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ON AMPLE DIVISORS : II

Lucian Bidescu

This paper is a ccnt;inuatidn of our previous one [’ll, from which we
shall borrow in general the terminology and _nofations. Using the same kind

of techniques as in [’l] Wwe prove some other results.

¢1. = 1et k be an algebraically closed field amd Y & minimal model of
rational surfaces over k. First of all we shall determine all smooth projec-
tive threefolds X containing Y as an ample divisor. By e: well known theorem
: i o . o ol
of Nagata, Y is 1§omorph1c to one of the following gurfacess P , P XP =
=~F°, el P(GP4@0P4(-8)), where el 2 and where P(E) denotes the projec—.
" tive bundle associated to any locally free sheaf E,
4 o
The problem we want to study is well known for Y = P (and in this case
' e disats e
- X is isomorphic to P ), while the case Y = P x P is treated in [1], theorem
5, Thus we may assume Y = Fe with e> 2. Denote by p:Y = Fe————-————> I;1 the

canonical projection. Then a base for Pic(Y) is the following: OY(’J,) =

. ‘ o '
= OP(O@O(-—e)()'(i) and p 0(1), where 0 = qPi and 0(1) = OPi(i)'

Theorem 1, Assume that char(k) = o and that Y = Fe" ez in contained

in the smooth projective threefold X as an ample: divisor. Then there exists

: an exact sequence of OP' -modules of the form"

V7

S "p_r—*""h‘? - () 0(0)DO(0) — > F = 0(s)D 0(ae)— o,

where a>>o, b>o, ¢c>0 are positive integers, such that X is isomorphic 1o

P(E) and Y P(F) s contained in X via gurjection ¢,



w; Since OY('i)~ and p'0(1) form 8 'bas.is for Pic(Y), there are two
_ir.;tegers" & and B such that O'-(Y)@O = 0 (F)@p*o(d), and since Y is
an ‘ample' divisor on X, P} o and o > P e (aee for instance [3] page 380, :
2.18). By proposition 1 in [1] the eanom.cal map & Plc(x)-—-———s» Pic(Y)
is in;jec’c'ive and Coker(€) is tgrsian—free. (Here one uses essentlally the
.hypothesis abgut.chmv(k)i) 'Recalling that Pic(Y) is a frge group of rank. . b
t#o, we have only oné of the followi;zg cases:

1) Pic(X) is a free group of rank one, Choose then an ample generator

L of Pic(X) and write O (Y) = Qr, Wy = L®t and L_690Y = OY(a")Q go(8),
where r,t,b”, Sie ZZ, and 'CU’X is the canonical sheaf of X. Since L is
ample,lz"‘ > o and .S> f-ﬂe. The adjunction formﬁlél immediately yields
(r+t)..g = =ei2 . and (r+t)-a" = -2,
If B' =1 .then r+t = =2 el S 1+—-§-—, contradicting the -inequa-
~ lities g?b’“ e and ep2., If ) = 2 then r+t = -1 and thus Sn e+2, con-

tradicting again the inequalities g>xie and 37/2.

Pherefore case 1) is impossible.

.2) £ is an isomofphiam. Then there are L;M é'Pig(X) such that L®OY
Zpo(1) and M@OY = OY(’i).. Since OX(‘()®O <0 (ﬁ)@p*o(s), with s>te> o,
the injectivity of &  yields 0 (Y)"’ 68@ wzm. |

Let 6'6)-(){,0.‘ (Y)) = (L @M ) be such that div, (6) ~ Y, i.6. a global

' Aequation for Y. The exact sequence (u,mé 7 Ji b | :
@u |

(1) o—>L &0 ((m-i)‘f)——~——+L 80 (an)—~—>0 (mt)@p 0(ms+u)——-——-—>o
(where the first map is multiplication by 6 ) yields the exact sequence

(2) n’"(f’“@ox((rg-i)z;)) —> & (@0, (1) ),mz.ni_(eY(mt)@ ol

Sim?e Y is ample on X and X is a smooth projective threefold we have



-3 -

4 ®u . '
(3) " (L ®OX(MY)) « o for every m<<o and u = 0,1.
I claim that
i »% 3 0
(4) =B (OY(mt)(g)p o(ms+u)) = o for every mE Z and 'u = 0,1,
Proof of g&}. Congider the leray gpectral sequence
4 o0 A 14
s . ' 0F olmar)@Ep,0, () == & Yo, (mt) @5 0(mssa)).
If my o, Rap*OY(mt) = o for every j»> o and hence this spectral sequence
d'egeherates, In pa.rticular-
it o
(0 (nt)Dp G(ms+u)) = H (P G(ms+u)®p 0 (mt)) =
(P 0(ms+u)®S (0@0(--@))) = @ H (P ,0(ms+u—1e)),
th ;
where S (G) stands for the i symmetric power of the O ,,—module G. But for
o ug {1 and o\< i mt we have ms+u-ie> o (recall that g >te> o), and therefore
(4) follows in case mY o from the explicit computation of the cohomology of P .
Assume now m< O, Consider the exact sequence
150
o —>F& —>H —ﬂ*—~—§~E

2 2 2

4
For proving (4) in this case it will be sufflclent to show that E2 o

= E;’i = 0., We have
450 1,1 ’ - :
BE = B (P ,0(ms+u)&p, 0 (nt)) = o since for m<o, p.O (mt) = 0 3
2 Y ‘ , * Y
3l 1
Eg’ wPES(R ,Q(msa—u)@Rip 0 (mt))

The relative duality for the mo“ph*sm p (see [4:{) together with the
equality (/J’Y/P'l = 0(-—2)@? 0(-e) give
R)jp 0 (mt) %77(2) (p [0 (-—m*‘-—z)@p 0(—9)] 0 4)
- %mr{) (0(-0)® 5, 0y (-m6-2),0p1)-
Sihce mnd o and t> 0, -—mt-—2>-»1 1f ot A e tma diand m o= ~1)

: 1 :
then p*OY(-mt-—Z) = p*Oy(—i) = 0, or else R‘p}O(mt) = 0, and (4) is proved

if -mt-2 = 4,
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-mt2

Assume therefore -mt-2) o, Then p O (—mt-—2) = (O@O(-—e)) =
-mt-2, 1 N-ﬂés Zyg
a7 S.-Bo 0(-ie), and therefore R p O (mt) Oﬁ% (0(-e—ie) OP'l) 4
= ygﬁz O((i+’1)e). Thus
t—o 4 1 -tz .
E2 Hi(es, é—{% O(ms+us+(i+l)e)) = o,

because for m< o, -mt-2>0 and o\<u.:§’l we have ms+u+(1+’1)e ms+’1+(-mt-’l)e =
= m(s-te) + (A-e)<o.

Thus (4) is proved in all cases.

: i i on

Now from (2), (2) a,nd__(4) we get by induction on m that H (L -®OX(mY)) =
= o for every mE€ Z and u = o,1, In particular, (1) induces the exact
sequence

du Bu :
G v — [0 e )= (e )
$ ¢ .
—_— F(Y,OY(mt)®p¥O(ms+u))———w—=/-— )

for every m € Z and u = 0,1,

Then (54 o) shows that the restriction map [ (L) —=T (Y,p"0(1)) is

9 : - : :

an isomorphism (indeed, we have r(L®0X(mY)) = o for m&o and one applies

an easy induction on :g<o using (51,111) in order to get that T(L@OX(-Y)) = 0).

Since ]p"o(i)I = Pi, there are two distinct divisors A\, A é,ILl such that
ANANY =P ., Since Y is ample on X, dim(AﬂA’)éo,' ar}d' in fact we cannot
have L\ﬂA'?é 925 because otherwise

'3 = codim (A/)A')é codim (A) + codim (A) = 2,

Therefore AﬂA ¢ In particular, the linear systum ILI has no
@gse points and hence the correspondlng ratlo_rxgl map qQ = ?L: -——-->]LI = p‘i
is a suvjective' mer,_phisui. This implies that i.'orv every L'€ Pic(X), (L'Z.L_') =
= o (see [:5] for the intersection theory_. of line bundles.). Bu£ ‘the'eq'ua-

li_ties




e

A (p"o(i) 0 (1)) > (L.M;Y) e s(L'a.M) + t(L.M ) - t(L M'z)
show that t = 1 and (L.M° ) S Therefore o (Y) = i ‘@ Wlth s>e. Let
Ae|i) Ye an arbitrary member and set T = O (Y)@OAn M®O0,, Then T is an
.2)

ple invertible OA-—module, ('1"2) = (LM = 4, and moreover

(e dinl(A,T)> 3

?roof' of (6): The exact sg@uence (50’1)I'toget1.16r wi_tﬁ the fact that
t =1 give:
dimr(L@S®M) = i -+ dimI'(Y,oY_(i)®p*e(é)) '_’" af K aimr(1>1=,o(s)eao(s_le)) 3
=1+ (s{i) +i(a=esl )= 28 -~ € + 3. |
The exact _sequénce -(51,-1) gives ’
dim{ (L (5*1)&{) dim[(L) + dimr(Y,OY(’l.')@'p*O(s«A))~== 2l
+ dimr(P ,’o(s+1)$ 0(s4l-e)) = 2 + (B8+42) + (8+2-e) = 28 =5 4+ 6.
Finaiiy, the exact sequance
St e B (3+i)®51~—~———>'r — -
(recall that A€ L] and T = HBOp) yields thé exact sequence
o-———>7'(L ®M)—-—————> (L (B‘”i)@ﬁ)—————?r('x‘),

ars‘l.vthere;fore aiml(7) > dim[(L ®(s+1)

®M) dimr(L @M) = (28-e46) -
- (25;e+3) = 3, and (6) is proved.
Now a theorem of Kobayashi and Ochiai (see FG], or [1], theor;em- 3) and
the facts thag({s ample, (T‘Z)An ’lband_ dim/ (A,T7)>>3 imply that N\ p?
.a-nd 7 OPZ(’i). This happeﬁs for every A é_lIL\. Hence QX(Y) induces the
tz:;uto'logical invertible sheaf on every A"a’ P2. In these circumstances
- Hironaka has proved that E = Gy 0 (Y) is a locally free 0P4-module of rank

3 that X & P(E) and that O (1) f;’ ox(y.) (see [4], theoren 4. 8) Then

P(E)®
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the exact sequence (5 1) (w1th t 1) yields the exact sequence of cohomology

X pi
By a theorem of Grothendxeck E is of the form E = O(a)ﬁo(b)@()(c), where

_,o-——-’?q Ol a0 i >E . > P,,,,[O (’U@P Q(SJ = 0(5)@0(5-9)——?R1q* O =0

: o : : 1
a,b,c & Z . Since Y is mple on X, E_m quX(Y) is.ax_nple on P, and t’herefore

a> oy’ ‘b) o.and ¢ > 0. _T‘aking'degreés we also get a+bic = 28-e, Q.E.Ds :

Corollary. Assume "that the smooth projective threefold X over the algebrai-

cally closed field k of char.'zéro contains a minimal model of rational surfaces.

‘gs an amgle divisor. Then X is a ratiQnal»threefold.

. The coréllaryiis a3 consequence of.theorem‘of Nagata q@oted above, theorem
.‘1 above .and.[{l:[, ”thf-aoresz; 5 and propositiog 2o

Yewarli, This corollary is no lonéer true if oné_(‘;rops the assumption
about minimality of I, mﬂ. is eaéily seen by tzking for X any smooth cubic
hypersurface in P4, which is known to be not ratlonal (see [2]) On the other
hand,a generic byperplane 'sac;tion of X is a sm_oothrcub:}c 'surface in P3, which
‘ i§ a rational surface, but mot a mimimaa fmoo[ag.

A completely similar reasoning as that fronm theoremr’l proves the following:

ﬁ?heareg?, Assume that Y = P(Opd(d.i)@.s..'@ﬁ?ddn,))’-W;th d/};?' d2>/"'.‘>/dn>°

and n>3, is an ample divisor in the smooth projective (h+i)’-dimensibnal variety

X over the algebraically cleoged field k of arbitrary char, Then there are:

n+d poaitive integers a > Q""’-ami? 0, 8 € Z guch that a+dn‘,>o and the

exact sequ@m}e of 0P1-»modules

9

o»——-*—>-OP4 — > E = O(ai)@...@()(a 1)w———>F = 0(s+d )G}...@O(S+d )30,

guch that X is isomorphic to P(E) and Y & P(F) is embedded in X via surjection @ .

Remarks. = 1) Because theorem 2 holds in arbitrary char,, oné can ask

whether theorem:i is valid in arbitrary char. as well, The trouble iliea 'in the
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fact that if char(k) = p>o, one knows only that the restrictién map

E, Pic(X)-——-—-——«—> Pic(Y) is injective and Coker(&) has no e-torsion with

e prime to p. (In theorem 2 one apply the well known Lefschetz s theorem

s agd @edﬁce that 5‘ is an isomorphism wi}:hout the bréstriction about char(k).)
Proﬁab_ly one can prove that Coker(s) has no p-torsion by using crystaline
’cohomology. Another way (see [1]) would be to verify tn@-x has a lifting

" o char. zero and then apply lemma 1 in [1]. 'But in gener‘a.l this is not so
easy. It would be suff;ciént to show that Hz(X,TX) = o, 'where_‘l‘x is thevtan—e
| gent bundle of X. In [1] we verif‘ied‘ ti:zis condition Af ¥ iaEt o P'l)( P1,
and using the'same methqd one can also.verify it for Y‘Q 32 (inioth.er words,_
theorem 1 is vélid in arbitx"ary char, if Y = _Fz).

2) In the situation of the§rems A or 2 one.can easily see that the di;
visor Y is in fact very ample on X and that the associated embeddlng .
SDY:XC"__—) ]Y] = P has the property that SDY(X) is a ratlonal gcrolll S HiSel
5 (b) is a line for every closed point bEPJ1 (ya’herg qz)(-—--———'———»»P'1 is the

canonical projection)i Moreover deg ?Y(X) = codimP(Y) G

3) Exact sequelances as in theorems 1 or 2 do exist (see [ij). In particu-
lar, theorem 2 is applicable to Y ==:P1x Ptl with t22; one gets that for o
Ty 522 there exists an exact‘ .sequence of the form | ‘

i

(7)'. O30 S et o(’l)@o(s«-'l)a;z{—-—-—r 0(s)DH = F,_____;_'_}o,

where H =&(s)€9...690(9)4, ad @ = 30 691d , with 3’):0('1)690(3-‘1)-——3'0(&)
: X times- :

. » : - 8—1 ; !
the su:r;]ectlon given by (F (u,v) =X U+ XV (xo and x, being homogeneous
_ coordinates on P ). In other words, there is a smooth projective (t+2)-dimen-

sional variety X (namely X = P(E) with E from the exact sequence (7)) suppor-

ting Plx P_t,- t3»2, as an ample divisor. This shows that theorem 2 in [ﬂ:{



fails for Y = PSX 1"‘t with 8 = 1 and t>2, or with s>2 and t = 1, However,
theorem 4 bslow shovws in particular that one can find the same conél_usion

as in theorem 2 in [’1:{ if one assumes moreover that the normal bundle NY X
; ! 9

(Y = Pi,x Pt, t>2) is of the form 0(a,b),where either a = b =1, or else

ayl and b2 2.

éz, In this section k w:.ll be alszo an algebralcally ClOEcd field. Let
YCP be a ‘smooth 'subvariety of P of dimension d7/2hsatlsfy.1ng the follo-
wing two propefties:
; : ; m
a) Y is arithmetically Cohen-Macaulay in P . -
b) Pic(y) = Z-0 (1) , where 0 (1) =0 wA1)®o. .
: Y : Y B B
Jet £ ,..,f be a system of homogeneous generators. of the ideal
wWhoke k['l‘ ,...,T ] of Y in P . For every s> o let us denoto by
(=) (m+s
Y C_---——%—P 5 with m(s) = -1 the composition of the s—fold
Veronese embedding P le P' (s) with the inclusion XC.P , and by C(Y, gje

Pm.(:s)+i-'

the projective cons over vB(Y).

m i . ,
Theorem 3., let YC P be a smooth subvariety of dimension 422 of Pm

sa‘usfyx ng properties a) and b) sbove, If 4 = 2 one assumes mofeover that

. char(k) o, Assume fu:tth@mmre that Y is contained in the normal progectlve

B

variety X as an emple Cm'*twr divisor, lLet. NY x = OY(S) be. the normal sheaf

of Y in X (necessarily s> o) and sssume morsover that

c) é}, xp?x{deg(f.) + '1}.

In ’cbeap conditlons X is 180':101'9‘\.10 to the cone C(Y s) and Y is com:alnrd

m(s)+1

in X as the 3nmrsection of C(Y,;s) with the hyperplane at infinity of P
Remarks, 1) Theorem 3 extends theorem 1 in [4].

‘ '2) ‘Condition c_) in theorem 3} is in general _t‘hev best possible, Indeed,




take for Y any smooth hypersurface in P (m >4) of degree az?2 (resp. any gene-

3
ric surface in P of degree a%4). Then conditions a) and b) are in this case

fulfilled (namely, condition_b) holds-by Lefschetz's theorem if m>4 and by

 Noether's theorenm if m = 3). In this situation condition c) reads " s>a ",

For s ﬁ»a there are at least two normal projective v:amj.ezi:i,,ezas'X,'1 and X2 BUpPp O~

ting Y as an ample Cartier divisor and with normal bundles both isomorphic té

- m ¥ : ¢
OY(a), namely: X, = P anmd X, = ¢(Y,2). And since X, is smooth while X, is

4

not, these two varieties cannot be igomorphic,

Proof of themrem_j; We shall analyze carefully the proof of theorem i'inb

[11. According to that proof, if U is the smooth‘locus of X, then there is an
LEPic(U) such that L®o ~ 0 ('1); then O (Y)/U/" 08 e J1U e—>X is the

canonical incluslon, for every aéZZZ put F( =) = 3 (fp ). Then F(as)’! o (aY)

 jor every a&Z . Let GTEI—(X F( )) = [(x,0 (Y)) be a global equatlon for Y.

Exactly as in [1] one can sSee that for every aCZ there is the exact sequence

@ S’)M/’u By Raaiey
Set § = GI—) [(x,F & )) - 69 r'(u,r ) Then S is a graded k-algebra whose -
homogeneous part of degree & is S = 62 F( )),so that 6 €S o+ Then (8)
s na o .
S/6 & @ [(x,0,(2)) by.2) y['r sy T 7/1(1{)

Denoting by t, = P mod I(Y), let ¢! esi be such that t'imodﬁs = ti. Then

'té,...,té satisfy the equations:

(9) £ (t pesest) ) = o for every j= 4l 5500010
Indeed, if f (t ,..,t ) f o then f (tl,...,t ) would be (by condltlon c))

2 homogeneous element of § of degree <:’5, and hence f (t’,...,t ) Qé 6.5 because

the degree of 6 is s, But'this is'absurd'because



Gk |

f (t ’.o.,t )mOﬁ. ssﬂf(t ,...’t )ﬂ’o’
Set §' = s( 2) €B B F(as)) 69 50X, 0 (a.Y)) Since T 1% ample on K
v » ; : : 8
X < Proj(s'). Moreover, 6 €5y =8 end s'/6 5" = S" = (k['ro,..'.,'i'mj/I(Y))( X
For. every' (io,...,im) such that ih)o and i°+...4im = 8 denote by
: -

T , - St : © ;
G = ot o...t'tm. Then © s omed 68 =t oo ‘.m'e §", Because
10,00-’1 ¥ _0 : ‘m i y.oo,lm (o] m /1

S" is generated by the monomrials t ...t (wh:ch are ho'uogt,neous elements
of d_egrea one in S"), then S' is generated by 6 and {61 ,”...’17}, where
(i ,...,1 ) runs over the ‘set of multi—lndexex wlth the above properties.
Then po-nstruct the following hom,emorphxlsm of graded k-algebras

Yo S"[T:(M—* (with T an indeterminate F)vér Susy

by ’\}/(T):G and '\)V(t vt

. Since {6 ? satisfy
m ’ ’ooo’j

iO,.",l
(by their definition) the well known Veronese equations and since t;,.g.,té

satisfy equations (g), the definition of ’\[/ is correct. Now is is obvious that

’\// is an isomorphism, whence the conclusion, Q.EeDe -

‘ m : L
Corollary., Let YCF be’a subvariety as in theorem 3, and assume that Y

is an effective Cartier divisor on the normal cemplete variety X such that

HY K’;; GY(S), with 8 as in condition c) of thacrém 3.'Then'there is a morphisn
9

£1X ————>G(¥,s) ‘such that £(Y) is the 1ntersection of C(Y,w) with the hy‘upr

- plane at infinity of Pm(s)‘A

and £ is an isomorphism in a neighbourhood of Y.
The pr’oof of this corollary is completely analogous to the proof of corol-

lary 1 of theorem 4 in [’11.

‘Before passing to the last theorem let me remind a notation from [1[: XS’Z
3 a,
t+b : :
denotes th& cone in PN, N = (s+a)( & ), over i& b(Ii‘s><}?'t), where i b:PSXPt
T 9 & ¢ ﬂ, ’

; -1 : ‘ : . :
e Pl 4y the}Segre—Veronese embedding given by forms of bidegree (a,b).
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[ IR

-

: | ; iy :
Theorem 4. a) Assume that Y = P X P , t>2, is an ample Cartier divisor

>on the nermal pr'ojective variety X. If the normal sheaf NY x i8 isomorphic to
; 3 9 :

0(a,b) (necessarily a>o and b> o) and.‘- if one has one of the following situa-
tions

i) a=b=41 , or

ii) a>i and b>2,

45t
asb

then X is isomorphic to the cone X

b) Assume that ¥ = P XP is an ample Cartier divisor on the normal pro=

jective variety X over k, with char(k) = o. If HY X % 0(a,b) with a ¢ b, a>2.
. : =y, : :
i . .

and b> 2, then X is isomorphic to the cone xa’b.
b/

Proof, According to the pr'oof of theorem 4 in [1] let.U-be the émodth lo-
cus of X. In case a) Lefschetz-'s theorem implies that the restriction map
€ :Pic(U)——— Pic(Y) is' an isomorphism.

In case b) Lefachetz's fheqry implies that either & is'gn igomorphism,
or that Pic(U) ¥ &£ and Coker(€) is t'orsion-fre‘e. We show that in case b)
this last possibil‘ity does not occur, Indeed, if I were an ample ‘generator
of Pic(U), put L®OY‘= O(d,lé), where o« >o and /5> 0. Moreover, since Coker(£)

-

is torsiqn—fra.e, & and /3 . are relatively prime each other, Write
'ox(Y)/U = 1'.@1‘, r>o, éﬁd_ W F ﬁ&d, 1€ Z . |
The ’adjunctiop fornula %@(ox(y)/U)GE)oi’; arY = 0(—2,-é) yields
(r+d) o= -2, (v+d)-p = -2, '
which implie§ (e'¢ ”P ; recalling that o and IB are relatively pri>me
.positive intege:'rs we get ‘<_>( = F z '1.. T,h.;i-s implies 'a =olr =P~1ﬁ'a b, a

contradiction.

Therefore in both cases the map € is an iscmorphism. In other words,



dons

there are L, LZEPj.c(U) guch that L1® 0, 0(1,0) and L, ®0 = 0(9,1)‘._
’ (msn)

F;:vrvevery _‘integers m,n set P = j;(lgm@)lin), wljere jsUe—>X is
thé cana%zical' inclusion, Then eiactly as in ~the proof (;f theorem 1 in [1] one
- proves: :

o) F,(,m’n) is .coherem;» and dltept‘hoi ((F(m,n)»)x)>2 for every clo‘sed point .‘

52
B C X,

p)
J") For every coﬁerelnt Ox—module G such that d,ept.h'g (Gx)>2, for every
: _ 5 :
: , 1 :
closed point x€X, E (G@OX(mY)) = o. for every m<<o,

S o}g(mx) for every integer m,

S) "For every m,nEZ Ithere is the exact sequance

(myn)

(lo. ) o ——-——7- (m-»a,n-‘o)___—g;_r F

, (a b))

—_— G(m n) ——> o,

where 6 € F(x F /-(X,OX(Y)) is such that divx(s’) o

Spon o j one gets the exacy sequence

(11 'n) Ap®an)y o Ay o om,n)).

Then the exact ‘sequences (41 ) and (11 ) with m>o0, together

1-ma,-ab -ma,l-mb

with 3”) and the fact that in our assumptions (of cases a) 'or b))
H (0(l~.aa,«mb)) H (()(»ma,l-mb)) = o0, imply {(by induction on mg o) that

'H (F(-ﬂL 0)) H (F(Oyi))

= 0. In particular, we have proved that the restric-
tion maps F(F(i"’)) ———> [(0(1,0)) and r(F(Q’i)) -—'-——9-'_‘517‘(0(0,1))»&1'@

both surject‘ive. Tharefors, i To‘&nri Ti (resp. U ,...,U ) are homogeneous'

: ! t : il
coordinates on P~ (resp. on P ), there exist o, € I-(W( O)) and =

- (0,1) , R i :
PO)"‘ )P{G/—(F o _such that %z /Y = T, and /BJ‘/Y = U;j’ i= 0,4 and
J = O d.,aoe’t ‘ )
' ®m . @ny
Now b [ (X,F (m, n)) &5 F(U,Lim®L2n) has a natural structure

~ (mn)ezxz . Imm)eZxz
of a two-fold graded l_:—algabra."l‘herefore it makes genge- to consider the
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elements &, , = & . : = dbodzlﬁ Ffél—(F(a’b)) Nr(o (1)),

i,J io"fi;')o’“"jt :
where ih7/o, :)e>/o, io+i1 = a and j°+...+at = b, Thgn by construction the

elements iai :j} gatisfy the well known Segre-Veronese equations,
: 9

Now the exact sequence (@1, i ) together with X’) and the fact that

(ma, mb))

H (O(m&,mb)) = o for every méZ_ imply that H (F = o for every

m€EZ . In pa.rticula.r, for every m7> 0 one gets the exact sequence

o > [0, ((a-4)1)) ——> (0, (a7)) ———[(0(ma,)) ——>c.
Thus, denoting by S = 65 r(O (mY)) end by S' = G? [(0(ma,mb)) we gets
X = Proj(s) (Y is an ample d1v1sor on X), 6 € S and S/GS = S', Since we have
and that 3 od te S -
also that 'ai,jés'l and that {ai,j mod & S} generé e S' as @ graded k-algebra,

6 and {a % generate S as a graded k-algebra.
g 1sJ - :

Now construct the homomorphism of graded k—algeﬁras '\// :S'[T]———-——-+ Sh

with T an indeterminate over S', by settin (’l‘zo TLI'UJ:O Ut}ﬁ) a and

: TP _g"f/~°,1 o Sl

—\i/(T) =6 . Since ai 5 satisfy the Segre-Veronese equations, ‘the 'definition
: =)

of '\// is correct., The fact that AV is an isomorphism is now obvious, comple-

ting the proof of theorem 4. Q.E.De
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