronecker symbol and
h(ﬁ) denotes the £-th derivative of h). Let‘Pn'be the sequence

of polynomials defined by

=l )
= (9)
B J tx. YL .
1 =0 n A

(

For each fixed pair j,1i the sequence fnj)(xi) tends to 0 as
n —» » (Cauchy integral formula and Lebesque dominated convergence

theorem); this proves that {Pn} satisfies 1). From the definition

denote the poles of ¢ which are in 7{//,/“’




of the Lj i’s it is clear that each Ai is a zero of order Zai

14

for fn—Pn. Thus we can writé

i SBappr ok bt e
1¢igk )

By a repeated application of the property that fu is in A ﬁhen—

ever £ is in A and u in G we see that 9, belongs to A. From the

bound ||fu||0032|lfll°o (dist(u,aG))—I we obtain that {gn} dLepa

bounded sequence. If % is none of the Ai’s then gn(?) clearly

converges to 0. The convergence to 0 at the Ai’s now followé from

the Cauchy integral formula for gn(xi).-We have

> el ©
o(A)= TT (A—Ai) l¢(x) where . 1is a rational function with poles:

1¢igk

off G ; therefore @(fn—Pn)(=¢gn) converges pointwise boundedly

to 0..0

Proof of Theorem 2.1. Since &* is not wx—SOT sequentially

continuous, by Lemma 2.2 there exist a Sequence fn in A converging
weak x to 0 and a sequence of.unit vectors X such that <I>(fn)xn
converges weakly to a nonzero vector y. Let now ¢=R/S(R,S poly-
nomials)be a rational function with poles off A6 and "Let Pn be a
sequence of polynomials given by Lemma 2.3 (with respect to 0

and fn). The seguence @(cp(fn-Pn))xn is bqunded. Let u be the

weak limit of any of its weak convergent subsequences. We have

S (A)u=weak-1lim (& (S)d (¢ (f_ -P_ )x_ )
O Mg B

=weak-1lim (& (S¢ (f_ -P_ )x_ )
T s tig o

i e S ey
nk nk nk

=R (A)weak-1lim & (f_ ~-P_ )x_ =R(A)y . -
e Sl Sl

e O SIS



Tt follows from the equality S(A)u=R(A)y that all weak convergent
subsequences have the same limit (otherwisé by differehce we would
have a nonzero vector w such that S(A)w=0: A would have an
eigenvalue). This result together with the metrizability of the
weak topology on bounded subsets of # dimply that in fact
¢>(<p(fn—Pn))xn is weak convergent; it also implies that the limit
depends only on ¢. Let then T(¢) denote the limit. The linearity.
Of T is immediate. To extend T to all of R(3G) we need a

bound on T(p). We claim first that

o (£,=P ) 11 SIlol ol L - 11,

(where lloll, .= sup|e(X)]). Indeed let ¢ be any positive numbers;
G .
A€QG
there is an open neighborhood 9 of 3G such that the rational

function ¢ is defined on @ and such that for A in @ |o (A) | =llell ste;

the maximum modulus principle implies-that

[T (£ =Pkt = sup ol JLLE B Y )| -3
it A2 NG MR

theréfore we have

I|<p(fn-Pn)lImS(ll<p|laG+e)l|fn—PnlIoo

and the desired result since ¢ is arbitrary.'As a consequence

we . have

IIT(@)IlslléllIl@IIaKllm sup lifniPnI|w=CllmIlaK

with C=|1®]|1lim sup llfnll. Thus T can be extended as a bounded
linear map from R(3G) into H. To prove that T satisfies TM%=AT

let again ¢=R/S with R,S polynomials. By previous considerations



we have S(A)T(}R/S)=AR(A)y=AS(A)T(R/S)=S(A)AT(R/S). Since S(A)
is one-to-one this gives TM%(R/S)=AT(R/S). The equality extends

to any ¢ "in R(8G)iby*continuity. O

3. Intertwinings with My and hyperinvaiiant'subspaces.

The basic result of this section is the following theorem.

BOHEGOEREON, 90 . Lek Xole a compact subset of the

. complex plane such that R(X)=C(X) and let A be an operator in L (H) -

for which there exist nonzero operators T and V from  respectively,

o R and SRAXY) inte-H ' sueh tHat

o

(1) TM%=AT and

(2) VM;=A*V

where M% aﬁd M; denote the operator of multiplication by %.on
R(X) and on R(X¥*), respectively. Then A has a nontrivial hyper-
invariant subspace.v

Before proving this theorem we observe that combined
with Theorem 2.1 (applied to ¢ and ¢*) it leads immediately to
the following result which as mentionned in the introduction can

be seen as a generalization of Theorem II 5.4 of UQ] s

ChBHIR (Ol B Rl 4030 2o Ligite Biabieh vam, joperator. in L(H) and
let G be a bounded open set iﬁ C such.that G is an M-spectral
set for A and such that R(3G)=C(3G). Let A be a subalgebra of’

H (€)econtaining R(G ) and such thqt for‘qny £ e in G
fu is in ‘A. Finally let ¢ be a bougaed 1inea; map from A into

L (H) such that ¢ (rf)=r(A)e (f)=6¢ (f)r (A) for any f in A and ahy

rational function r with poles off G . Then, if neither ¢ nor




v@* are wyx-SOT sequéentially continuous, A has a nontrivial
hyperinvariant subspace. |

The proof of Theorem 3.1 will be broken into a few
lemmas. First there is no loss of generality in assuming that
neither A or A*‘have eigenvalues. We denote by S the set of
operators T satisfying (1) and by S* the set of operators V sa-
tisfying (2). We summarize some elementary pfoperties of S /in
thé following iemma whose proof we omit. It is also ciear that
any statement about S has a dual version about S$*. Though we do

not state these dual versions explicitly we will use them freely.

LEMMA 3.3. The set S is a submanifold of L (R(X),H).
Moreover for any o in R(X), any B in the commutant of ‘&, and

any"1T 4n: S the operators TM@-and BT belong to S.
L'EMMA 3.4. Let T belong to S. Then

a) Ker T is a closed ideal of R(X),

b) There exists a closed s(T) in X such that
Ker T={feC(X) : f|s(T)=0}.
: c) Let r denote the restriction map from C(X) inte
C(s(T)) (r(f)=f|s(T))_; then there is an operator T:C(s(T)) —H
such that T=Tr and fM5=A% where M%,is now multiplication by 7 on
e (s(m), t |

d) et “T#0 1in"S and let Ao belong to s(T); then for each

e>0 there is a nonzero T, in S such that s(Tl)ci5££X:|A—Aol<e}.

Proof. a) From AT=TM%vmaget q(A)T=TMC1 for any polynomial

q. Applied to (p/q)e(with ¢ € C(X), p.,q polynomials:— g does not

_vanish‘on X) this equality gives

q(A)T(<p/q><p>=TMq<<p/qm>=T(pcp>=TMpcp=p<A>T<p :



Thus if ¢ belongs to Ker T then so does‘(p/q)w (recall that
q (Ay~is one-to-one becausé A has no eigenvalues). Now any f ih
C(X) is. . a wniform limit of rational functions pn/qn with poles
off X and we have (for ¢ in Ker T) T(f¢)=1lim T((pn/qn)@)=0.
Since Ker T is always a closed subspace this concludes the proof
of"aj .

.b).. The 'existence of s (T) foilows immediately from the
well-known characterization of the closed ideals of C(X).

c) Any intertwinipg T in S induces an intertwining T
C(X)/Ker T —>H between the operator ﬁ% induced by M% on
. C(X) [EersiT.and. the.operator A. To completée the proof observe
that (via the factorization of r) C(X)/Ker T can be (isometri—
cally) identified with C(s(T)) and that in this identificatien
ﬁ% becomes M, on Clsim) e
| d) For any T in S and any ¢ in C(X) we have s(Tkazsup§ )
(because for any ¢ vanishing on supp ¢ we have TM@(¢)=T(O)=O).
Take now ¢ to be 1 in a neighborhood of A but 0 for ]A-AOIZE.
Let T1=TM¢; then by the above remark s(Tl) éatisfies the desired

inclusion; if Tl=0 then T:TM(I—@) and s (T) suppc(l-o¢); therefore

-Tl#o for AO ih ss{@) 0

LB MM B 305.  Tiek T belong to 'S and:-V te S*. Thens
a) s(T). cannot be .a singleton, and

b) if s(T)Ns(V)*=¢ then Ran ( T)LRan { V)

Proof. a)t If s(h) is 4a singleteon {Ao} then C(s (T)) is
one-dimensional and it follows from c) of Lemma 3.4 that 'xo is -
"an eigenvalue for A. This contradicts the assumption that A has

empty point spectrum. X

RS AT



b) By c) of Lemma 3.4 and its dual version for S* we
may see T and V as operators defined on C(s(T)) and C{si(¥))
respectively. We want to "dualize" the intertwining A*V;VM%]
to avoid the difficulty created by the mixture oleanach séace
and Hilbert space dualities we proceed directly as follows. For
X in H we define a continuous 1inear functional V' (x) on (e V)]

by
(3) <V’ (x), £=(x,v(¥), feC(sW*) .

It is easy to check that V' is a bounded linear map from H
into M(s (V)*) (the Banach Space of complex Borel measures oOn
stv)* and that V A—M5V' where M%‘ls multlpllCdelOn by z on
Mg ()*) (ive. Mé(u)=u with du=%du). Finally the definition of
v’ makes it clear that Ker V’'=(Ran VYE Thus we have to prove
that v'T=0.

Let W=V'T; from the intertwihiﬁgs TM?=AT_and V’A=M%V'
we obtain V'’ TMﬁ—V AT=M'V’T that is Mg W—WM.fr But the spectra,

T ¥

s(V)* and s (T}, of M% and M% are disjoint; therefore by a well-

known result W=0 . QO

Proof of Theorem 3.1. Let T and V be nonzero operators

in S and S* respectively. Since neither o (T) nor o (V) can be single-

tons we can fimd X in s(T) and uiin sV such that A#u.

Applying d) of Lemma 3.4 (and its dual version for S$*) with
e<|A-T| /2 we obtain nonzero operators T, and Vl.respectively

‘#n S and: S* such that s(Tl)ﬂs(Vl)ﬁ:¢. For any operator B
commuting with A, BT, is in S and satisfies s(BTl)ﬂs(Vl)*=¢.

By b) of Lemma 3.5 we have Ran(BTl)_LRan'Vl and the closed linear
span of LJ B Ran T. is a nontrivial hyperinvariant subspace

BA=AB L
for A. O

h
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 Remark. As mentionned in the introduotion Corollary
3.2 can be proved using local spectral techniqueo (see [5], for
basic definitions and results). In that context Theorem 2.1 is
replaced by a result saying that (under the same hypotheses) thero
exists a nonzero vector y whose local specrrum with respect tol
A (nofation cA(y))is contained in 9G. Instead of Lemma 3.4.
we have a proposition stating that once we ha&e a nonzero Vector
y such that cA(y)CLBG we can find (under the assumption R(X)=C(X))
another vector.yl#O with oA(ylk:XﬂA(Ao,s) (AdacA(y), e arbitrary)
and such that the local resolvent satisfies a certain orowth
condition. Finally.Lemma 3.5 is replaced by the followinga two

results of local spectral theorys.

A s L oA(y)={AO} and the local resolvent of y, pA’y(A)
satisfies leA'y(X)IISMlx-AOI_k (for some k) then A_ is an
eigenvalue of A.

D il oA(x)ﬂ(oA*(y))*=¢'(for nonzero vectors x and y)

then A has a nontrivial hyperinvariant subspace.

Y

4., The main theorem. We are now ready'to prove the cen-

tral result of the paper which is the following.

THEOREM 4.1, Let A be an operator'in Li(H) and
let G be a bounded open set in C such-that:
()€ <is an M—spectral set . For Ay
(i) o(A)ﬂG is dominating in G,
(iii) R(G") is pointwise boundedly dense in Hw(G), and

(iv) R(aG)=C(8G).

Then there exists®nontrivial RG—(A)—invariant subspace. -




Proof. First we claim that we can assume that G=(G_)O.

To prove this assertion, let G satisfy (i) to (iv); we have to
show that Gl=(G_)O also satisfies (i) to (iv). .Since G1=G—

there is no problem for (i). That G, satisfies (iii) and (iwv)
follow easily from the inclusions GeG, and 8G,caG. These'inclﬁ—
sions together with the maximum modulus principle also imply
that the 1nclu51on map i (G )-*9 o (G) is an isometry; thus
o(A)ﬂG is dominating in G and consequently so is c(A)ﬁG .

Let ¢ denote the representation from R(G ) into. L (H) defined
by ¢ (r)=r(A) (& is a priori defined only for r rational with
poles off G - but; since G de M-spectral for A, it extends by
continuity to all of R(G. )i By Coralilary 3.3, Shere is no

loss of generélity in assuming that one - say ¢ - of the two
representatlons & and o dsS w;—SOT sequential continuous. Let
now h be 1n.H (G); there is a sequence r in R(G ) converging
pointwise to h and such that Ilrnllwsllhlloo (Theorem 6.9 of

[z1] )« The closed balls of L(H) are coﬁbact and metrizable in
the W.O.T. (weak operator topology); fherefore any subsequence
of the sequence @(rn) has a W.0.T. convergent subsequence.
Furthermore since @ is w4x=S5.0.T. sequentially continuous and
since the W.0.T. is weaker than the S$.0.T. all these‘coﬁvergent

subsequences have the same limit. Therefore @(rn) itself is

W.0.T. convergent and the limit depends only on h ‘(again because

of the w4-W.0.T. sequential continuity of ¢). We set

¢ (h)=W.0.T. lim @(rn); clearly |le (h)|1<M]|hll_ ; the linearity

of o (now defined on H {8)) is immediatey finally if s'is 1in R{G )

and h as above we have sh=W*limsrn : thus ¢ (sh)=WOT 1lim @(srn)=
=WOT lim @(s)@(rn)=s(A)®(h); similarly we get ¢ (sh)=%(h)s(A).

We now apply again Corollary 2.4 (with A=H" (G)) to aséume that



either ¢ or ¢* -say &- is w4—SOT sequential.continuous as a map
from H (G) to L(H). We can now prove that ¢ is an homomorphigm.
Indeed let g, h in H (G) and let 8 odn R(G ) converging pointwise
boundedely to g; then th converges poiﬁtwise Boundedly to gh ‘
aﬁd

¢ (gh)=WOT 1lim @(snh)=WOT lim @(sn)®(h)=®(g)Q(h).

The representation ¢ now satisfies all the hypotheses of Theorem
3la - of [9]; consequently there exists 'a nontrivial Rp—(A)vinﬁaE

riant subspace.

5. C-sets and D-sets in SZ. In this section we develop

some material on Dirichlet algebras necessary foﬁ our applications
of Theorem 4.1. Most of it is contained in [iﬂ where characté-
rizations of conditions (3) and (4) (in Theorem 4.1) and of;
Dizichlicity of R(K) are given in terms of énalytic capactiy.
Since we need to extend some of these results to compact subsets
of - the Riemann sphere we recall the basic de%initions. We deal
with the usual model of the Rieman sphere: 52=CU{w}. Though

most of what we say applies to any compact subset of 82 we are
interested only in ordinary compact subsets of € erain tomple-
ments of bounded open subsets of C (in other words we never con-
sider compact subsets K of.S2 such.thét ©»€)K) . The usual defi-
hitions -of C(X) , R(K): and H” (K) extend obviously to the case

mes; (considering that « is a pole of . a ‘rational<Fuhction £ 1f
0.is a pole of f(l/%) énd thatvf is aﬁalytic at o if % — f(l/%)

is analvtic at 0). We say that K is a Dirichlet set (or briefly

a D-set) if K'is a compact set such that R(K) is a Dirichlet

algebra (i.e. Re(R(K)) is dense in CR(BK)).-We say that the



compact set K is a C-set it R(5K)=C (3K) and R(K) is pointwise %
boundedly dense in Hw(%). A circular transformation of 82 is#a
map @:Sz-—9 82 of the form @(?)=(a6+b)/(c%+d) with ad-bc#0. If
9 is a circular transformation such that q)(K)=K1 then the map
f — fd@ maps R(Kl), R(aKl), Hw(aKl) and C(aKl).isoﬁetrically é
onto, respectively, R(K), R(3K), B (k) and C(5K),. and preserves
pointwise convergence. Consequently ¢ (K) is a C-set (resp. a
D-set) if and only if K is a C-set (resp. a D-set). Using a
circulaf transformation of the type @(%)=1/%—§O (35§K) we
see that the following results (known to be ‘true in the ecase
of compact subsets éf the plane) remain valid in the case when
- K. '

[ a9 i S < i W S O L itk ([ll],Theorem 5.1). Let K

be a compact subset. Then the following are equivalent:

(i) K is a D-set. Q : s z
fo) 1.’
(ii) K is a C-set and each component of K is simply

connected.

DIR OFP 0%S T M Ts0: N ba2e ([11) , Corellary 9.6)i The s':
intersection of countabl? many, decreasing D-sets is a D-set.

We now turn our attention to characterization of C-sets
and D-sets which involve analytic capactiy (denoted by y). Again
we merely adjust results of [11] to our needs. (Here and else-

where A(%;é) is the open disk of radius 6 centered at %

PROPOSTITTION 5.3. ([11), Theorem 8.9). Let K
be a compact subset of 82‘(we58K). Then the following are equi-
valent

(1) K is a C=set,

(1i) There exists 60>0 sueh-"ehat y(A(ﬁ;&)\K)=y(AOy6)\ﬁ)



for eabh %QBK and O<6<<5O S
(i11) There exists ao=-curvilinear null set £ such that

for each.gé(aK)\E there exists r>1 satisfying -

PRea vy (A (2:6)K)
i ine LS

>0 .

Proof. When KeC this is Theorem 8.9 of {11] (the
"Jocalized" version of (ii) clearly implies (iii)). :

Suppose now that « belongs to %. Let A be an open disk
large enough ﬁo éontain the closure of Sz\K. The transformation
¢:¢(%)=l/(%¥a) (where a is a fixed point in SZ\K) mapé KNA into
is an open disk whose

" K.~A, where K,=¢ (K) and & =@(S%A—); A

el 1
o

closure is contained in Kl' Observing that conditions (ii) and

1 1

(iiz) are automatically satisfied on aAl,we see that K, is: &
C-set if and only 4= Kl\Al is a C—set.‘Consequently K is a-E-set
if andienly 3if E~A is a C=sek. The desired equivalences for K
now follow from their counterparts for KNA~ (observe again that
the latter - is @ compact subset of C for which (ii) and (iii)

are automatically satisfied on 2A) . @

An immediate consequence of this result is that the

.characterization of D-sets (Theorem 9.3 of (11}) can be extended
to compact sets K such thét wéi%.

The following lemma will lead us to a somewhat more

convenient version of this characterization when K is connected.

LEMMA 5.4. Let K be a compact, connected subset

of S2. Then the following ére equivalent:

(1) oK is connected.

(e}
(ii) each component of K is simply cohnected.

Mol ALFYL?



(0]
Proof. Suppose that a component G of K is not simply

connected and letileand L2 be two nonempty compact disjoiht

subsets of 82 such that Sz\G=Lf)L2 . From the inclusion SZ\KCS%~G

we obtain aK=(8KnLl)U(8KnL2). Since %K contains each 9L, (because
BL C 3G ¢ 3K) we have a nontrivial splitting of 3K into tweo dis~
joint compact sets. This proves the implication (1)——7(11)

To prove the converse we use the following observation
whoee proof we omit. The boundary of a simply connected domain
" is connected. Suppose now that ecach component of K is simply
connected and let BK=L1UL2 be a spiitting of 3K into two disjoint
compact séets. By the above observation for each oomponent G ot
ﬁ,aG is a connected set; hence we haVe either oGeL, or 9GCL, .;
Let Vi denote the union of the components G of K sucﬁ rhat
2GCL, (i=1,2) and let K,=L.UV,. Since K,0K,=¢ and K=KUX, the
proof will be oompleted once we show that each Ki is closed.
Let then kn be a sequence in, say, Kl that converges to A.
We can assume that A¢Vl (otherwise we are done). We define a
sequence M in Ll as follows: un:An whenever A eLl sEE R Aﬂ#Ll
- then A belonds to a component G of K satisfying BCcLl in that
case we choose My to be the point of 3¢ nearest to A on the
eegement with endpoints An and k.. In adl“cases uneLl end
lA—An]SIA—Xn[; therefore A=1lim ﬁn'and A belongs to L, , hence
to Kl as desired. O -

‘We now state a convenient characterization of connected

D-sets.
T HWEOGREM 5.5, LetiK be - a connected compact subset

of 82 (»¢3K) . Then the following are equivalent:
(1)K i8.a D-set.
(ii) 9K is'connected and there exists 60>0 such that, for

in 3K and 0<6<8 y(A(%;@)\K)25/4.




Preoof. That. (i) imélies (ii) follows from the previous
lemma together with the equivaleﬁée of (i) and Wiiyan Théorem'
943 ofsifaie

Now suppose that condition (ii) holds; since
y(A(%;é)ﬂB%)Sy(A(%;é))=6 we get at each %.of 9K
y(A(g;é)\K)/y(A(%;&)ﬂa%)21/4; therefore K is a .C-sgt by Proposi-

) o}
tion 5.3; by Lemma 5.4 each component of K is simply connected;

thus . Kiis a D-set. (Proposition. 5.1). O

6. Dirichlet chains for connected compact sets. In this

_section K denotes a.fixed compact subset in the comélex blane;
(It will be convenient to:conéider K as embedded in SZ} the
unbounded component of the complement of K.will be identified
as the hole that contains «). Let G denote the set of holes in
K.: Foxryeach hole..H the set KH=SZ~H is a D—-set. (This is.a
well-known result if «€H; a suitable circular transformatioﬁ
transfers the result to any hole-recall that heré since K is
connected each hole is simply connected). Now if H’ is another
hole "touching" H (i.e. 3HN3H'#¢¥) Theorem 5.5 (or Corollary 9.7
of [11]) shows that 82\(HUH’) is still a D-set. This process
can be repeated and motivates the following definition.A set

% of sholes  (i.e:a-subset . ef G) is called a Dirichlet chain

(or shorthly a D-chain) for K if the (compact) set Kt=S%\k/'H
P He
is a D-set. We denote by I the set of D-chains for K ordered

by inclusion. Finally we define the bbundary of a D-chain

(notation 3¢) to be the boundary of the corresponding D-set Ke.
Since K is connected (it is the union-ef a connected compact

set with some of its holes) and Dirichlet its bouhdary is

connected. Note that af(=8Kf)=(k/ 9H) . We begin with an
He€¢

elémentary but useful result.




ar%uvnenf

. EMMA 6.1, The union of two Dirichlet chains whose

boundaries overlap is a Dirichlet chain.

Proof. Let tl and “C2 be two D-chains and.let E=81Ufz ;
it follows easily from the above observation that at=a€anﬁ2;
therefore' 3 is connected. The analytic capécity condition
({ii) 'of Theorem 5.5) 1is satisfied at any point of the boundary

with respect to Kf or Kf ; it is therefore also satisfied
1 2

with respect to K% Ufrth(le because y is a monotone increa-
o 1 2 :

sing set function. This concludes the proof. O

We can now prove the main result on Dirichlet chains.

THEOREM 6.2. Let K be a connected compact set in

"¢ ‘and let ¢ déncote its ‘set of holes."Then

(i) any hole in K belongs to a unique maximal D-chain
(consequently these maximal D-chains determineaQat most countable)
partition of G), )

(ii) the béundaries‘of these ma#imal D-chains are pairwise
disjoint, and :
(1iiy if € is a maximal D-chain then KAK, is dominating
in ﬁf ¢
Before proving Theorem 6.2 we observe that the existence
of maximal D-chains was already implicitly established in [3],
offering a convenient substitute for‘tﬂe transfinite induction

used in [1] and [13); we repeat the proof for completeness.

Proof. (ii) as well as the uniqueness part of (i) follow
from Lemma 6.1 and from (i). Let then, to finish the proof of
(1), H:be a hole in K and let L be the set of D-chains containing
H. L.is nonempty: (Ble L. |

Let now {f;} be a totally ordered set of D-chains in

iel



L and let Bl ti‘ Since G is countable we can write
ieT ; ;

f==L} fi where the Ej_ are increasing; we have now K =N Kg
neN n n : neN in

and K¢ is a D-set by Proposition 5.2; Ehus%f de dmi Lrand deds
an inductive set. Zorn’s lemma now concludes the proof. of (i)«

: g .
To prove. (fif) let f beleng to H (Kf) where % is a maximal

D-chain and let s= sup |f(A)|. For any Hé G we have either H;i%
X&KﬂKf

or else H—C.K€ (indeed by (ii) if He#E;the maximal D-chain
containing H has a boundary disjoint from axﬁ). For-any H é.t

we have

sup |£(A)|= sup |£(1)|ss

AeH A€0H
(the equalify is a consequence of the maximum modulus principle,
the.inequality follows from the definition of s combined with

[e]
the inclusion chKnKﬁ). Therefore

sup .o - JE(OJ] (=sup (Bub | £ J)=s
A€ (C K)1Ke H¢E 2reH
and
s=sup lf(x)\ A as desired. -0
XGKe :

7. Splitting H (G) when G=G,NG,. Throughout this section

G, is a bounded open set in C, G, is an open set of 82 such that

1
S%~G2:Gi eaand G=G,lﬂG2 . A specialized version of the following

decomposition theorem was already given in [9].




T HE O RE M” 710 Tiet Gys G2,‘and G as above and let

A24denote the subalgebra of Hm(GZ)'that consists of those.func-

tions in Hm(Gz) vanishing at <. Then there are projections Pi
darifieq oneH (&) svch that:

1) The ranges of P, and p, are respéctively Hw(Gl) and

Ao 3 Jand P1+P2=I A

2
2) Pl and P2 are normcontinuous, and
3) P1 and P2 are weaks—continuous.
Proof. 1) We only outline it since it is a standard
applicaﬁion of Cauchy integral techniques. Let 0<e< inf |xl—x2{.
' X.€ 06 .
4 i

By Problem 5K of (6] we can choose (for i=1,2) a.system Fi of

closed rectifiable Jordan curves in Gi such that:

(a) If Vi={x:I(Pi,A)=6i’l} then Vf:Gi and
{AeGi:d(A,BGi)Ze/4}CVi

(b) The geometrical range of Fi is the boundary of Vi s

(c) I(Tik)f-éilz whenever Aé‘C\Vi .

(Here I(r,A) denotes the winding number of T with respect to A

and éi the usual Kronecker symbol). For f in 0 (G) “we set
; . 4

(i=1,2) fi(%)=2%i frif(?)/(?—g)df (SQVi)' The following facts

(all easy consequences of the definition and of the Cauchy inte-

gral formula) conclude the proof of 1), (We let Pi(f)sz)

= fi is analytic in Vi and can'be analytically

extend on Gi'
= f=fl+f27

—'fl is bounded on any compact set contained in Gl

in particular on BGZ; thus f2 is also bounded near 3G, and




A

consequently belongs to Hm(Gz)vsimilarly f1 belongs to Hw(Gl).
= fz(w7=0.
- for £ in H (Gl) f1=f and for . £.in A2 f2=f.

2) The embedding Hm(Gl)cHw(G) is an isometry (by the

§ is norm-closed

maximum modulus principle); thus the range of P
and the projection P1 is norm-continuous (and so - is PZ)‘
. 3)=Sinee Hw(Gl) is the dual of a separable Banach space
it is enough to prove the sequential ws continulty-of Pl (8],
Theorém 2:3) Jiet then fn convering pointwise boundedly to»O in
Hw(é)ﬂ Then Pl(fn) is norm bounded and the pointwise?%gvgrgingi
follows from the definitionvtogether with the uniform convergeﬁce
to 0 oF fn on compact éets:of G. @

Next we wish to show that the notion of dominatiﬁg set
behaves well with respect to that decompoéition Gl (@)

Though the result holds without restriction on G2 we giVe

the proof only in the case that G2 is connected,sufficient for

our applications.

PUHCEEGIR BEM 7025 BetiGy 240y pand G aas above and suppose

G2 connected.A subset S of G that is dominating in both G1 and

G2 is also dominating in G.

_First we establish the following lemma.

LEMMA 7.3. Let S and G as in Theorem 7.2. (thnt-1s,
s is dominating in G, and G,). Let £ i g” (G) such that £[s=0.

Then f£=0. z
Proof. Let f=fl+f2 be the decomposition of £ given by’

Theorem 7.1. We will show that £, and f, are identically 0. Let -

g= inf {X =

. ,|: by the maximum modulus principle the set
A (€3G, A ‘

si={xe;s:d(x,aci)5e/4} is still dominating in G, . Clearly we

Havie S US<ES. 85C6, - S5€6, and S;AS§=¢. ety =, SUp !fj(X)l.




Then we have

<M

My =M, HsMo =My SMyy

(the equalities come from the relation fl=—f2 oh Slus2 and the
.inequalities from the fact that Si is dominating in Gi). Now the
eguality M12=M22 implies that f2 reaches its maximumAét somne
point of aGl which 1is in«Gz; thus f2 must be constant and equal
to 0=f, (=); now fllS=ff2|S=O and since S is dominating in Gy .

f1=0. 0

proof of Theorem 7.2. Proceeding as in Lemma 7.3. we

may assume that S=SlUS2 with S; dominating in Gy, SlC62 3 SZCG1
and 51ﬂ85:¢' Suppose that S is not dominating in G; then there
exists a function of norm one in H® (G) such that sup LE(2) |=a<l.
Xes
Any subsequence of {fp}p N converges uniformly to 0 on S. Since
1 1£P1i=1 for all p we can choose one (denote it fn) whi'ch “1s
weaky convergent to say gJ. Of course g|S=0. By thé previous
theorem £ and £ are weaksy convergent to respectively g
1.n 2,n 1
and Jy- It follows from Lemma 7.1 that gl=g2=0. Now the

weak x —convergence of f2 z to 0 implies its uniform convergence
: ‘

(to 0) on the compact set Sl' By difference (f1,n=f—f2’n) we
get that fl 2 converges uniformly to 0 on S1 and’ consequently
14
£ converges to 0 in norm (recall ‘that S1 is dominating in Kl);

LN
Similarly‘llf2 nlloo tends to zero. Thus Ilfnlltends to zero
4

in contradiction with the fact that llfnll:l for-all  n. o1l

8. Applications. We are now ready to prove the announced

applications of Theorem 4.1.



1 H.E O M 8.1 . Let A be an operator in L(H) and let
G be a bounded open set in CAsuch that:
a) Gf is a connected, M-spectral set for A,
'b) 3(A)NG is dominating in G, and
¢) ¢ has only a finite number of maximai_D—chains; then
there exists a nontrivial RG_(A)—invariant subspace. -
Before proving this theorem we make-two remarks.
"First the assumption that G 1s connected is necessary
to talk .about D-chains of & but. izsih fact nonrestrictive;
indeed if G is disconnected then an easy argument using b)
shows that 6 (A) itself is disconnected (with the coﬁsequence‘fhat
A'has a nontrivial hyperin&ariant subspace) . The other Qbéervation
is that condition c) is obviously satisfied in. the case when G
has only a finite number of holes (without any restriction on
their boundaries). Thus Theorem 8.1 substantially generalizes

Theorem 4.2 of ([9].

Proof of Theorem 8.1. Let K=G—;:as in .-the proeof of

Theorem.4.1 there is no loss of generality in assuming that
K=G. It is sufficient to show that " K is'a C-set:
once this is done the conclusion follows %rom Theorem 4.1. The
boundary of K is the union of the boundaries bf the maximal
D4chains. Thus for each %EEBK and 6 small’enough (recall that
the boundaries of the maximal D-chains are ‘disjoint and there
are only a finite number of them) we‘have“y(A(g;é)\K)z6/4. Since
the inequality Y(A(ﬁ,é)ﬂBﬁ)Sé.is always satisfied we obtain that
K is a C-set via (iii) of Proposition 5.3. O

We now'turn_our Abtontion £o the edsestt anopetatonr

having its spectrum as an M—spectral set and give the following

generalization of the main result of i3l




T HEO REM 8.2, Let A be an operator’in E(H)#such
that ¢ (A) is a connected M-spectral set for A, let tl”"'tn
be (finitely many) maximal D-chains for g (A), .and let

2 : : SR : .
K=s“. U H . Then there is a non trivial R, (A)-invariant
: 2 : K
He%i Egidn

- subspace.

% [~4
Proof. Let K.=SZ~ U H and G=K ; we can assume without

r Hef,
. l ~
loss of generality that %1 contains the unbounded component of
6(A); an-induetion argument based on Theorem 7.2
~and Part (iii) of Theorem 6.2 shows that G6(A)

i , . :
is dominating in GiE=n Ki). A similar argument to the one used

i=1
in the proof of Theorem 8.1, shows that X is a C-set. Certainly
R(G ) (Which contains R(K)) is pointwise boundedly dense in
H”(G); R(3G)=C(3G) follows from 3GC3K and R(3K)=C(3K). Thus,if
c(A)CG_ we have the desired conclusion.by‘Theorem'4.i.; on the
bblicd hend Lf o(Ah#G-‘an argument ofnﬁﬂ (developped- there in .the
case M=1) can easily be adapted to show that A has a nontrivial »

hyperinvariant subspace. 0O
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