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Cohomolory with compact supnorts for

real analvyiic gpaces

by Mihnea Coltoiu

Iireelduicit lon!

Given X a paracompact resl analyt
it ig well known that H I(X,F)=0 for all g»l.A similar
statement holds if X io a complex Stein space.If X is

a Stein manifold we have the following resulc(se;([l]}

SRopttlhe tproo )

X . °

Theorem Let (Z,0) be a complex Stein manifold of dimension

n and L) the sheaf of differenfial forms of type (n,o0)
with analytié coeffioienté,@hen,for any coherent
gnalytiéc sheaf P on X and for all qzl,E y,O ;7,0
has a natural structure of Fréchet-Schwartsz space and-

5 (“,V) is algebra'cally isomorphic to the topologic

dual of BExtl

Ye deduce the following:

Cérollarv Let (X,0) be a complex Stein manifold of
dimension n and P a locally free sheaf df,fﬁ te rank,
Then 1% (”’m)mo U g a1 ( ,P) is algebraically
isemoerphic o the tOpologic dual of HomO(EﬁfD.

The situation is entirely di forenyiion oe iﬁvariants
HE(X,') SLE O s el saaul analytic space. it will Rollow
that Hg( P)=0 if T‘ECOn( 7). and q22.However one doesn’t
generally get HC(X,F)zO.The purposé of this paper is

: S 2 = : :
to give conditions. on F under which HC(K,F) vanishes.



exigts a natural number n=n(x)eN such that F\U is

1. he torsion of coh@rant gnalytic sheaves

The problems discus ged in thig paragraph may be found

Sl ([1]) or ([3]).The1r-proofs are given there in the
case of complex analytic épaoes bﬁt as one may easily
show they also hold in the real case.

Tet's resume some elementary notions:

Let A be an 1nf@$ra1 do‘wln(cowmutﬂ tive and with 1-

element) and let M be an A-module.Llet t11-denote the

GO ES O

10 = { ”l (3)46 \{o}'suoh that am:o}

If K ig the field of qudotients of A then tIM 1s the

3—1-

kernel of the canonical map I HQ%K.
Tet ¥ be & real analytic space locslly irreduoibleﬁi.e.

Gz = Sie dntezeal for all xeX) and let176 denote the

A

B

gheaf of germs of meromorphic sections on X.If FeCoh(X)

let tF denote the torsion subsheaf of P i.e. the kernel
of the canonical map F~%?é%4ﬂb.0ne Seqicl GEE —6T ,for
* O« i e :
all xel.We say that P is torsion-free BB e,
We shall need the following results:
a) tﬁeCoh(\) 1? Peuoh( i
o) Ml F oh(Y) ia torsion-free then for all yéX there

exists an open neighborhood U contalnlng % and there

°

X
isomorphic to 9, sub e of O% U °

: L
The properties a) and b) also follow from the uhlrd

paragraph. i : i .
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Definition 1. Let (X,OK)‘be a real analytic space and.

PeCoh(X) . We say.that i werifiies Wikie sprined pleloisanailytie

continuation" iff whenever UCX is an open subset,xeU

and g,tel (U,F) such that s_#t_ it follows that sy%ty

for 81l v in a neighborhood of x.

Exémnlesll) If X is locally irreducible then OX verifies
"the prihciple of analvitic contiﬂua{ion".Indeed,it suffices
to show that,if UC X is an open subset,xelU and sc(j(U,OX),t

then sy#o implies s_4o0 for all vy in & neighborhood of x,

(%

This follows immediately by considering the morphism

o

OX{U-i?OV U (multiplication by s) and using the coherence
of OX’

2V Rt s leocelly irreducibile and BECoh () s
torsion~-free then F verifies "the principle of analytic
continuation",This statement follows from example 1) znd b).

2.The cohomology groups Hg(X,o)

Tet X be a real analytic space and FeCoh(X).Let's denotbe

HS(X,F) the cohomology groups with compact supports and

coefficients in F.One may find some further details about

these ihverisnbs in ([11),»

We shali need the folloWing fesulﬁ:
Theoremll. Tet X be a paracompact real analytic space
and T Qoh(X).Then:

A) For all XGX,FX is generated as OY ~-module by the
- =0

X

image of the nefural mep [j(X,FL~»FY,

i

B). For all q>1,H%(X,P)=o.




e proot 45 based on the,existeﬁce of a complexification
?giand on the. fact that X has a_fundamental system of open
neighborhoods which are Stein in]%i(see ([6]) for ‘the! proofl) .,
We remark that theorem 1.3B imﬁlies'%hé vanishing.of

HY(X, 7 B oo subset of
X let H%(X,-) denote the cohomology groups with supports
in-Y.““nce there exists a canonical isomorphism

Liy T{T{(i P—Hi(x,?)
b su?flcos to prove that H (K =0 ‘For all compicilt subsets
KCX and for all gz2,But this statement follows from the
exact sequence

i e “)—%TK(X,P}~%T (X, T)
using theorem 1,B.

Delinitilon 20 TR FECoh(X),.We saey that P hag the vroperty

o o e e R e
‘gkfj(X,F) such that s=§ on YK if K is & sufficiently
large compact subset of X.

Remark If H%(X;F)zo then F has the property (P).Indeed,
Cortall dompaot subgsets K< X one gets the exact sequence

Mx, 7 =g, ) -1 (2, 7)

Taking the direct limit as K rune over the compact
subsets of X and using the faet theb Hé(X,F):o,one gets
the exact sequence |

P(Y T‘)-—%__j_»r‘("\T( )—ro
K

which tells us- that for all compact subsets Q@c X and
. et e :
for all »é(j(v\ﬂ F). there exists se(j(x,?) such that

e,
g=g5 outegide a.sufificiently larze compact subset KL X,




;Taking Q:(x}'it follows that T has the property (P).

Lemma 1.Let X be a paracompact real analyﬁic space and
x €7, Then there exists se-rkX,OX) such that s(x)=0 and
s(y)4o for all yeX,y¥k.

Proof Tet m, be the maximal ideal of O.. . and 813e00s8

Lhog A

n
a get of generators for mX.Then the sheaf of ideals I

defined by:

_ ms ALt D
Iy: <L
. ; iR v
4 OX,y if v¥x \
is coherent end using the theorem 1,.B, it follows .that
& = ¥al =
one may find fl""’fng rYX,OX) such that fi,x"afemx’

for all i=1,...,n.,0ne deduces,using Nakayema's lemma,

that £ generate m_.Let T:X—R™ denote the

_‘F‘
et S s X
morphism induced by the sections fl,...,fn.It follows
laEpaar ARI0E = R 1s surjective,hence £ is an immersion
T 6o oe : e

in a neighborhood of x.In particular x is an isolated
point o the isal Y:f'l(o):{zer fl(z)z...=fh(z)=?}

= ! o e 3
Put OY‘OX/(f Pn)‘Y and let's consider ?ae section

lgcoo,m

gn+1611(Y,OY)‘defined such as follows:

GF RN
2 o
Db e e

Prom theorem 1,B, it follows that the canonical map

'.f%:rﬁ(X,OX)—*?rkY;OY)-is surjective.Let's consider

0 i - . _
fnﬁl€r1<X’OX) such thet ry(f, ,)=g,  , and put

o P

S-—-fl e .+fn+ln+lo

satisfies the conditions of the lemma.

One may easily verify that s
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Proposgition 1..Let X be & paracompact real'analytic

spacé which is cOnnected,noncompaot and locally irreducible.
Suppose PECoh(X) such that H%(X,F)=0.Then =
| Eroof Buib GzF/tF.We‘must éhow that G=o,From the exact
seQuenge 0 —AT—F G —0, wo deduée the exact sequence
H}:(-X,F)r—»Hi( , )42 (X, t7) A
Since HI(T,7)=o end H-(X,tP)=0 it follows that B (X,0)=0.
In particular G has the property (P).Suppose that there
exists XEX sueh tthat G %o Trom theorem 1 A. there exists
uéf_k“,G) with u #o.Let's consider s built ss in lemms 1,
Por all i€N,we get (1/s)]U6{ﬁ(V\{z},G).Sinoe,G has the
property (P) it follows that there exists v=v el (X,6)
and there exists K=K.C X & Qoﬁpact subset such thet
v:(l/s)iu on X\K,which is equivalent to the fact that

s'v=u on X\K.3ince X is connected,noncompact and G

Veri Eliessitthe nr1n01nle of analytic continustion"

(=X

N

(cf. example 2,paragraph 1) we dieduce Nthat. sevi=vlion & .

i S . . .
It follows that uvéméGy for all ieN.Since the m_-adic

P s A . L

topology on C;t is separated it follows that u_=o,

<

o

/et

Contradiction.Hence G=o and the Proposi vion s prewed,

Gomol lamem el 0 be o real snalytic spasce which is

paracompact, connected and locally irreducible. Thens
X is compact é?:? B (A,OX)=0
Preoof T fellows 1mmed1°te7 from theorem 1,B. and
propositioh\l. | 5 g
wembrk Let X be a real analytic spéce and F&Coh(X).Put
X'=supp(TF) and L=the set oI 911 connected components

f

OF XY s Rolliliows: tliate




N

Hé(X,F):H%(K',F):é%i H(U,B).
FProm theorem 1,B. we deduce that,if every connected
component of supp(F) is compact,then H (G =00 B e
following paragraph we shall discuss the condltlons
under which the converse of this staﬁemént holds.
Therefore a generalisation of the concent of torsion
will be needed,

sl G@ﬁ?“ﬂl“ Zed lorsion

Tet A be a commutative rwng(not neovusarilv integral)
ww%h l-element and let I be an A—module.?ut N—»om (“,A)
A% Ve 5 A
andAW =HomA(M,A).Let J: M-I  be the canonical map:
J(m) (19 =rf{m) . Then tV=kerd will be called the torsion
submodule of M.M will be celled torsion-free iff kerd=o.
Remerks l) kerd=o means that for all meﬂx{oﬁ,there
exists me such that rln)ko.
2% kerd=I means M=o,
3)/ M ig torsion-free.
AL N s on Sntogedl demain and is an
A-module of Finite type,then kerd= {me”’ (}) ae\‘{oﬁ such that wm—;
The remerks 1),2),3) are obvious.The remark 4) shows : |
that the torsion defined sbove generalizes the concept
ot “torsion defined in the.pﬁﬁ‘"ToDﬂ L. het's proycrdi.
<Put N:{meﬂ\ (3) a€ \{oﬁ such that‘am:o}.Obviously we
cet NC:kerJ.Conversely,take méN end let's find mel .
such that ﬁfa)/o Tf K denotes the field of quotients

n Whesam 2\ . - .
of A then N:ker(ﬂ—~9ﬂéah).81noe mdil, 1t follows that




m@l#o.Ience +here exists feqomK(”éaK K) with f(m@&)%o.
_ALet Mo 5000,y be & set of venerators of M 2s A-module.
Tierelior i sits PGA\{bi such qa* g-(m @])Eu Fomailile 1 b
We may take mea(fou) .
We shnll need the following theorem:

Theorem 2, e+ A be a noethe an ring(commutative and

. with l-element),E an A-module of finite type which is

L .

faithful and R an A-module,The following conditions are .

equivalent:
& : 1.R=0
2 JHom (B RY=0
Yy

 See ([5]5 for “thie proof.

Let X be a real anu*ytﬂo space and FeCoh(X),We define

FfF**a*d R an the ssame AwnHPJ.Obvwouﬂlv they are coherent

and then the exact Seaquence o—*“—?O '%O;.It follows ths

o

¥, : 9 :
i locally isomorphic %o a subsheaf of Og and this
property holds for P glso if P is torsion-Ffree.We deduc

thet,if 0, verifies "the principle of analytic  conint
¢ :

Proposition 1' Let X be a real anslytic space which

is paracompact,connected and noncompact,suoh that the
structhure sheaf Ov Verjrwps "the principle of analytic
continuation”.Take ReCoh(X) such that Hl =0 e

o

H=tF (i.e._ﬁgo),The WEeQI s os,ootWﬁllv the same with

%
D a :
Remarks 1) Cne gets locally sn exact sequence 03205—>F—0

v

e

ation"




®

the proof of proposition 1 (using generslized torsion).

~

. Hence one may deduce the following

D

0

Co”olla?v 1' Beiba 7 hel o reail an81J 1¢c. space,which 'is

baracompact,connected and such that 0 verifies "fthe
b ) X

principle of analytic continuation", Then:
= S 1,
X 15 compact é:i? H (X,04)=0
FA

Brepegiiiion 2. It © be o paracompact real enalytic

space and FeCoh(X).Put X'=supp(?) and O y=(0y/Ann(T)) 71
. L5 EL

uppose that (V' Oz,) verifies "the principle of analvtic
con%inua%ion”.?hen:

-U («,ﬂ) o€$>ovary connmo+aﬂ component of X! ig compact,
Proo§u<?1 follows xrom,the remark made in the end of
g : i

the second pars graph, Let' ovgt=$ «Let V be a connected

component. of X!',From I (v T1)*”1(”" =B T-I]C(U,'1 we .deduce

i Uel,
that H (V,F)=0.The statement of the proposition follows
now using proposition 1' and theoren 2.(Fy is an 0, /Ann(F. )~
- g 2 ik

faithful module).
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