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A REGULAR STRATIFICATION FOR THE JET SPACE J3(2,2)

by

" Alexandru Dimca

There is an increasing interest in the problem of strati-
fying (complex) Jjet spaces by strata invariant under the K—equiva—_‘

lence (see [5], il =1 [2) ).

' However there are still very few examples of such stratlfl—

cations - perhaps only three.

The purpose of this paper is to add a new example )i (E@—
plex jet.space having a natuEal skEraitiEicat ton and to show its
basdichis imilarity with: the known eéamples.‘As a by-product we gain
some new insight into the geometry of pencils of binary cubic Formsiy

The author wishes to express his whole gratitude to Profes-

sor Christopher Gibson for suggesting this type of problem.

e nScilme che Eolies

We shall describe the orbits of the éction of the contactE

group K3 on our jet space J=J3(2,2). Let Mk denote the group of

-

invertible 2x2 matrices A having as entries polynomials in x,y of

degree < k over € (and truncated multiplication as product) and Dk

the group of k-germs of diffedmorphisms-h:(CZ}O) —> (Cz,O).
Sinece K3=M2xD3, we see that K3.is a connected affine group.

The action‘/L:K3xJ-e’—+ J; (A,h) -f=A. (feh) is obviously algebraic

and it follows that its orbits are constructible connected smooth

— s =

submanlfolds in [4]
We shall list these orbits by the first nonvanlshlnq jet

of their representatives.



Proposition 1

TE EEd e jlf#O, then f is equivalent to one of the'fol;

lowing 4 normal forms:

Table 1
Normal form Codimension Boardman
symbol
(%,y) 0 e S
2 4

(Eee) i : i leo

Gy ) ‘ 2 s, 1,0
' b, T

5, 0] 4 : S

Proof. Since jlf#O, we' have that rkdf (0)z1 and in this case
it is known that f is equivalent to some constant. unfolding
oo g(x,y)=(x,g2(y)) and the normal formélare given by the order of g2.
‘The computatibns fot the codimension of the orbits and for Eheiw

Boardman symbols are standard and we shall omit them.

Proposition 2

FE=fed, jlf=0 and jzf#o, then £ is equivalent to one of

the following 11 normal forms:

Table 2
~ Type of j2f Normal form * Codimension .Bg;;ﬁgin
2l
_,(xz,yz),. ...(x2,y2) A4 _2: 0o
3 =
(xy,37°) (xy,y2+x )
2
(Exsimye)
(x2+y2,0) ! (x2+y2,y3) 6
: (X2+y2,0) Rl "7:‘8

; ' 2, 70
(XZ,O) (X2,y3) : : 7 Z I"




Table 2 (continuation)

Type of j2f Normal form Codimension stgﬁgin
(x2,0) (X2+y3,xy2) =
(X2+y3,xy2+y3) 8
(xz,xyz) : 9
(x2+y>,0) 9

2080

(x2,0) ‘ 11 2 :Z:

BEoo L By the classification of penc1ls -of binary quadrlcs
[4] we know that f is equivalent to some g=(Q e ' Q +C ) s where
(Ql,QZ) is & palr of quadrlcs in the first column of Table 2 and
(Cl,CZ) S ool o f s bl niany cubie forms. We note also that 1nlthls
case the action of K3 e e some @ thichcctionot thevsimpler
group MlxD2 and by a courageous straightforward computation we find
that the pair (Cl,C2) can be reduced to the special types displéyed
by Table 2. | : sl

As an illustration we shall give soﬁé detailistin  Ehescase
(Ql,Q2)=(x2,O). We shall denote in this paper by L, Q and C general:
linear, quadratic and cubic forms in X, Y. '

If heD’ and AecM' are given by

_ (i O)
h(x,y)=(x+Q,y) A=
L l
then (A,h)-g=(x2+2xQ+C1, x2L+C2) and wé éeé that we can take in
g Cl=ay3, C2=bxy2+cy3. _ : ‘
. it =0 then Po(x0,0) and 1E o0 apd b0 then
fN(xz,xyz). Next if ¢#0 using h(x,y)—(x,y-—~x) we find that f£a(x 2 y3)
1) a#0. Tf b=0 then for c=0 £ ~ (x 2,,3,0) and for c#0 f~(xy ).Jf
A0 it s ellegr that_fnagt , where gt=(x2+y : xy2+ty Vo And we

tind that g g, iff s=t=0 or s#0 and t#0 and so the cn{y new cases



oLre ng‘t,{or ‘t =0, it

Prepesitien 3. f f&J. and jzf;O then f is equivalent to one

of the following 11 normal forms, when A€ €§0,1,93:

Table 3
Normal form Codimension Bg;;ggin
(X3‘+3X2y, 3xy2+/1y3) e 22,2,0'
(x3+x2y, xyz) | e
(xzy, xyz) ' ‘ 12
&, xy2+y3‘) | =y
'(x3,-xy2) e
(<3, y3) A : | 12
(x3, X2y) ; 18
(X3+y3, 0) 13
(Xzy, 0) : Sl
(X3, 0) - e 22,2,1
(0, e - nE 22’2'2

Proof. In fact we have to classify the pencils of binary
cubic fbrms. fopateubie form C:ax3+3bx2y+3éxy2+dy3 we can associate&

its hessian

2c. 9%
2 X0y
H=—l | Ox . =dx2+ kv+fy2
36 32C aZC /3 =
8X3Y 9y2

where<i=ac~b2, ﬁ —ad=hie, Y—=bd—c2 and also its discriminant

A =A) :}52—4a .



‘In the projective space P3 of all nonzero cubic forms we
shall consider the gquartic surface V=V (A) and the twisted cubiics
curve W=V d/B Y), which is precisely the 51nqular joEneE Ot W,

The induced action GXP3~—~% P3, where G= Gl(2) has 3 orblts

G'k3=W, G'X2y=V\W and G{x3+y3)=P3\V. In particular, V and W are-
G-invariant. Now let f=(fl;f2) be a pencil of binary cubic forms.
IfAfl and f2 are linearly dependent, then £ is clearly equivaleot
to one of the last 4 ncrmal forms.

From now on we shall suppose that,f1 and f2 are distinct
points in P3 and denote by Lf the line determihed by them. By the
above remark it follows that the position of Lf with respect teo Vi
and W is a geometric invariant of the equivalence class of £ and
in fact we shall prove that this invariant determines EhifsEalfasicr

ns onrdor to.control the intersection multiplicities of Lf
and V we introduce the following binary quartic form A- /L)—
= (et s,

Besentidl o our study is

Lemma 4. L./1V has at least 2 distinct points.

‘Proof: Let us suppose that Lf/\V consists of only one point
fl (which exists by dimensional reasoné). By the homogeneity
‘property of P3 under G we oén suppose that i) fl=§2y ore atal) f1=$3.
We shall make the proof only in the case i) ,the other case beingi

completely similar.

We shall work in the open affine set

D(b)=fcer’; bFof= e’

Here fl corresponds ol the origin 0 and we can suopose that fzé D) (o))

f2=(a,c,d>-



Then Lf/]D(b)={t(a,c,d); tecj and V/}D (b) has equation
A, T e c)u .
It follows that the intersection LanOD(b) is given by the

equatieon in t:

t4(a2d2+4ac3)~6t3acd—3t2c2+4td=0

Since this equation must have only the sSelutiont =0, a1l of it
coefficients but one have to be ZEIEC) - e G0 tﬁén a=c=0 and
Lf={x2y, y3). If c#0 then a=d=Q and L£=(x2yJ Xy%)‘ And finalilly "
c=d=b then Lfc:V and we have thus proved that the case i)l cannet
take place. |

By Lemma 4, fbr anyoencil f=(f1,f2) we can choose fi)f%;V;
and this is the key té finding normal forms. The'intersection Lf[3V
is most precisely described in—terms of the dilvisor Dhof degree ¥
induced by A on Lf. To determine this divisor we have computed for
each normal form f its associated guantiec form'Zlf(fﬁyﬂg) and here

is the complete deseniption of the erbits (the points PiGL NV are

o
distinct and in VAW if not contrary stated):

SRS sSneoE defined (i .o Lch) al, 5598 frv(x3,x2y).

2

b) D=P.+P, +P R iRt f/VfA=(x3+3x At 3xy2+iy3) for some

e
2eenfo, 1,97,

c) D=2P1+P +P

PEten
ESE B 1fE f~(x3,xy2+y3).
= ; Si= ) 2
habe PlEV\W SRR (e ey

d) D=2Pl+2P2
i Pl.’>P2GW dEE el )

e R e T



-the vector space & feili;

e) D=3P,+P, and P, EW Lff fo(x>,xy).

And we have finished the proof of Prop.3.

We define 2, ={f6J; i o Sone G C\{O,1,9S} e Tk A

clear by our description b. that Z: is a Zariski open subset of

2f 0 ] and therefore Y, dsia constructlble

: connected smooth submanifold in J.

We have obtained thus a partition 5# ofi i consistine o >

and the remaining 25 orbits.

2 e T requilarity 'of the stunatifiecation

We shall prove now the main result.

Theorem 5. The partition‘>p is a constructible Whitney

g

sitati fication of the complex “jet space J°(2,2).

Proof. Because the single stratum which is not an orbit
is Z: ; Wwe have only to verify regularity oﬁ;tﬁe erkits listed in
Table 1 and 2 over'Z: : .

We shall first deal with the strata from Table 1. The stratum
& )itis opeﬁ in J and hence its regularity ovef-Z: is vaious.

Let Y be the stratum (x,0) and let fﬁé Y glti@ln wlnee it fn

exists (=fo say) and j2f0=0. It is easy to see that fn must have.
the form
1 1 4 1 1 E 2hs g i
= ; Tl
fn (anLn' +LnLn+anQn+anCn+LnQn+QnLn ) anLn a o +L L.

2 2 2 al - L e
+anCn+LnQn+QnLn) where ah€ © emel 1L, @, € are i Pl=a

FeemsSin = v such that Ln#o for anyn . A moment thought shows that

f&fzz, sinece fé and fg have at least a linear common factor.



Therefore Y/)2=@ and thus the regularity of Y over > i proved.
To prove‘regularity for the strata Yl=(x;y2) and Y2=(x;y3f
we shall use the method of [1]. A slice S at £, has the form

A

S f=(fi+xx3+Ql+Ll, f§+Q2+L2) . XEC -,

it isesuificient to prove that N.=Y.nS for i=1,2 are:A-— and B=requiais
over N= Z}nss whiiehtis a linetins St A—regularlty follows by the
simple remark that at any point fGZN the direction given by the
line N is a tangent direction at that point. Indeed i GBS Nl then
g(t)=f+t(x3,0)é N, for all t € €, since Nl==z}’0 which is a condition
on the 2-jet only. And if fGN2 then q(t)éN2 O ALl suffieiently
'~small teC, since Ni=Zj”l’O which is an open ‘condition on the 3-jet.
To proVe B-regularity Qe shall show that Nl and N2 are nicely
positioned over N i.e. if TC is orthogonal projection on N, then’fof
any felﬂi , E-T(f)€ TN, . To show this we note that i o il given
by (%) then

o e

and for t sufficiently close to 1 we have

g(t)=(§§+¢x3+t(Ql+Ll), f§+t(Q2+L2))é N,

It follows that f£- T(£)=g(1) € TN,

In order to prove the regularity of a stratum M from table
2 over 23 we can restr;Ct our considerations from J to Ehe weectons
‘subspace e formed by- all jets £ with jlf=0..In JO a slice‘S for
£, is given-by (%) in which we take 11220, As above, it is

sufflclent to prove that P=MAS is A- and B- regular over the line

N= Z/?S and for doing that we’ shall use the method o [3]



A-regularity. Let ¢t beSantanallyicieSpath i eheotsitice

SitaisEioiE I S and Sl yaing Siin B ENE S denote the tangent space to M

&
at ¢t and T the tangent space to the orbit of fp - We knowv[3} that

Tk exists (S Ssay)l apd W S Sincel Mihas condimensilon i
t=0 . ;

T1=tangent SRaceat i e Z: , to prove A-regularity (i.e. TOjDTl)
it is enough to find a 3=homogeneous element f€1T0\~T.

Let @ =(fy+x(t)x>+0. , £3+00), where

Qé=al(t)x2+bl(t)xy+cl(t)y2 for -1:1,2.

Since ¢, lies in P, at least one of the QE s not

identically zero. Let us suppose Qi#o and let

r=min.ord {al(t), 5 ) Cl(t)j
Define Q=1lim ﬁ—rQé and notice that Q is a nonzero gquadratic form.
t-0
e 1 ) s Tt %
ince (th o0 (yQt_,O), (O,th) and (0, yQt) are all vectors in

T o it follows that the corresponding four vectors obtained by
replacing Qi by Q are all in To' And the probf of A-regularity is

ended by usiné the following:

Lemma 6. If for some quadratic form Q, the four vectors

associated to it as above are all in T, then Q#O.

Proof. Let C=ax3+bx2y+cxy2+dy3 be a general cubic form.

‘ By a straightforward computation, using a base for T, we find that

(C,0) €T iff 22°(3a-b)+(A+3) (Ac-3d)=0

(OnE)eh it E A(l—B)(ja—b)+2(lc—3d)=O

Writing that the four vectors associated to Q are in T we get a linear




homogeneous system of four equations in the coefficients of Q) Sincé
the rank of the System is 3 for any #0, the only_soiution of it
is the trivial one.

B-regularity. It is sufficient to show that P is nicely
positioned over N and this is proved exactiy as above. In this
case we find that g(t)e P for t#0 by using the contact transforma-
tién given by change of coordinates (x,v) h—>(t}1 ,t}l) and multi—

plication by/t3.
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