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N Introduction

x. Hitchin [7] described in 1974 the possible topological type of all
4-dimensional compuc?t self-dual Einstein spaces'x4 with scalar curva=
ture © = 0. In fact, he proved that such a space is either flat or &

K3-surface, &an Enriques—surface or the orbit spacé'of an Enriques=

gurface by an anti-helomoxrphic involution. On the other hand, it fol=

1ows from the solution of the calabi~conjecture by Se Te Yan that

ever K3~-surface admits A gelf-dual Einstein metric with vanishin
g

‘gealar curvature (see (7] and [24]). In the present paper we study

the 4-dimensionsal compéct-selfwdual Einsteln manifoldé of positive

gcalar curvature and we particularly prove the following .

Theoqgg; A compact four-dimension&l self-dual Einstein manifold with

positive scalar curvature is either isometric to the sphere S4 or

aiffeomorphic to the compleX projective plane PZ(C).

2 !
mhe canonical metric of P (¢) is & self-dual Einstein,metric with .

positive acalar curvature. Therefore, the topological clussification

given in this theoren {s complete. It seems to be &an open question
whe ther P_(T) admits furinex self-dual rinstein metrics of positive

gcalar curvature. Using <or example non-trivial conformal changes

o 2 ‘ .
of the canonical metric of ¥ (C) one only gets-non-Elnstein metrics

on PZ(G) (see.[23]). :

The present invesgigations were specially insg?{gd by the paper [13

containing an interpretation of Penrose's rwistor programnme. In that

work the authors proved that the almos? complex structure on the



&

projective spinor bundle P~ of m Ricmannién manifold X4

is integrable
4T and only if X4 is self-dual. Starting frém this result we decide
the question under which conditions fhc metric on P natﬁrally defined
by the metrics of the basié X4 and of the fibres P1(c) is a Kidhler
‘metric. This situation occurs if and only if X4 1is a‘self-dual Ein=
stein space with positive scalar curvature, Furthermore. a calculation:
of the Ricci=tensor in this case shows that P~ then is a Kdhler-Ein-
stein-manifbld of positive scalar curvature. This relation between
self-dual Einsteiﬁ manifolds of dimension fouf aﬁd Kéhler—Eidstein
manifolds of complex dimension three is the basic ldea of our argu-
rentation. In fact, this observation ylelds that every compact self-
dual Einstein space X4 with positive scalar curvature is simply con-
nected and - sfter some calculationé in the cohomology ring HN(P“;Z) -
the quadratic form H2(X4;Z) is positive dgfihite with dimension o £3
Therefore, X4 mgst have the same homotqu type as 84; PZ(G), PZ(C) i .
P2(¢) or Pz(@) # PZ(Q) EN PZ(G) (see [12]). The first case is simple
and gives the‘result thaf X4 is isometric to SA. On the other hand,

ve exclude_thé thixd and fourth case by a thorough study of the 1=
dimensional complex Vecﬁor bundle T(P~/x4) of all vertical vectors in-
P . Since the Ricci curvature is positive, it follows by a result of
-Kodaira that the higher cohomology groups §f P~ with coefficients in
the sheaf of holomorphic fuactions must vanish. Therefore, it folloﬁs
that HZ(P“:Z) classifies linear equivalence classes of divisbrs, und
since the cohomology ring is generaféd by Hz(Pn;Z), it follows that
HN(P-;Z) {s the Chow-ring of P  modulo numerical equivalence, the
.cup—product corresponds to the intersection product of algebraic

cycles. Using Kodaira's vanishing theorer, Bertini's theorcms, the

classification of alredbraic surfaces, and the enumeration of algebraic
5 v &
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varieties of sm&il degree we éan’deduce from the structure of the
Chow=-ring that P must be one of theAfollowing varieties: A‘dbubie
covering of m3 ramified elong a K3-surface if ¢’ = 3 and-a complete
intersccticn of two quadricé in @5 ife = 2, In both_éaées tﬁe cals=
culation of the Euler characteristic entails that such a variety

cannot be the projective spinor bundle P~ of a self=dual Einsteln

gpace with positive gcalar curvature. ' ;

. In case ¢’ =1, such & variety is analytic isomorphic to the flag

{1 ]

manifold ©(1,2) and we can descridbe the spinor fipration explicitely,

the base muet be diffeomorphic. to the complex projeclive plane.

pinally, let us remark that the same method yields the followirg

result: If X4 is a compact 4-dimensional self-dual Riemannian mani-

f£0ld such that cﬂ(P"), which is.always %o Zcﬂ(T(Pﬁ/XQ)), is positive;

2
o P(¢) and the spinor

v

then %" 13 isometric to s* or diffeomorphic

bundle is enalytic izomorphic %o P {E) ox to #(1,2).

2. The $0(4)=-nction on P(A])

Let{\ be the spinor representation of the group Spin(4) and denote

e "o .
its decomposition into jrreducible components Y A= N + A . Spin(4)

~and sn(4) transitively act on the 1-dimensional complex projective

gpace P(A ). Therefore; Wescin express P(A ) as a symmetric space
P(A7) = SO(4) |1 and we can describe the metric and the complex struc-

tupe-of DALY dnie complement,n- of the Lie'algebra‘ﬁn in so(4). If

Eij (1L £ j £ 4) is the standard basis of the Lie algebra go(4), tach



we have

Theorem 1 (see for example G- B~ is a connected subgroup of so(4)

with Lie algebra

_ﬁ;‘a {2%% aijEij: a13fa2430, &14-323f0}.

- If we choose

n- is xiﬂ(E,l 3¢'E24’ E14'E23) )

then s0(4) = 4~ + 1, s Jen, [n",n ] = H . The metric of the
symme tric space PO ) = S0(4) |~ is given by the conditlon that

Y -5 5 3.3 ® r s i l .‘
,{E13+E24. E14 323} is an orthonormal basis Yurthermore, the comp.ex

" gtructure J : n--fw n~ of the complex line P(Af) is descrided by

(e = =(E, -E Bacall s Y- WiE :
38y 30Bp,) 7 ~(Bqy7Ran)y IBarBas) a3 oy

()
o
’,_J
|
(o]
=
e
o
(0:51
o
o
fos]
}J-
w

In the Lie algebdra so(4) we introduce the
Yty = Eqpe  Yp = Eype Y37 Faz T o
w 5 » X Ll ] E Y. w 5 - .
Y, s B, By ARt ann e B da 423

The elements Y,, Yo, YB' YQ gpan the Lie algedbra H and YSv Ye belong

to n . Finally, we have the following commutator relatlons:



»

% ] 20 Lot Fr, D, by, 1t brd
{_21,Y5] - ~Yg» qu,xéj - YS"“ [yz,x3] M
[Yz,Y4] - Y, [_‘;2,155] % Lyz,y()f} - Y,
[,.V.B,y43 - 2Y,+2Y,, [YB,YS] 1, [23,*{6] = 0,

B ax. 0 =0, L1,:%.] =0 [yg,_xél = 20,4275

3. The Kdhler condition for the projective.spinor bundle

_of a Riemennian manifold

Let X4 be & A4-dimensional oriented Riemannian menifold and let (Q,W3X4)
denoto the prihcipal‘80(4)~bundle of all orshonormal framed. We consider

the préjectivo gspinor bundle
P=Q%X )1}(/.\"“)

which 15 a Pq(C);fisration over Xq. The Levi-Civita-connection intro-
duces a decomposition of the tengent bundle TP = TVP 4 ThP int? ver-
tical and horinzontal vectors. There exists an almost-complex structure
J TP —> TP preserving this decomposition such that J coincides with
the complex sitructure of the {ibres Pq(a) on vertical vectors. Furiher-
more, on a horizontal vector g€ (Thp>h” at the point 4w € P, J is de-
fined (using the Clifford»multiplication between vectors and spinors)
by the formula:

(] = 1 Q) -y, & =71

It is well known (see [1] or [47) that J is a complex structure on P
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if and only if X4 1s a self-dual Riemannian manifold (the negative
part W_ of +the conformally invariant Weyl tensor W vanishes). Now we
i{ntroduce a hermitian metric on P by pulling back the metric of X4

L3

to the horizontal subspaces and by adding the A=fold of the metric of

the fidbres.

4

Theorem 2. P, gm) is & Kahler manifold if and only if X is a self~

duval Einstein space‘with positive scalar curvature'f = 48/~.

Before we shall prove this theorem let us look at some examples.

Ezgm»lo 1 X4 » S4 { & self-dund Finotein manifold with positive

genlur curvature and P 48 un&lvt;o tno o tric to P° (G)
Example 2. X4 - P (¢) is a sclf-dual Einstein manilold with positive
gcalar curvature and P 1s isomorphic to the flag menifold F(1,2).

4 3 a’\.g. . . D s o) i
Example 3. X = 87 x o 18 & conformally flat space with positive
gcalar curvature, but it is not an Einstein space. We calculate the

? ; 4
first Betti-number of 2 using the S ~{ibration o : P —F D&

4 4
_bq(.p) .. bq(): Y = 1.
Therefore, P does not pdmit Xihler structures at all.

: Exdmgle 4o Lot S E(3) be the group géner&ted by the Euclidian

trangformations a. ﬁ, T tq, t2, tB, which are given in an ortho-

normal Sasis'ei by the formulas:



'H,‘(Xl";z) .7+ 7

ti(x) = X+ e,

4 0 0

(x) = A(x+%ei), An{O=1 01 :
: \0 0 -1
_ ~“1 0 0 '
(x) = B(x+me,+se.) Bw | 0 909 ;
(3 e 32 2 2 3 p = = ‘$ ] %
N 6, 6 =4Js 33
0 0

[

1
a—a ) 5 -
e c \ 0 -1 0.

1.4
y(x) = Clxege +ge, 45250y

1 2

X4 = RBSP X S1 is a flat Riemennian manifold with the homology gxroup

4

P does not admit Kahler/structures at alle

. &g "
+ Z4 (see [22]). With respect %o bq(P) = bq(x?) = 1

Proof of Theorem 2. (P,J,gx) is a Kihler manifold if and only if the

75 ) : =
2«form LL (€, ,F,) = g?*(J*‘ J€.) is closed. Let £ : Q—P=Q x (sola)yir )
g \

.;84) is

(6]

e (S

B the. submersdondefined by (s} = [8,1], where qre

4 o
an orthonormal basis tangent to X . Then dQ %= 0 is equivalent to
g, : tohs R % ‘ .
d(£°QY) = 0. On the manifold Q we consider the vertical Tundomental
vectoxr flelds %x induced by the elements Y, of the Lie algebra so(4).
Furthermore, we define Lour horizontal vector flelds Xq, ng XB' X4

on Q by the formula
/ < .
WX(Xi\S)) si

Let {sei, ™} (1 4-1 £ 4, 1 4 o4 6) be the dual reper of 1-forms. Then .

the formula

A

2 .
0™ - ?;r(,sz\vf) = RAR ;f%ng



a0 : !

4mmediately follows from the constructlion of the almost complex stiruc-

ture J and of the metric gat Now we fix a point.so = (S?,Sg,og,u2>

[
+3

Q over xo n’T(so)._qung parallel displacement along geodesic lines

we get an orthonormal reper s of vector fields in a neighbourhood U

0 0 : 2 :
of xo with s(x") = s » Let o gﬁ?sk,sw) denote the local forms of
thé Levlmc vitn cennection. The ropor 8 gives loeally a tpivinllzation

U % U % S0(4). If now

A = (313) al :
is an element of 50(4), then

y o g LR (%) = W 8 SE, -

)‘ti(xﬂA) qu(gj( / ,”}Cl( j)(“ ‘ kll

dofinos horizontal vector flclda on Old o U X SO(AY with tho-propewiy

: 1 0
(Xi(s)) -8 for all 8 & Q!U. Since w?lﬂs4){x Y w @, 4% Tollows that
— ket

- " 0 FeW.
<"> in'xj](s > .5 Rjikl(" )*—-':{l
and s
-0 0
N4 3 w el [\' \S &
<2> [Xil'-oc.](s > ié\A—O:'l ‘jq

where a, (Y ) denotes the element of %he matrix at the plece (1,j).

13

Since the commutator of veriical vector fielde -is verticai, vwe ge

- -
<3> & YO{..Y ] 3. On

3
ty
o
}.J
8
P
3
&

Finally, the commuator between a fundamental vecto

horizontal vector field is a horizontal vector s48id. This yields



From {1) = {4% 1% now follows by a direc? calculation - using the

aldt v -y VIO i PR R e R A 0t Y SRe TN
equc'*i“'ies ai;j(*oo) it ‘E_ji<‘o,’/7 q']_}(df\ﬁ) 24\ ?3(,> L ’ ,'4(“04) (2'3( (.‘,v)
for 4 £ o0 4 4 and using the commutalor relations between the Y's,

: P ~ %
written down above = that d(£207 = G is ecuivalent to. tho following

& .

pystem of equations for the components of the curvature tensor &
0

R = =R,

- R i3 R o L el
Thox T ey LSS 12240 Maas T Rag23 /2

; R = R - S a/o
Bagnp® Bagesr Tqwas ™ Theglet U204 g 2323 T .
n = s =R ~Aar R,. 5, R -~ xx "'{".' /’r\l(;

R o :
Rosng ™ Voroad . B9993 2324 1313 1324

E R = =R B i B n =4 /0
Bysan = Bagans © Nijaws Sagade Ranaatelonon 2

Clearly, every relation cccuring, if we apply an even permumwu;on to

one of the twelve equations, helds too. Yow it is easy to see that
ey < 1 1 v& 4 1 mdrial Pirmatndy " i e
£ .07 = 0 4F and only if X s dseilscuni RINSUE-SQD space wisth

Y Nl
sealay curvature 2° = 48/n,

X3
-
%)
]
o

4. Some curvature properties of (P,g”7)

In this section we study the curvature of (P,g") in case of it heling

“ -

a Kdhler manifold. -

4 is a self=dual Einstein space with positive scelar

Theorem 3. If£ X

‘curvature T = 48/2, then (P,J,G%)

'.J.
i
&
5
ez
}J
(6]
w3
i
o]
e
o]
O]
€r
o
| =Y
3
3
0
=3
M
LY
(o]
:_)
O
-t
L
<t
o
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e

, 4
scalar curvature 7(?) = =(X").

To prove this theorem we need some well-known formulas connected with

2

¥

the change of the curvature tensor in Riemannien submersions. Let
8 ) :

3

a2l

.

4

- = ' ;
£ ¢+ M -—»i Dbe a Riemannian submersion and let N denote its nor

n

bundle. 0n ¥ we locally cheose an orthaormal reper BA (AyDyess =

1y oiess o 11) 8RN that fx<§x> = 0 &x,ﬂ,.:. = m+1,.00,n) and such that

= 5 : - oM
By = fﬂ(hi) (Ly9eee = 1,000.,m) is an orthonormal reper on i . Led

A i A . ’
ol c‘,respectively, be their dual revers. Then we have the otructuxe

equations
®
A B
d w W, AT
d AB 14
1 C. =D
dw - W, AV + =R, AT .
AB AC C2 YAECD ? ~
_;‘
5d
el .o 3 :
d(_)' - W /\d
13 !
i . 1- T
dw w W, AW + =R, ., .0 ne”
14 13 Yg . 2aagE :
e’ o, :
enna @. R - 7, v LB Ve B B 0w, R
1.0 1'1'\ s iqu s Riqu 4+ N ia’/\.‘cﬁj\_‘..p,.,.q,‘ < CJ "-i"pb"q;‘ i,__\“’(ﬁ)n
Proof. 1In the equation
¥ - W~ = 1 - LA
£ dw a £ w, AW + =R, 0T
13 11 T13 C 2 ijkel
: : o s e
we put the vector fields § , B . With respect -to w, = £5w on N
4
: : . P G- : +J 13

we get



3
~~
4

w. .Aaw, (B
:“.1 (AJp'

Proof of Theorem 3.

curvature T = 48/A. Ve introduce & metric on Q by

Let ¥ be & self-dual Einstein space with':

%2

"
scalar

pulling back the

4 : .
metric of X' to the hc . -ontal sudbspacea and by addin
of the fibres defined by th condision that 4/7/A Y, &

i P Ay o o
Then 77 ¢ Q —> X" and £ : Q —» P are Ricemannian submez

0 . . ]
arbitrary point x & 14 ve fiy an orithonermal basi

which defines & local reper s = (81,8293395 Y byip

ment along geodisic lines., Then X, = &,

horizontal vector fields on Q. For the

caleunletion we

{ollowing convention- wa designote o quantity connect

and & qurntity of P by . Let us concid

b8
= X Es

]
CE U R SR

A 2
2 65 % . 8
: X

2 ==Y
o

3

3'

If we apply Lemma @ to the Riemannian

er the orthonormal

subnersions

[
)

o~

[

D

Tr

axre o thonormal

now use the

red with Q by
repoxr on 4,

e

X

e—y.
Vi

Q—» X

2!

and
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and so we

have

£ : Q-— P, then we get (i,3,p,9 € 4):
X 19« 3 E 10 -
Riqu = Riqu +cf:j5.wi chﬁ( 5 & / & Cf_ ‘(Eoc)’
o % .l..o.‘ :v“o([‘;{ as ar NE
i v 20 WEAE ) « 2 o TR (E))
Y ""9’ 4./.-—4 o Tl 2 2
1jpq * iapq ot o £ 00317y (B)e
This yie&ds'
R §§L r ﬂy Y <§k N3 (“g)
" ’i M - iP5 v R =
iépq qu g ioa 3 p’ q’ o./:_:.‘SCJ pruq‘ 15 e
¥ith respect %o
it 4 Mot 4 B Ay N0 - ——
bl =% (i 1) S ot AN T p SR e
AB (’> ?{<11B1 Lh"“f‘ 4 <Ef’X‘L:"3¢ }C':;> MC'L}‘A""BJ> ‘i
and since [Ei.ﬁzj(go) -0 (4 £ 4,06 > 5), we get
Mo,
w ES) = Y R
13( 5! ?Jﬁ 5’LX A~]>
4
- —— v n
oy Riak3x<"5’“xl>
o 4(Rij1}+‘1324)’
3 % ﬁf
W n =
13(B6) = TG Ry jaa Rigay)
3 K., % '
wij(%%) = wiaﬂﬁj), 1.3 6 5,658,

scalar curvature T = 48/A

the equat of Section 3. Using this




e e

BESUSRRSS

. »
i o A s

relations we get (4 £ 3 £ 4)

A
s
—
o
-

Py

oy

?
al
3
N
=1
A
0,

’3

-,

<v> Wyl x)»{

: ‘ '
- . S
Mo ¥ 1
!ij(ué) = Wiﬁ(Ej) = “_é/")‘:’-
. 0,

R 2o 2] . QR u 0 28 3 e
Sincé o LB .Eél“ Wt (%) = v (B ), it follows shad
, q pes’ q _

p & “p
o]
{w R - 7, R
et iipd

" (“ )(s ) v&nishes if exacily. b

AD

rfore, we get the bqua jions (A,g 4

R, w R
RIAS xiok’

R ie = Poges
{2) R w i

51k6 51k6’

- M
Reyoq ™ Rsise,

Rgise ™ Reis6®

’

Now we calculate on Q the components

<3> SR 3 a}x_

(09 n_.S, 69

Chm D 6,

af the curvature tensor R

W
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For example, we prove the fir

L4

others in the same’ way.

¥ b3 # ¥ W L 3& J 3
- - e E
Reixs <VE;§7 ek "V Vgl

5 By i B P Y

3 R L s O viis DI ¢ X
RSik‘% s ch M.L>WC‘5(“5) Ji\":.:—(us): :C(HS) cs(f"i)
S"LO\ M =S M g Y4 5 3 4-\ PV pY4
T Sl R ) A B LE - w. (B )w
ST e (EEs(ES) = B(ren(B5) = 2 MioPy?
Ced ¢
*q”‘q() bl 8 '\ g
” AT T i 3 " ahd
] (:/‘_;WYU<E1)<1J5,LL':5,£,‘1/' o ')j_(v:r( )) & ;:Oi\;

¥ X 1
= =B, ((n b”'“k’>’ + Eﬁlx

]
o

;.-.J:‘M ‘3'5 «? . = 4
“i(<}35)[‘4578k "pq(sk)-‘pq]) +

u“}{' .-?f ?;‘lb -'1‘\,}..1(\
B} (g (33 E5r [B50Pp ) * %0

The fibres of the Riemannian subm ersions ¥ ¢ @ —> X and &
are totally geodesic subman ifoldes T

only in one fibre and then we getd

st equation and remark that one gets

the

RS SN i

v A



Now from {1 = {4) it follows that

- 56 (1,5.4 6)

R
v 13

and this means that (P,J,éx) ig o ¥XAhler-Einst

: 8 48 L4
scalar curv&ture'f(?) = 6 & M (X" ).

A compact Kdhler manifold (¥,J,z) is called &

fund&mental'formfﬂ(ga;gz) = g(Jgﬂ,g?) represen

class. By Kpdsirva!ssilieorem & Hodge manifold

(sec [21]). Let Ric : T —> TH

Ric , 3 '
Gl (§1 vfg) = o g(J OR?‘C(gq)vf?_)

represents the first Chern-class of M:

Ric
&H

) c,](M)'.

ASST
1f we apply this formula o (2,7°8 /“), th

Ric (4 g?/(J.

¢, (P) =27 = Iz g % e

o

‘Corollary 1. If x* is a compact self-du

o~

o
tive scalar curvature, then (P,dy 7507

manifold with the integer class LY = cq(P).

algebraic-projective.

Aled [6868

17

oin manifold with

Yodge manifeld if ite

1 REinstelin space with posi-

7 BIER T i kil 3,
—_— g Y dsra xinlexr-Einsteln

In particular P is
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Cofollary 2. A compact gelf-dual Einstein space with positive scalar

curvature is simply connected.

Proof. Since WK(P) = ma(x4), it is sufficient to prove that P is

simply connected. In our situation P is a Kéhler manifold with oosiv“ve

definite Ricci %ensor and y (P) = Q fallows = by an idea of 8. hobavwwA

(sece [9]) ~ from liyer's theoren (H%(P) is finite), Bochner's theoren

0,: Ee ; ;
(hp' (P) = 0, p > 0), and from the Hirzebdruc ch-Riemann-Roch formula.

D Thn cohOﬂology atructure of *the projective spinor dbundle P

A P,
Let .X' be a compact self-cdual

L3
1o
)
0
o
(O]
et
23
]
3
)
(e}
(&4
v
«r
in g
(o]
Q
0
e
<t
3~
)
=3
o
3!
2
2
I
i

) s ;
curvature and let o : P —> X deno%e the S8=fibration of the prelective

: ’ 4 . :
spinor dbundle. Since X" is simply connected, sheXe gxistefaon enienio~

. . 2 .
tion class w €& H (P;2) such that 198 veatriction to0 the fidbres iz the
g 2 P N + -~ e (et ) : o4 A
generator of H (*ibAe;L) = H ( 1Z2)e %o remarit that w 1S defined up
tO alements of o Y ( /) wrom the Thom-Gysin scguence 1% immedimtoly

follows (sce [19])

Chern-

ot
F3
D
-4
[
3
(9]
(A

of the Kdnler-Einstein manifold P, which represents

Pal s
class cﬁ(P). Restricting £, 4o the fivbres P () one getis




48 P (6)

f)]fibro - %g%;“%:fl m 4yl £1bx0

and honco
QO = Aw modulo 7 112(:{4:2)-

we calculate the characteristic classes of P and. denote by ¢ and %

. 4 . -+
the signature and the Euler characteristic of X', respectively.

Theorem 4. Let ?v and‘Th ne 4he complex vector bundles of all versical
and horizontal vectors tangent Lo P. Thens -

. = b
1s 01(Tv) - 01<Th) = (/2. We denote this olement by ¥

bt | 22

-r-"v[-“ o ’
2e cq(P) - 27, cz(P) I 7 1o ik 0-3(::) » =%

>
+
3
1
<
Eas
e

3. 'pq(P) = (66222)fx[X4].

~

A (a2 [x*].

; ‘ . g
proof. Since the Euler characteristic of the fibres P (€¢) equals two,

01(T ) = mOdulo'rMHZ(XA;Z)
v . .
and hence

Zcq(Tv) = (LmodulO'ﬂKHg(XQ;z).

Consider now the anti-holomorphic involution a4t P —¢ P mapping each

fiore into itself and corresponding to the antipodal map of 3 on

each fibre. Since M presexves the decomposition TP = QV'+ Th and since



L)

structuire J at the

the complex’

@

e

results. If we apply_p? to ZCq(Tv)

and 401(Tv)_m 20, Therefore,

-(1/2 ond cﬂ(Th) »

hold. Next we calculate the necond
functoriality of the EBuler-class e

]
ar, ¢
b

tive" projective spinors):

= . dih - . i i h
.cz(l’h) e()‘h) e(.Jr A

With respect to p, = --2c2 + cf

®r 4 Mo b i
3o [X7] = p @7 TXT) = P, (1)
and

3% - (3027 x*7.

Now we get the Chern classes of

glB-g BiD Jell ) = (1o 3) (1= [X

2 L Xr b
0pf®) = T AT [x*] =

. slag
CB(P) s ﬂz'x?g\[i 4o

4 : :
Tht—¢ %" changes %the orientation (P is

o

point/ZC¢0 equals.—JWﬁ

= (), +then we get “ch(Tv) 3 - QL

0, (22) = ¢y(T,) w0 =02 =0/

Chern~class of Tn using fthe

+he fact that

5
ana usin

G

the bundle of all "nepgo~

it "follews that

. 5 .
- ﬂ m
= acz(Th) + °1(“n)

7 4'-\
L Ji
IR
i o
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Corollary 3. If X

o 3 3 j . S 21

Finally, we calculate the first Pentrjagin-class using P4 E ~20? + cf

onceg more:

B BT ) ?1(Th)
= ‘X-z + ’3‘2 + Z’X/j}ﬁ[}iﬁ']
m (6&2%)@*{:44]
. Qe2eQ

4 -
is a compact self-duval b lnsaein space with positive

scalar curvature, then the quadratic form H (A 57 (h +2). —> 2 38
positivoly definite with the discriminant 1., Furthermore, the second

Botti=numbor bz(xd) Lo bounded, Oié (A ) 4 Do

N

N 4 X 3
Proof. Since X is .simply connected, the quadratic form F (L W) 48
LAk

'y

: + . g » 2
non-singular. Let D~ denote the dimension of the subspaces of H on
which the quadratic form is pos sitively o negatsively definite. Then

+ - re -

o B By L iR B R B

On the other hand, P is & X&hlexr=Einstein manifold with positive -
¢ i p!o(q p. ™
scalar curvature. By Bochner's theoren (h ({PYyom O §L4p 0) and

from the Hirzebruch-Riemenn~-Roch formula we get

. ST Yo A w-% o
4 = :Z:(-s) h "(P) = 7 £ C Gy = j}gr A ]e-
P : ?
With respect to‘r}fibre = 2w {fibre and vsing the Fubiri.integration
we conclude 1 = 6%407/2 and have ® = C. This means that the quadho»

tic ‘form Hz(x4;z) is positively definite., Now for every coupac*
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oriented Einstein space X4 the formula (

b 2 4
'xiéd* 1 {lw12+T\mMK§
2 TR
470 4 - 1925

b

holds. The proof of this formula follows

the CauB-Bonnet formula
Cﬁn-“;L" j !R!z = 4[310{2 + Tz'

end the Hirzebruch signature formula

BT P
A D
x4 } 297 X4

wi=

1 X% 1s a self-dual Einstein space with
then we get X - —3—0"-5 0, and since b = O

th&t b2 L 4‘

-

Remarx.

— o .
ture we proved that H W is positively dafl

spinor bundle P, Bochner's theorem, and
formula.

geomatry of X,

. o
- . . T ’
vundle A under the rodge operator . The

preserves this decompogition and incduces
e _ 2 5
Y(ﬁ&} —>["(A]). With respe

Hodge theory that

lowever, one can also prove thia

In fact, let A" = A+ A

ﬁo_bﬂ(XA) %

see [47)

fter some calculations from

3
Q‘acc(‘o

For a self-dual Einstein space with positive scalar curvas

0 we izmediately get dy the




S ooast SRS A0 AR (U A R TIPS g

9
o= & - ind(d+d) = dim ker A - dim kerd ,
K= 2 + dim Kxer A+ + dim kex Z_\_;
and hence

dim ker¢l_ o %(z-GQZ) & .

. i, + . &

On the other hand, for every 2=form w = u, u, ax. Adx , the

o A &

Lichnerowicz-formul&

f (u,l§u> ol 1§7ul? + ) Fplu),
4 o 4

i

where
Tk
- 2.8 e r32J1
Pz(u) = Rrsu : Liz +.2Rr831u 1

" 45 - ' ; 2
holds. If X 18 an Einstein space and {1 n is a sectioen in/AL Ve can
& . -y 2

simplify this formula to:
R y T
Robudus LW+ E)u, w, uwu€eTTNAl).

Furthermore, if this Einatein opace is selfedunl with positive gcolar

enupvatupe . khen B = ddn ker A = 0 immediately follows.

: ' - ; . : 4o SBD~ . 2p
Corollary 4. A compact gelf-dval Einstein space X' with positive

: e : - BBR ;
scalar curvature and venishing Bettx nuaber bz(i ) =w O is isometric

to the sphere‘S4._
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Proofe If b2 = 0, theng = O. Furthexrmore, we have

425724

2 1 g

oo et | v % e R S U
", - + - 4

12;:,)(4 = ‘

¢ R y
and hence W+-= W = 0. This means that %% is a conformally flat Ein~

stein space. But then X4 {s a space of censtant positive secticnal
. | - 3
curveture (see [37], hence isome4ric to the sphere 5 (see [22]).

Qe2eCe

with respect to Corollariss 3 and 4 we now have to study such self=

dual Einstein spaces with pogitive scaler curvaiure tha* the second

' ' 4 -
Bettli number b := bz(x ) satisfies 1 4%y 4 3. In the next sections
of this paper we will prove %hat tho caces b =3i2.3 exe infossdble.
b & L] s
- ' 4
Purthermore, b = 1 occurs 4¢ and only if X is diffeomornhic %o %ac

complex ‘projective plane

e . ; : \
logy ring H (P;2) of tke projective spinor bundle.

S . - pal 5t =i 4
arthorormal basis of H (X < 7).« Qne

Theorem 5. Let C,5c004© be an
LB 1 1% :

: ' s o 2 :
can choosae the orientation class w € X (P32) of the 5 “fibBration in
& 2 - . \
% 4L F ol 2l
¥ (D, ¥l oy Tyl anc
guch a way that o’ (Bg7;> = LU TS e
1 ; 2 .
w oo+ (X, *+ + x)w + x, =0 2w bq b
( 1 'o.a . ..b)x q>v1 s 8“ = = 1 o eler "'b'

M
"‘Vr Oio'

vhere %

' B o D=l
Proof. The class w 18 defined up %o an element of or H (X ¢2) dand

o kAN N 3

& A2 gk . . _
T = ow modulo 5 H (X 32). Therelore, we cai assume without loss of

, : gl
. generallty that e 2w + X, o+ eee ¥ x_ and 0 £ r 4 b. Since X,

«:rx[x4},




i R A A

>

we get
2 2 2 2 ; 2
= ", oo = AW v TAX oo ot K. 0
o 4w+ 4w (X, + +xr) + I, " e w( greeet r)] v TX,
On the other hand, by Theoxen 4 and Corollary 3, -we have

g2 = Co-2pn®[x*] = (=)

. This ylelds.

4[w2 + w(x1+...+xrﬂ = (b~4~r)x3.

Hence b = 4 - r is divisible by 4. But 1 ¢ b 4 3 and O 4r £b, 80

+hat is possible in the case D = ¥ only.

25

Qe +Ge
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6. Anelysis of the linear system /7 /

mr’-— LormeToneme

Ve keep the notations and aasumptions‘of‘%he previcus sec-
tion. By ¢ p we-denote the cancnical sheaf on P, i.e. $he
sheaf of holomorphic 3-forms, by_gp we denote the sheaf of
holomorphic functions on P. |

Since B°Y = H 4 (P, OP) =@ for g = 0 uhe exponentia
map OP-4>O; (= sheaf of norbcwc vanishing Aolomornh;J

)

exact

<
o

functions on P) f&—%»exp (2 7r if) yields (via
cohomology sequence) en Loomorphism

Pic (@) = H' (P, o,,'x )—-—72 (P, Z).
Moréovér, gince P is a Hedge-manifold, hénce a projective

algebraic variety, the elements of Pic (P) correspond %o

e N\ . -
the divisor classos (03 [ATF) on P, and since the cchomo-

v_.

logy ring H " (P, Z) is generated dy e (2, Z)., the cenonic-
al, homomorphism of the Chow~ring of P (the ring of algebralic
cycles modulo rational equivalence with 1l
product) into the copomology_ring ie sur

cycle z or a class of & cycle of codimension 3 we denote

o 7 ‘ vy ™ . - v n. 2,’~
its degree by (z) € 7o IF « is sn element of H°(X, &),

s R L. et 1y

I®] denotes the corrcsvonding lineor syshem on D, L. ¢
. SR I - o~ o ST a s

(get=-theoretically) the set of all non-negative divisors

L 2 1 r e - N s X YR ST
D on P representing the class pf o If we colculate inter-

e, L D, y e L e P U ) Qe 1
seotlon products, we often do not distinguich between al-
' ~ R LA ! b sgige 1 MR Y
gebramc cycles and vheilr cohomology clasnses. Ve note the

< o IR, SO Y - = O ~]
following formulas which zre cemsequences of fTheorem 4 and

theorem 5

AR RASE e



class ?’..Then

]

Lemma, 1 (1{3) 2 (4 -4 )
4% = (3 -4) =y

(W X12> = oolo'm (W

Py
i
\JV
a
3
P, . §
P
0y
|
BN
p
W

(W2X1 )

-
=

If D is an effective divisor on P, then (angrz)

=m (4 =g ) >0 (m £Z) and the divisor class of D

has the form

mw -+ 8: X a. € 24
L i L h)
qe=

(The agsertion ebout D follows because ?'10 ample, end be-

cavse of

A w + 5;; g mp K 2o
im1
From theorem 4 we inferec
and Cy (CUP ) = =2 9‘ O(If X is a KEhLQrmﬁins+eih manifold
then either ¢ or _a§?1 is emple, since Ci(L) cen be exe
pressed by the Riccl tensor. To decide which of the sheaves
is ample, computé £ éji), where O ig eny algebralc-curve
on X.)
We will chow thet in the cese & = 1 the aséociuteé re bl onm
al map s the cenonicazl embedding of the flag manifoid
P 2 i gl Ve B o ;
F (1, 2) < P°x " & 7, 2na shat the cages €= 2 or 3
are not possible; |

Lewm 2 “Tet I be an :nvcru.ale Opmmodule representing the
W 5 3
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1 (p, LQV) = 0 for g0, Vv Zat,

dim HO @, 1% ) = 229D (v 102 8L Gy 4 1)

,Prove:. The first essertion is Kodairaes vzmishing theorem
[217 since 5% %"1 (e 10X TS lis'an*ple. The second
asgertion follows from the I@rzebruch-aiemamn-Rooh formula
(6] | o

ain B (P, 1Y) = (v41)3 (72) < 5 (v (7py)

ond from theorem 4.

Coxollory  The linear system /72*/ hes dimension 9 -~ 26 .

By B we wlill denote the set of base points of //f"‘/, more

.Y, o0 & .
the sheaf of icdeals

precisely the subschema of P defined by

4 o
F = image (B° (P, 1) @ LI ' —> 0, ).

Then /j~/ defines a rational morphism
= 9.2
g PusBl — [ ,
by ¥ we shall denote the Zariski-closure of the imege of

(&3
fs
o]
F
b
§
o

()

Since Y is not contained in a proper linear subspace, we

infere by a well knowm formula

Geg (¥) 2 codim (¥) + 1 = 10 = 2 ¢ - dinm (¥

‘In -the next sections we shall prove tha} /2¢/, B, @ , and
Q.2 : ;

Y . p# muct have the following properities:

(A) Bach divisor of /9°/ eplits into at most 2 components.
i /9"" cont in & linesr subsystem of the form /"J?/ + 7

V5> 0, dim /V.z/ 0, then ¢ = 1 {end dim /V, Fomi Py




(B) If the linear system 4;‘/ has no base points, then
either @ = 3 and §§‘restricted to any smooth connected

surface. V& [7/»ds finite of degree 2 or & < 3 and @

restricted to any uWootn connected surface V EE/g”/ is a

closed embedding.

()18 /2’/ has base oovnt ‘+hen B is an irreducible cur-
ve and @5 ig birationel onto its imege Y, moreover degrec

(Y)=7"'260

In thvs sectlon wie W'll deduce the following conseguence

of tncue propertiess

ned self-duval

O

Theorem 6: 4E X4 is an oriented 4 dimensi

compact Einstein menifold with positive scalar curvature,
then b2 = 6 é 19

Proof: I) The case & = 33 Congicder P and éras ahoves JLE

‘<7)— tei=s P> is a 2-fold coverin , the branch locus of @

(3]

well be a smooth quartic in PB (since we know.
' %

P
note it by Z.

W, =« @*Q[PB (-2) and <§"1¢{?3 = Q- L5h) ), we will de-

~

Ve recall the following facts double coverings

]
(6]
O
Q
[
<

q2 v',;>U of smooth compnlete varictice s There exists an

* > .Tr--rr - . .
algebraic line bundle L — U cn U such that V is i80-
2B e 1 - 7 s .
orphic to a closed subvariety of I and @ 18 induced by

the projection o

Morecover there exists a fibre product diagrem
: b i i
2 5 g

b ¥

|
p s 12
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where 2 is an algebraic section end g the morphn.pm

q (e) = o° = @ ® e,
The ramification locus W of § is %he divisor of zeros of 7 ,
which is alweys smooth. The inclusion @”Z}MCCJV yields a
section of Gy © @*cu*u <5OHCL), which corresponds %o
a divisor %2 eand $ /2 is en isomorphism onto W
There is & canonical exact séque’n_oe |

o =@, —aly — g, 8 g_u(L”)'—» 0

which gives for the Chern classes

o'y = ety @l @l

# : a3
= @(GCQL ) (1 4eq (L) +2cy (ny> whoy (T)7 +

3\
+ @ga) 2

In our cagses V=P, W ) s L= Q 3(2) we get
XA(P) = - ¢ (§21V) & -«8(2~3) = --?6 which contradicts
X (2) = 2%(3{4 = 10, ,
The case where /7 / has a base curve B[:S is o birabional
mc.fphiém PwB —>p>is lefh. |
We also consider the inverse biratl onal tronsformaiion

/ N el . 54 o 2 .
"J{ = @. , which iz a morphism &7~ BY —= Beviaere: B!

ig 8 Zarigki closed subset of codimension 2 2. The Com
nonical inclusion induced by 0
: i ;
JSLU = $(0 (-A))—cy | BB & 0(0 5(~-2))] P
- IS i3
C . & ey N \ . N yia Hie ~
tensorized with 90 .(4) gives a holomorpalc secyion O

g? 0 3"2) on P« B which extends uniquely to a holomor-
'D

phic section of O O (w., sinceg-codim B > 1, The divisor

of zerogs E of this section is therefore an element of /2?"/



end supp (E) ~ B is precisely the locus where {5 is not an
open embedding.
In the same way we define a divisor F on'ﬁ?B such that

s not an open embed~

e

supp (F) ~ B' is the locus where ¥/
ding. We claim that the morphism O induces on isomorphism
P~supp(E ) S P> ~ SUPD (3?)0 To see 'Z;Zdisl we Tirstly prove
that ¥ induces an open embedd: ing 23 ~ pp(F) =P ~

supp(E). Since E is ample, the variety P = supp(E) ig

affine, hence it is sufficient %o shovtha®t for any rational
funckien € on P being holomorphic on P~ supp (B) ‘cnc func-

: 2
tion f oW is holomorphic on P7 ~supp(F). Hence we have

to gshow that for any prime déiviser VW' on ﬁ?3 gsuch that

~

¢ supp(F) the function £ ol is conbained in the local
Cexeclly one  pritme diivsor

ring O 3 . Since W' d suppli), oL P corresponds Lo Wf
e 0t : ‘
guch that Y induces an isomorphism of the local
rings Op y “ 0 3 . Because of this isomorphism we see
£P S !
that W¢supp(E), hence £ € Oy o &and I otye SR
a9 r 1
v o

This proves that E’{-is an open embedding 22 ~ supp (F) —>
P = supp(E), especially P ;# 0 and herefore we con apply
the same argument to ® end F instead of (e,rvy
divisor T > O on B2 ig emple)s

Because of this ‘iso,morp .,:?.vm we get an j_somornm.sm of the
(alge’oraié) Plcard groups Pic(P ~supp(E)) = Fi e (@3 ~

supp (F)) . If .‘E1 oss B are the ,ir.t‘egu_c:'.ol‘e components
of E, we can define an exact sequence

Z® —> Pic(P) '————-—-> . Pic (P ~supp(E)) —= O
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The restriction mep is surjective gince sny divisor on

P ~ supp(E) exteuds to a divisor on P. The analogous se-
quence for B> é.nd F entfeils that Pic (P\ SUPD (E))

Pic (E3‘; sdpp(ﬁ)} is 2 finite cycl:c group.

4 £ : 5
“ the number of components of E is

Because of Pic (P) =7
therefore af least 4, but since E &€ /2p/ =/ hw + X4 +
+ X, +x3/, it must be exactly 4.and.E=:E1+E2+EB+E
, 2 N _ e - 2

(Etff)52(2‘>-—4~(ﬁ'193~)+oeo+(E4'o.2‘ Y5

hence (B o r2) =,

4?

Since any surface V €/y*/ is irreducible, the intersection
product Ei o V is defined anf met be an irreducible curve
(because of (E; .7 2y = v .,fj'*) = 1)

The image Li (“(“ ~. B) iz consequenily a point o»a Tine
in @3, because it is always a poinv or a curve, and IL 1T
was a curve of highe
least 2 components.i
Moreover, if H is a hyperplene ox .77 con
verse Imoge gf = V-would contain B aé a component., But

we know that /J*/ does no% contein -a linear subsystem of fthe
form /V'/ + By -, dim /Vi/ > O, hence the case of a base

curve ig not possible.

This proves that the cagse & = 3 is impossible.

II) The cogse 6 = 23

over, for genexic hyperplenes HZ?S the mep ¢ will induce

~

T i
an Lsomorphism V = Q) 1ﬂ ~>HmY (since O qﬁ is smooth



g

end irreducible by Bertini's shedrem)e
Therefore H does not meet the singular ?ocus of ¥, hence. ¥
has at most isolated singularities.

Because of dim /O (2)/ 20 ond dim /?2‘/ = 18 there are ab
least 2 distinct quudrlcs 2q s Q2 of @5 containing ¥, As Y

ig not contained in a hyperplene, any quadric containing ¥
will be irreducible. ' | |

Because of ¥ £ Q, o Q, and deg Y = deg Q) « Q = 4 we ine

fere ¥ = Q1 ® on

Thug Y is a 3=-dimensional complete sniersection with ab mosﬁ
igolated singulerities, this implies <hat Y is a normal ve-
riety [18]. Dut since {0 is finite end biretional, it must
be an isomorphism, i.e. P is isomorphic %o an intersection
of 2 quadrics in Eg. .

For a complete intersection Y of two hyper surfaces in ?5

of degree d1,>d2_we can . compute the'Egler charecteristic by
using the exact sequence

00y —> Qy o@@ségx (a4) 2 0y (45)—>0

(where © denotes the sheaf of holomorphic vector fields),
which yielus for the Chern clas~cq

o) = ¢ (0y 00 5) oloya ™" elogla)™
= (1 + ?‘) (1 ‘!‘(3.1 9")-‘1 (1 "rdzﬁ‘)m']
| S T a . .2
= (1 +63~+152~ + 20 9 Y L1 -(d.,.! -.~c.2)(7‘+ (q1 +
"+<11d.2) ?2' - (43 +a3 +32 d2 )73:]

"~ B
+d2

_In the case d1 = d = 2 we get therefore

33
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X(Y) = CB(Y) = 0,
which contradicts X (P) = 2 ?foé) = 16
If on the other hand /7*/ has a bese curve B, the ima ge Y
will be e varlety of degree 3 = codim ¥ + 1 in 182 » However,
guch varietles (degree ¥ = codim ¥ + 1) are cl sif ed
(see [20]), end checking the list of these varietiles, Y

would be cne of the following ones:?

(a) Y = plx 2 @p’ (Segre cmbedding)
(v) Y cone over the rationel scroll T, & (blowxrg up of

one point of mz, embedded into P7 by the linear system

of quadrics throuyh this point)
o 3

(c) ¥ cone over P! & 0> (3-fold Veronese embedding).

But in egch of tbese cases the linear system //w/ world

contain a lineer subsystem of the form /V / + 2 )

Y, 4% i0ge0 ai Syl B0

Tn case (a) we could take

: i
Vy = (5 (P x P?) : (BB’ appoint)
i ,
v, = '@ xm (uE2? o line)
in cese (b) we could take
- - -t 2 3 . o
¥y = é}xﬁ) ~ F cone over the strict ftrenslform of
a line paseing through the centre
in 127
Ja e a’: ™~ 3 . o Fal
V2 = @ (H) - H cone over the strict trensiorm o
: & i
» line in P~ not passing through the
centre
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and in cese (c¢) s
N 1

V1l g (cy) G, cone over a point PEP
; | ;
V2 = é (c) : C cone over 2 points
P1 J" Pz 9 PL' e [P1

This proves that the case 6 = 2 is not possible.

7. Proof of pronerty (A)

Lemme, 3 Each divisor D €/y/ eplits into ab most 2 compo-
nents and dim Y > 2, If the linear system /7*/ contains a
Linear subsystem of the form /Vy/ + Ty , Vp >0, din/V,/
> 0, then it follows: 6.= 1 ,-dim /V1/ = 2, /V,‘/ has no
base points, (V‘% . 9*) 2T 5 (V?) = 0 eond ee.ch.curve

Ge/V,/ . ¥, resp. C' € /V)/ . ¥, is isomorphic to V.

Proof: Assume }.D € /2’/ and D = V,l s Vz’ V1, V2 >' 0.

‘Since 7~ is emple, we mus®s have (D ;y} > (0 for eny effec-
t1ve divisor D on B and (G . 77 2) > 0 fox amy curve C on
P .
In our case
(7% = (0 7P =2 (4 =¢)

= (V, .aﬂz),-l-_(vz . 3°) |

- (g=8) ( (T o %)+ (Ty vxD))
a:fld (Vi .lxllz) & 571_-1 (Vi ,'2f2)'< 0 , hence (V1 .§12} =
=‘(V2 & x12) =~ 1 ond V,, V, cannot split into further
sunmends and (Vy ..’1}“2) =4 - 8
Now we can prove dim ¥ Z 2. If Y were a curve, we would

&
‘have deg (Y) 29 -2¢ 2 3, loe, a generic hyperplane
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7 & p-? would meet the curve in at least 3 points and a |

“1 ¥ would therefore split into at

generic divigor D = @
least 3 components, which is a ccntradiétion,"
By Bertini '.s theorems [8] the following two possibilities
remain: .
a) gen.er.io divisors of /J'/ are irreducible |
b) /2*/ = IVl + V, » V, a fixed component, and dim /7,7

- | =9 =2¢ >0
But if /V1/ + V, is eny linear subsystem of /2‘/ such that
V, > 0 and dim /V1/> 0, we have (V% o 7 3i2a0 mince
is emple, and (V4 « V5 « *) = (V, o (f— v,) .f) =
- (V. «F RS0 U T2y,
1. e ' .
0V 1) 2 (Y .3*2) =4 =g
Because of (V.l.(]‘z) = 4 -4 the cohomology class of V". hos
the form . .

o . ,
vy =Wt Zaixi y 8, &

L
i=1

(by lemma 1), hence

Ma

Bt g P 2. %
vi=w +2w.Z_ aix'i—;-( e.i)}t:1

18 ha

il

1

5 267 o
& 2 2
b4 ) ? o
w o (2a=1)%, #07Z &™) 1] %4
i=1 < : i=1
n |
= S ! o »
(v .y)sz?% (a; -~ 8;) - @ +2.
: 1= ’ !




: I
If 6 = 3, these inequalities have no solution, for g'< 3
the only possible solutions are vy =}w s Mg =W +’x1 or
V11=W+X1+X2. : -
If & = 2, we would have (V12 .2‘) = Zae @,
v12 = 0 , which contradicts the structure of the ring

s B s T 0

?

In the case ¢ = 1 we would have (V 3) 0 and (V 3“) L
consequently, for any two distinct surfaces V1, V1 65/V1/,

the intersectlon V10V1"would be en irreduclble curve.,

Becauge of H1(P, QP) = 0 we infere that /V1/ e Vyis a full
iinearvsystém on the surface‘v1 , and eny curve C 6./V1/ 14

~ is irreducible (becouse of (V1 «7" ) =1). By the ad-
junction formule we find for the canonical.sheaf (dualizing
sheaf) on C: .

Wy = 0q & G © 0p(2 V) x’cgcb 0p(=2 ¥,),

deg(ewy) = = 2(C o V) =~ 2(V,% 2 V,) = =2

hence C =B,

In the same way_we see that any curve C’éZ/V1/ 5 V2 ig igo-
morphic to p’ D . |
Let L, be the line bundle O (V ), then the sequence.

Q. =» L';“ =2 Oy oo Oy. — 0 COJ:‘“G”pO:’lClng to the section de-
1
fining V, is exact and thus  EO(2, ) h (P, L ) = 0 and

5 o 1
H (v \ oV Ye mtle, 1) ,'H2(V1, _QV1 E3(2, 13') by the

exact cohomology Suquences, s

By Serre duality H3(P, I71) 2 H°(P, w8k ;) =0 end by

the Hirzebruch-Riemenn-Roch formule dim H2(R, I3') =



3B

=% (--V1 +?‘)3 = 0 (obs’er%re Dy (P) $ 0)e

Now let ¢ be the sectlon of 11 corresponding fo v, &
C=V,te V, € /Vy/ "V,I end ¢ ' the section of L, cor=-

regponding to V’1 Y Then' we have the exact sequences

0 — 0p L1, ’*”—QV1 6L, —>0
lep !
0 — Oy. .__..,> Oy © L, =>04 0L;—> O

1 1
and deg (Qy 0L,) = (C « I,) = (V,?) = 0, hence O 0L, = 0
(since C ~‘—"~YP1). By the exact cohomology sequences we get

therefore dim H°(V, 0y © T,) = 2 end dim P (?, L) = 3.
1 : :
This proves dim /V1/ = 2 and dim /V1/ 5 V1 = 1.

Then /V,/ « V; hes no fixed compenent end because of

(V,2) = 0 the linear system /V,/ has no base points.
1 1 P

-Becauge of dim /V1/ = 2 <+the surface V2 cannot be a fixed
component of /2’/, since this would imply /g"‘/ = /V1/ + Vo,
dim /2"/ = 2 Qe€ole

Lemma 4 If dim Y = 3, we have -

'a) for the case 6 < 3: The morphism 5? is birational and

7T-26 % deg¥ £ 8= 2¢

P-4

b) for the case ¢ = 3: The morphism $ is birational or
of degree 2 (and ¥ = -

Proof: Because of codim(B) > 1 we conclude (see [5]) thet
ke 2978 B 3O
= H(X - B, §0y(¥) )




. where __’O“Y(Y') ig the restriction of the sheaf of hyper-

plenes 0p9-2 &)

There holds Oy & $i0y » and if & = deg ($), there exists
an integer m  » 0 and m embedding Oy ® 0y (- 'no)d"'1

& @*_O_X (corresponding o a choice of a bage of the field
of rational functions of X over the subfield of rational |
functions of Y). Consequ.en’ciy

gim KO(Y, 0,(3)) + (d = 1) aim B, 0y(>= 7))
aim EO(Z, 157) m_&(,fé:ﬁ_}. (or)3 + 258 =1). (y +1)

Since Tor Y > 0 the function Y+ din 2o (Y, OY(Y )) is
polynomial with the leeding coefficlent i%&%m- , this. in-
equallty ilmplies

d deg(¥) £ 2(4 -6 ) | |
As on the other hend deg(¥) 2 7 - 26 , The lemma foll.ows

immediately.

8. Proof of the properties (B)._(C)

Tn this section we will prove that /7*/ hes no base points

end that the morphism ¢ is a finite morphism.

Lemma 5 If /7‘/ containg e smooth irreducible surface V,
the base locus B is empty and dim Y = 3, Furthermore §/V

is finite end a cloged embedding if &€ = 2.

Proof: Step_I: V is a rationel surface, By the adjunction
:f:‘Ormulé. g ' 3 » |
V‘ - e
filgrias i@ Sp@ie®: 0y . 3 0p(=V) @ Oy

9

(since Wp = Op(=2M))s
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Therefore the anticanoniéal class co$'1 is ample and because
of H1(P,_QP) = 0 the anticanonical linear system is ’
o = T

By the Lefschetz theorem on hyperplene sections (see LD
it follows that H'(V,Z) = 0. |
By Cas#einuovo's criterioﬁ we cen consequently conclude that

V is rational (since Py = dim Ho(V, Qwvez) 20 gl
=tamu'(v,®) =0) ([2]).

Step II V is the blowing up of B° in 2 ¢ + 1 points
Po,.;., P2 such that no 3 of these points are colineear
and no 6 of these points lie §n a quadric.

The minimal rational surfaces are the surfaces E2, Fo, Fz,
FB""’ where r = P(QP1QQP1(n? ji (rational scrolls).

2 iy ; AR A L
) =9, (an> = 8, and (") = (7*7)=

il

. 8ince (¢ 5
: P

8 - 2¢' , the surface V is obtalned froﬁl?g by blowing ﬁp
26? + 1 points or from a surface Fn by blowing up 26
points (since the blowihg upAof~one point diminishes (Ldvg)
by 1), ’ |

On the ruled surfaces Fn —> P
1

5

there exists & diétinguisa~
ed section s : P' —>T_  such that the curve B = s(P')CR
hasg - the property (Bz)«< 0. The Picard group of Fn'isizz'
with generators 5 = cless of B and f = class of a fibre T,
and

(72) a0, (F. B a1, (B) ==n,

The divisors = 2 B = (n + 2)F are canonical (i.e. repre-

gent 01(CJF ¥y, end i ,y?: Vv —>V?! ig the blowing up of
, _ - . :




one point and.E)GfV'thevéxdeptional curve on V, an lsomoxr-—
phism ; _ ‘

e ;
holds.

If 3 V—>F is a sequence of blowing up of points and

if E denotes the exceptionel divisor of y , then fthe divie

7
7(_ .
gor = 2 7J(B -~ (n+2)  F+E is cononical on V,

T QJ§1 ig emple, we have

8

ot o) ((2«//B+(n+2)qu“-ﬁ) . 4" B)
' 2(B%) +(n+2) (F . B) = (E « YW'B)

-2n + n + 2

ii

]

2 o-n + 2

Consequently only n = 0 1s péssible in our case,~Fo =

L b E . il
If we blow up one point on the surface F , we gelt a surfece
which is isomorphlc to. uhe blowing up of two points of Wz
The surface V is thérefore always obt olned by blowing up Pz
in 2¢ + 1 points Po,.,.;PQG +1 (perheps infinitely neax
points). _
Let I be a line in P end Y : v —> P° the sequence of
blowing up, E the etcentlonal curve., The divisors - 3 L on
'V and - 3 q» L +Eon V are cqnonlcaljlf L is the gbtrict

trangform of L on V, then

0< (3R ¢ D) = 3T Tyete o T)
. o =3- (.,

hence (E . L) < 3.

Therefore L cannot contain more then two points of
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{PO,:‘.Pz } L] 4
Similarly, if Q is a quadric in T2, the divisor
#¥Q = 2°L + E on V is cenonicel,if § is the strict

" trensform of Q on V, then

0 < (( Q+'3VI:-E).Q) 4r2- (2.7
(= .9 < 6,

hence Q cannot contaln more then five points of {P ,,..,P z

~ Step III Description of the surface V and the linear

system /wv 74 '

The linear system /COVﬁ/ corresponds to the linear svstem.A

of all cubics in Ez passing through the points P ,...Pzg

(¢ =1, 2 or 3) (the cubic C corresponds to the divisor
QP*C &5 bn VI IL g &4, “hls iinear system defines en

embedding of V.

Now consider the case & = 3.

It is easy to see that for any point P v P, = there exlsts

a cublc through Po’°‘°5P6 which does not contain the
point P.

Hence /ck;§1/ has no bage point outside the exceptionel

locus. " ‘

For any point P, ‘there are cubics C, cr through Po,.J.;fG

which are non-singular in P, end have different tengent

directions in P, . Therefore /a)§1/ has no bese points on V.

Let Q, be the quédric through the points PO, P1, PZ’ P3

“anid P - (v =1, 2, 3) end Ly the line through the re-

3
mainlng 2 p01nts ,{P4, 59 P6§ < QPB+V’}‘




(V=1’2’3)-

Consider for example OCg » Coh = Qq o Q2 + Qq e L2 +

'{‘QZQL.I'{‘IJ oIJ

1 2!
then
6. ?
= ?
Cq o Gy i s b AL
y:::o

:i.:i.’Q.l..I-2 =P4+P' ,Q2.L1==l? + P!

4 5+ 5 e

If for example P4 e 03 = Q, *+ then

3 3’

' ° 1 R
P4 éQ1n Q3 /\L orP € /\I;Bncz1 Inthe first

~ case I’4' would be & po:Lnt Py » =0, 1, 2 or 3, hence

Py 4, Pg would be colinear, which is impossible, in the

second case P4' would be the point P 4
The tangent dn.rections of the cublcs C, in. the polnts P

P B B B8 dlfferent, since the cublcs trensversally

1, 2, 3
meets in these points (observe +ha.’c no line Ly pasies:

through these points).

' The linear system A is spanned by the cubics €., aiQY-é- L
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Sk o} I’4 (resp. P5, respe P6) the cubics 02, C3 (respe C1, C3,
respe C.], 02) intersect transversally.

In all points P, we thus have at least two of the cubics
having different tangent dlrectlono at these points.

1E 'Y is the exceptional curve 1(P ¥ then (wv % dail
= 1 , hence /(,u"}1/ o By e %conotant linear system of
degree 1 on B, (=®')  hence the full linear system

/w3 ® og, /.

Step TV /w=V/ defines a finite morphism v > P° (s = 3)
BEePLS v

We have just seen that the morphism & ¢ V—>[B° defined by

i

/e ;}1/ ig a closed embedding on each excepfional curve B _. o

g~ : ,
- Tet C be an irreducible curve on V, d ¢ DRt e diawdsd 3
’t'hen it is the strict transform of a plane curve G« If C hes

degree d and multiplicity m. at the point P, , we can com-

pute dim /o ”{}1/ T es follows:

Catn /w3l o § e atm B0V, w0351) - dim BV, (-8)) - 9

= 2 = dim Irz"(v,_zf‘:f\}1 ()

6 .
and C= 46~ > m,E, , hence
V=0
# 5
Wyl (D) =YWy () 0 0y (X (my =1) B,
: V=0
6
w 0 p 425D 8.0 > by =1 By )
V=0 ‘ 6
(w3 (- 6) = 1@, o () ) © Yy (Z (my=1) 2, ))

V=0
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"If I, denotes the sheaf of ideals of the point Py , ~then
6 .

Dy (T (mg s DBipdon ¥ oNse oLirba s RENES 1OV, g

V=0 : vé ¢ ‘ e

~
(20) 4% Bt Sped> 3 vor Afales 3 B0l 0 &G =
If d=3 and Cé/\ ,wc get dlmH(va (-C)):'},

ond if < 3 the sections of H(V, w3 (- Y bl
' to the curves of degree 3 = d pessing through all points !

p., & C.

Hence dim HO(V, ¢y = (-3')).41 for any curve T on V and

| dim /CUV L } 1.
Therefore no curve on C ig contrected to a point under the

morphism @ ’ -henceé g Einite qe€edo

Corollary If the 1inear system /é,, / contains a smooth ir-
reducible surface V, the morphism 9 P —> [ -26 jg fi-
nite.

Proof: The linear sys’cem /?’/ hes no base point, conee-
quently é ig defined everywhere on P, and S{)/ Vv is finite
for any smooth irreducibie surface V &€ /y’”/. |

Let E& P . be the locus of points x &P which_ are not
jgolated in their fibre {3"1[ O (®), by Ze.riskifs_ main
theorem this is a rariski closed subset in P (cf. for
oxample [107, [117). 1 B4 &, the image $(E) is of di-
mension < 1, if H 65199 - 26 ‘is = generlc hyperplane, the
set H N H(B) is finite, end §-1(m) = V €/y/ is smooth
and lrreducible (by Bertlna. s theorem). But we have seen

shat §/ V. is Pinite, Hemos 'V VI musthe finite and thus



‘reducible curves In this case, the veriety Y &
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dim E =1, dim @ (E) = 0, In this case H NP(E) =&
for any sufficiently. general hypérplane, hence VA E = (‘Q .

which 1s a contradiction since V is ample.

Temma 6 dim ¥ = 3 and if B is not empty, then B ig en ir-

pl-2¢ . s
of degree _'7 - 2¢ eand the morphism (:E: P~B —Y is bi-
rational. o o |

Proof: The essumption dim ¥ = 2. would imply deg(&r) >

8 - 2¢ , hence any two generic surfaces of ‘/2"/‘ would have

an intersection consisting of at least 8 - 2@ components,

and at least 9 - 2¢ components if /7/ has a base curve.

But since " is ample and (’0”'3) = 8 - 2 , the second casge

ds impossible, l.e. {?1 hes at most finitely many base points

"and 2 generic surfaces of /3*/ have an intersection C, + Cot

teoot 08—é6‘ o If Vis a different surface of /2‘/, then

AP0y dmiae w8 ¢ Wik w0y L e s T

“hence '(Ci M) w1 fordwm t0ees 8= 2¢ o Then each

curve Ci has exectly one point in common with the surface

V and they intersect trensversally in this point. ESpecialli\* _
non ‘

Y

thegse intersection points _are/s:mgular on Ci end on V. There-
fore any lﬁ)ase. point of /’J“/ must be a ndﬁsingula-r point on

V for V& //. By Bertini's theorem it follows that there
exist smooth irreducible surfaces V 6/(7‘/, but then, by

lemma 5, we would have dim ¥ = 3.

'Hence we have proved dim Y. = 3, 7 - 26 < -deg Y< 8 - 2¢ .

Assume that C & B 1s an irreducible curve, then for any 2




" gurfaces ’V1, .V2 E /ZY“/ we have

V1 o V2 = C+ D
where D is some effective cycle of codimension 2 end (D -7*)
27 =28 (since deg Y 2T =2€6).
Then we get
(3) =8 =~2¢ =(C .a‘)-&-(D Y0
hence (C .2‘) =1
In this cagse B =C and deg ¥ =7 = P
Now agsume dim B = 0. Beceouse of (2‘3) ) Bpd 100600 d.eg(Y):a
= 7 = 2¢ the base locus B must be empty or equal to a point,
where sny 3 generic surfaces of /g‘/'intersect transversally.
Especially the base point is nonsingular end eny V€ /Z“/,
by Bertini's theorem /94/ contains therefore smooth lrre-
ducible surfaces V, but then by lemma 5 the base locus; B

must be empty Qqee.de

9, The case 6 = 1

Ve will prove

Theorem %: If ¥ is an oriented self-dual compact Bins tein

manifold of positive gcalar curvature and H2(X /) - 0,
then Xa’ is diffeornoroh:.c to the compleX proaective plane
P% and the projective spinor bundle P~ =P is emalytical-
1y isomorphic to the flag menifold F(1,2) & P2 x P°. The
embedding is 1nduced by the linear system /9"’/

Proof. Consider again P =P, /Y/ end O .

Step_ It g‘/ has tio base points. Assume the contrary, then
/'()‘/ hasg a base curve B, In this case Y is a varlety in

(P7' of dimension .3 and degree 5 = codim ¥ + Te By [20]11: £ol=
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Tows that ¥ 1g one of the Péllowing varletiess
A rationsl scroll [P(E) -—-»[P1, where

a) E=04,00,00,(2)
P P P

D) E=0 400 ,(1) 060 ((1)
\ P P P

or a cone .O\rer. a rational scroll W(E) —-—>!P1, ‘where

¢) E=0,060,(3) ,&® =7 crd
- e! " P o

a) E=0 (1)eQ (2 ,B@® =% c B,
: i, e

or finally

e) a cone over the curve p! <

(5-fold Veronese embedding). -

~The embedding of the scrolls ig glven by the following linear
system /H/: Let' I.be the relative bundle of hyperplane sec-
tions of .LP(E) -I-T-"_LP1 (such thét_ "B —"L is surjective),
then H=L® 770 (1),

But in each'of ‘ches}e? cases we could find'e; linear subsystem
SV T S 9/, T >0, din/V/ Z 4. In the coses a) -
d) we can 'take /VY/ = /L) in the notation introduced abOVe,'
in the case e) we can take the lineéar system corresponding
to /P, + P, + B, + B/ on [?17 (Observe that HO(Y, L) =

= BO@!, 5) = o) |

Hence /’3“/ cannot have base points, by Lemma 3.
© Step IL: The morphism § is a closed embedding @

P —Y CP, degY = 6. .
Since for a generic hyperplaene H C\;IP'] the restriction of ﬁ-:




49 .

V= @ e () —> ¥~ H is an isomorphism (by lemme 5), the

singular locus of Y ig finite, Purthermore V is obteined
by blowing up 3 non-colinear points of IPz.

From the exact sequences _

0 — 0p ((n - 1)V) —> OP(nV) e Ov(n) — 0

(we congider V to be embedded into ﬂ?7) we get

i

X (0y(n)) - X(OY(n - 1))
X(Qv(n))

X (0paM)) = X (Qplla = 1)M)

= 3n (n+1) +1

end consequently "X(gi,('nV))‘ = ,’Z(_O_Y(n)) = (n+ 1)3

This proves that { is a closed embedding.

Step III: P is the intersection of B? x B2 € with a
linear subspace of 198. -

Let L1, I.2 be holomorphic’ line bundles on P such the.t
01(1. ) = ow o, c1(L2) = w + x , then

Wy 132 6 I35 |

We will show dim /L [ e adm /L / = 2+ By 1emma 3 it is suf=-
ficient to show dim /L1/ >0, dim /% /> 0.

By the Hirzebruch-Riemann-Roch theorem we ,get
Y(ny) = X(@,) = 3.

If we choose n big enough, the line bundles

L, 8 (L, ® L, ®®12)  ang L, @ (5,0 L, )% wi11 be ample

end. the linear system /(L 0 I, )@n/ = /n’f/ will contain

a smooth connec’ced surface W (by Ber’cinn.'s theorem).
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Tensorizing the exact sequence

0 — 0p(- W — 0p —> 0y —=0 by I7' @ ¢

we get an exact sequence
-0 (n+3) ~0 (n+2) -t gl Sy
and by the adjunction formula it holds that

-1

Oy & Iy

By Kodalrag venishing theorem it follows that

gt (e, L'{@(n”)-@ L'é@(mzn =0 for y<2 end
y! :

quently y' (P, wp © L'{1) =0 and Hz(P, L'1) = 0 by Serre
duality, hence | | :

" aim HO(P, I:1) >3 ‘and by symmetry

Now we can infere (by lemma 3) thai /L1/ and /I'Z/ define

morphlems El/.l: P——»[‘Ez,' %/2: . P— P2 . and

Y s (.%1, %2) : P P2 x P° el satisfying

P ,(1) 0 0 5(1)

aim HO(P, %

2

i

e

fl

Because of ‘/I.1 & L2/ /2* /, the r‘norphism Vo P > p°
factorizes through a linear subspace H 227 and the em-
bedding § P—»> B, |

Then P considered as a subveriety of IP2 x P° 1s defined
by a bilinear form H°(P, 5,) © E°(P, L,) — C. Since P

is nonsinguiar, this bilinear form must be of rank 3, i.e.

in suitable homogenous cocrdinates the verlety P GIPZ % &’2

(W, oy ® L1®(n+1> © I,7") = 0 by Serre duality. Conse-



is defined by an equation of

UgVo + Uq¥y + Uply = O

Step IV X4 is diffeomoxrphic to EQ(C)

If H dis a line in P?, then the restriction 1?1 t Vam
= Y 51 (H) —> [P° ig ‘the blowing wp of & point of P2,

If for example . H is defined by the equation

Vo+aV1'|"‘~DV2=O’
then VCP2 x H= 0% x [91 g defined by the equetion

(nsine - V.o Vo, . B8 homowonous coordinates on H) by
1 2

(U-l"‘aU)V.]“t‘(U-QU)V =0

igs, « W 15 the blowing up of the point (U, : Uy 3 Uz)'

{ 1o mbadi bl

Gonsider a £ibre F  of P e e y4), then /L2/.
£ is a linear system without a bhse point on Ib.“‘@ , and
because of (Fp ¢ L2) = (=x . L2) = 1 +this linear system is
of degree 1. Therefore the restriction of Aﬂ?z to T, mep
Fp isomorphically onte a line }Hp < 92.(The same ls true
gor W,.) Ve cleim that H i Hq ifp £ 4. |

Assume Hb = Hq = H, then Fp,-F
lines of P° under the morphism QJ1 v Vo 9?51(H)4—;1P2

Since they are mapped on%o H under qy. these lines cans- :

2’
not paas through the ccnlre of the blowing up 9?1, cons e

quently Fp, E& have a non—empuy intersectlion, hence p = q
Thus we can define an injectivevmap
_ (TR s -f—"IPZ. = dual space t0 B° by ¢(p) = H;p =

5

&2

8

q are strict transforms of



To see that ¢ ig a diffeomorphism we express thls map in

coordinates.

For this purpose we choose an open set U @_XA’ such that
P/U is isomorphic to the trivial [P'-bundle end a triviali-
zation P/US U x P!, Choosing homogenous coordinates on
®!  and uging the trivislization we get €7 -sections of

P over | Uy p(x) corresponding %o (x, o) and 9_(::) cor~

responding to (x, o0 ¥
: ; ’ Q¢
I Yor Po Y, is the base of H (X, L2>, corresponding

Vs ¥

to the homogenous coordinates V X the map 50 on U

- o

is expressed by b :
0= ¥y 8 TW, =2 p,a @ 4¥ye) s Ty 58 4o

p ‘Po ® q*y/z) : (p*/x}!/o'é cft{q -p y, 0 q%%))

‘in the following sense: Consider a polnt O & U and the
fibre F,, since the restriction mep H(Z, Ly) —

g HO(F L, ® OI‘ ) i surjective (because /L /% Fy 15 2
full linear system), we can cnooso a holomorphic gsection
of L2 in a neighbourhood of the fibre T, such that 4

.vgenera‘ces the line bundle L, in the po:m'to p(0)

q(o), i.es Wy -—-Afiq/ in anexgnbou hood of pf(o) and

i £, &are holom orph:l,o functionse. Then

N .
(P(x) is the. line defined by the equation

q (o), where e

[£,(x,0) £5(x,00) = £(x, 00) T, (x,0) ]V, + [ 2,0x, o)f (x,00)=
~f (x,zo) £ (x, O)JV & Cf (x,0) £, (‘c,oo) - £ (x ooJQJ

for points - X in a neighbourhood of Os
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