it i INSTITUTUL NATIONAL

. DE . PENTRU CREATIE ;
MATEMATICA STIINTIFICA SI TEHNICA
;
i
ISSN 0250-3836 §
-
}
i
'ON NOETHER'’S THEOREM
by |
Theodor GHINDEA |
PREPRINT SERIES IN MATHEMATICS
No.41/1980 |
i
|
BUCURESTI

| Moo 169 iS






i

On Noether's Theorem

by,Theodor' Ghinda
let ul, ety u® pe some real-valued functlonsxdependlng on

n variables x/..,x™. We adopt the notation uf= th and consider

e L e R R

n+ m+ nm variables. We further note (us:.ng the summation

conventlon) : :
De O e
T e o $ou; % [ ] dxt

We consider the follow1ng form of Noether's theorem :

Theorem. Iet ul,...', u® be solutions of the equ_ ations D—]

(°< /’) ____)/yv\,) and let ;V E- ('X) ,3 '3) (b—4,~__ /n,) Y
= B uB) (emd,m), Vs V”(x*u B) (o=d, o m)
"be some rpal-valued fgnctlons whxch satis the r@latlon ; : '
2 o A :
LIZ."?x“ Lol ( T gﬁ) j)\{b.— , (1)

Then u ,...,um &lso verif z the relation :

ova[‘—? T Ju% (“—’*ﬁ -0 ~ (2)
The result may be obtained combining the statements given
by D.Lovelock and H. Rund [4] and by A.Trautman [Z](see also [3] )
and assuming moreover that the functions ?" * and \/*
depend on the partial dorlvatlves u? too( the proof remé&ins the
same) . ' ‘

The theorem is very useful for mechanics, pefmitting a
relatively easy deduction of the main conservation laws.
Usually, one considers that one single function among g )fm
ﬂ e q is different from zero, choses it and Vl,..;, Ve
So that the condition (1) be verified and writes the correspon-
dlngconsprthlon law (2). Then one makes another choice, etec.,
The question that naturally arises is whether the possibilities
of the theorem have thus been exhausted.
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Proposition. In order to obtein a1l the conservation laws
which can be derived using the previous theorem, it 1s suiilclent
to assume that one single function among §'f SE £ 5 "L SrARe "L
is different from zer. If the non-vanishing function is BF (fixed K),
then every conservation law given by the genaral form of the condi-

‘blon D) can Kbe obtained from the following §4 : 4 £l \/,,M ; :
o ; it VL3 S %“) (4#K) (x)
Tk v + 2 (7%= wi3) -« }'+k) &)

(no sum over e it the non—vanxshlng fu_nctlon is ”l
(fixed Y ), then every conservation law given by the genezal situ-
atlon can be obtained from the following "hr 4 S \/m

a0 | | )
V‘*“‘L;f‘”br: ,(_ x§f> . (,_7_)

Proof. As in the statement, the ind:.cps K and ¥~ will be excluded

from the summation convention and the index j will except the value K
: First, we must verify that the functions chesen through ‘the

relations (3) - (5) and (6) - (7) , respectively, belong to the

announced class, i.e. they satlsfy the condii: on (1). For the first
choice, we have @

Lz OL xa’.? i\/
L?Ix'" 9x*§‘ ui e axf"

‘L." 9X" = Kal.x" alx J,x 9
4ve 4o [ak W E K
5 olx* T Ik au ) [L;‘Y ( —“ e ):I

W )+v°-]—§“§;% w2 ,s“)f.
:)xK§ _7 o‘:il'; otlx*(__"—‘u“;) |

S ol xaL sl =ds ) «
; Axk i axk ouf i dxt alx"( 8 )
- ok = Tl ) —-pusl] =0
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‘For the functlons given by (6) and (7) , we fo&low the same way:

Bl 2 ’aL__'g e ol il dal
_'au*’ 4 +2u, A,)(Ld axt — b ol +’3ur dxi F

+——E[L§'+——;5( —up ;ﬁ +VJ J—(gujf‘/’zr)
S iy -2 L2 )= [L], =0

uw
n
Now, we have. to check that the functions §4 b \/44 - V4~
Jead to the same conservation law as the functions ¥ ,---,§ ! ,.-.,41 .
vi .., V™ in the right-hand side of the relations (3) - (5).

We procped as iollows : in the general form _
(L? un?"*-V) "L("a—;&“ V) =0
dxk ¥ =
0f the conservatlon laws based on ?K e AV >
we replace these functions by the values %’4 S \/4 e V,,M'
given by (3) - (5); it results ;Just the relation (2). A similar

calculation for the functions "14 5 \/4'1,‘-_,) \/M' in (6) and (7)
completes the proof.

The proposition shows that, instead of studying the equation

(1) in its general form, it is "‘suffiéient to consider that the
functions §¥7, -.,3", 4", ---, 4" vanish, except one of them,
. chosen so that the/problem becoms as ‘simple @s possible.

Let us supposé,i“or example,that we are concerned with the mo-
fion of ideal fluids and use the Eulerian description. It can be
shown (see [4] , [5] ) that the equations of motion follow from
the variatlonal principle : ;

5“5*45 B aanLt 0

, t,
where .
QQ il op ) 2.) :
L f(W+'9t 7t Uy .
and D C:IR3 is an arbitrary domain. We have used the representation
- fa4> . 2k G
S = Qx‘, * o (¢=4,2,3)

W is fhe speciflc intprnal energy, S _is the entropy, U is the po-

tential of the exterior forces (with changed sign), < is one of

the Lagrangian goordinates and ¢, a 3 are multipliers (see [5].).
The independent variables are Xx,, Xg ) X3 ,-L—

and the dependent variables are ¢,¢, S5, 7 , %, B,
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1f we replace L in the condition (1) by the expression (8),
we remark that we obtain the most simple equation when all the
functions and o vanish, except 7 (corresponding to ¢).In or-
der to avoid any misunderstanding ,the function will be denoted
by tq¢.. We arrive at the relation :

: o |

e | Lo
b_t XY i : d A
where D is substantial derivative. i |

. D _ ,
Now, the functions vt are Vl, V2, VB V‘t‘ 6corresponding to the
i , . 3
independent veriables) &and the conservation law following from (9)
mey be written in the form : : '

Lt
L (g +VE e == (gndor Vi), da,
_ Bigh o M s
7n,_’ denoting the extarior normal to the boundary of the dom2in D).
We shall show how the classical theorems of ideal o
mechanics can be deduced,starting from (9)_ and (1o) . ' ‘
Having in view the values of the functions §‘) Tk ;"‘) 41",...
,‘.),,l”"’)-\/‘,__,) V™ which usually lead to these theorems (i.e'. '
paving the condition (9) sutomatically fulfiled), &ccording to the
proposition), the relations (6), (7) and (lo) yield us the
following results : : :

The energy theorsm is obt'ained' from :
¢
M =0 _
A
Vi =V, +pra +pu (W + Uf%ﬁ?j’)d,
4 =00 '
Ve :\/15 +p (\X/+U+—24;Ar)d, .

dVi

where Vl,'Vz ., V'3, Vt are solutions for g = %:‘-_—9 %tl—)—a,
(o is en arbitrary constent) and has the form °
D gwrUrdB9de = (o Wdu—] pER
The momentum theorem follows from &
9 _
hld =0 . e
G Sl e

o=
1
e
l
=¥
&



o
with 4 ”LVt o

| dxb f’?xb' . (a, are arbi#rary constants) and has
the form : —y A e
t5 SwwLx —-S gJFaLx -—S P/naLd ;
. e D(t) 2bl) |
Putting ( L x X )4 instead of a; (i=1, 2, 3), we get the
angular momentum theorem :
: _:P_ }?xSJA_;—aLX :5 XX9FCL'X: —-S JCX{J/YLJ,A
Dt . D) ) , »
while for a,t instead of aj we obtain the center-of-mass theorem
: : ) i
D pR-wt)dx -- ptFde+{ ptRds.
Dt Dit) D) -
From : : : oo
. - i
"l‘ = a
g =0
e ., o
it follows the conservatlbnrof—mass theorem
D dx =
D Sblt) §
For
"14) 0
==90(M10L
o
e .
. 2 : . ‘{
we are led to the conserthlon law —B—_E SJO( X =O,
Flnalﬁ?, from »  >“9
ie=0 |
4
—-S>§3a,

we obtaln the entropy conaervatlon law 1n the form
D

- D&JSLS(iX =

In each case, one can verify directly that the chOQen funcs
tions are solutions oi the equatlon (e 5
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