INSTITUTUL DE MATEMATICA PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250-3638

A C*-ALGEBRA APPROACH TO THE COWEN-DOUGLAS
THEORY

by

C.APOSTOL and M.MARTIN
PREPRINT SERIES IN MATHEMATICS
No.44/1980

Aud 16988

A C*-ALGEBRA APPROACH TO THE COWEN-DOUGLAS THEORY

by

C.APOSTOL*) and M.MARTIN*)

August 1980

^{*)} The National Institute for Scientific and Technical Creation, Department of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania.

A C*-ALGEBRA APPROACH TO THE COWEN-DOUGLAS THEORY

C.Apostol and M.Martin

Let \mathcal{H} be a separable infinite-dimensional Hilbert space over the complex field C and let $L(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} .

For any open connected subset Ω of C and for any positive integer n, let $\mathcal{B}_n^-(\Omega)$ denote the operators S in $L(\mathcal{H})$ which satisfy:

- (i) $(\omega S)(H) = H$, $\omega \in \Omega$
- (ii) \vee ker $(\omega S) = H$ $\omega \in \Omega$

(iii) dim ker $(\omega - S) = n$, $\omega \in \Omega$.

Let S be a subset in L(H) containing the identity operator I and an operator $\mathrm{TeB}_{\mathbf{n}}(\Omega)$ and let $\phi:S\to L(H)$ be a map such that $\phi(I)=I$ and $\phi(T)\in\mathcal{B}_{\mathbf{n}}(\Omega)$.

M.J.Cowen and R.G.Douglas [2] initiated a systematic study of the unitary orbit associated with an element of \mathcal{B}_n (Ω) by means of complex Hermitian geometry techniques. To be more specific, they proved that $\varphi(T)$ is unitarily equivalent with T if and only if $\varphi(T)$ |ker $(\omega-\varphi(T))^{n+1}$ is unitarily equivalent with T |ker $(\omega-T)^{n+1}$ for any $\omega \in \Omega$ (the corresponding unitary operators depend on ω).

Suppose S is included in {T}', the commutant of T and $\varphi(S)\subset\{(T)\}'$; in Theorem C below we show that φ is the restriction to S of an inner automorphism in L(H) if and only if $\varphi(X)|\ker(\omega-\varphi(T))^{n+1}$ is unitarily equivalent with $X|\ker(\omega-T)^{n+1}$ for any $X \in S$, $\omega \in \Omega$ (the corresponding unitary operators depend on ω only). If $S=\{T,I\}$ we recapture the result of Cowen and Douglas.

In fact we shall give a local description of the restrictions to S of inner automorphisms in L(H), without the assumption $SC\{T\}$ (see Theorem B).

The above results are consequences of our main Theorem A on

some C^{∞} -fields of finite-dimensional C^* -algebras.

Throughout the paper S will denote a subset in L(H) containing I and $T \in \mathcal{B}_n$ (Ω), where Ω is an open subset in C.

For any $\omega\epsilon\Omega$, the operators $R_{_{\textstyle\omega}}$, $P_{_{\textstyle\omega}}$ will be defined by the equations:

$$R_{\omega} = (\omega - T) * [(\omega - T) (\omega - T) *]^{-1}$$

$$P_{\omega} = I - R_{\omega} (\omega - T).$$

It is plain that P_{ω} is the orthogonal projection of H onto $\ker(\omega-T)$.

For each $\omega \epsilon \Omega$ and each non-negative integer k put

$$A_{\omega}^{k} = \{P_{\omega}R_{\omega}^{*p}Y^{*}XR_{\omega}^{q}P_{\omega}: 0 \le p, q \le k, X, Y \in S\}$$

$$B_{\omega}^{k} = P_{\omega} R_{\omega}^{*p} Y^{*x} R_{\omega}^{q} P_{\omega} : \max(p,q) = k+1, \min(p,q) \le k, X, Y \in S$$

and denote by \mathcal{C}^k_ω , \mathcal{D}^k_ω the C*-algebras generated in L(H) by A^k_ω , resp. $A^k_\omega \cup \mathcal{B}^k_\omega$.

The union $\bigcup_{k\geq 0} \mathcal{C}_{\omega}^k$ is obviously a C*-algebra which we shall denote by $\mathcal{C}_{\omega}^{\infty}$.

Let $C^{\infty}(\Omega, L(H))$ denote the *-algebra of all L(H)-valued infinitely differentiable functions defined in Ω , with the involution defined by the equation

$$A^*(\omega) = A(\omega)^*, \quad A \in C^{\infty}(\Omega, L(H))$$

and let $C^{\infty}(\Omega)$ denote all C-valued infinitely differentiable functions defined in Ω .

We shall denote by $\Gamma(\Omega,\mathcal{C}^k)$, (Ω,\mathcal{D}^k) , $\Gamma(\Omega,\mathcal{C}^\infty)$ the *-subalgebras in $C^\infty(\Omega,L(H))$ determined by the conditions:

$$\Gamma(\Omega, C^{k}) = \{A \in C^{\infty}(\Omega, L(H)) : A(\omega) \in C_{\omega}^{k}\}$$

$$\Gamma(\Omega, \mathcal{D}^{k}) = \{A \in \mathbb{C}^{\infty}(\Omega, L(H)) : A(\omega) \in \mathcal{D}_{\omega}^{k}\}$$

$$\Gamma\left(\Omega,C^{\infty}\right)=\left\{ \hat{\mathbf{A}}\hat{\boldsymbol{\varepsilon}}\,C^{\infty}\left(\Omega,L\left(\boldsymbol{H}\right)\right):\;\mathbf{A}\left(\boldsymbol{\omega}\right)\boldsymbol{\varepsilon}\,C_{\boldsymbol{\omega}}^{\infty}\right\} .$$

We have $P \in \Gamma(\Omega, C^{O})$, $R \in C^{\infty}(\Omega, L(H))$ where P and R are defined by the equations

$$P(\omega) = P_{\omega}$$
, $R(\omega) = R_{\omega}$.

Finally observe that the usual $\frac{\partial}{\partial \omega}$ and $\frac{\partial}{\partial \overline{\omega}}$ derivatives determine two linear maps in $C^{\infty}(\Omega, L(\mathcal{H}))$. We shall denote this maps by D resp. \overline{D} . It is plain that we have

$$(DA) * = \overline{D}A *$$
 $A \in \mathbb{C}^{\infty} (\Omega, L(H)).$

THEOREM A. There exist an open nonempty subset $\Omega \subset \Omega$ and $1 {\le} k {\le} n$ with the properties:

(i) $\Gamma(\Omega_0, C^k) = \Gamma(\Omega_0, C^\infty)$

(ii) if $\psi:\Gamma(\Omega_0,C^\infty)\to C^\infty(\Omega_0,L(H))$ is an algebraic homomorphism such that

$$\psi \left(\mathbb{P} \left(\mathbb{D}^p \overline{\mathbb{D}}^q \mathbb{A} \right) \mathbb{P} \right) = \psi \left(\mathbb{P} \right) \left(\mathbb{D}^p \overline{\mathbb{D}}^q \psi \left(\mathbb{A} \right) \right) \psi \left(\mathbb{P} \right), \quad 0 \leq p, q \leq 1, \quad \text{Aer} \left(\Omega_0, C^{k-1} \right)$$

then

$$\psi\left(\mathbb{P}\left(\mathbb{D}^{\mathbb{P}\overline{\mathbb{D}}^{\mathbf{q}}}\mathbb{A}\right)\mathbb{P}\right) = \psi\left(\mathbb{P}\right)\left(\mathbb{D}^{\mathbb{P}\overline{\mathbb{D}}^{\mathbf{q}}}\psi\left(\mathbb{A}\right)\right)\psi\left(\mathbb{P}\right), \quad 0 \leq p, q, \quad \mathbb{A} \in \Gamma\left(\Omega_{\mathbf{q}}, \mathcal{C}^{\infty}\right).$$

The proof of this theorem will be given after some preliminary lemmas.

1. LEMMA. For any ω in Ω we have:

(i)
$$(\omega - T)R_{\omega} = I$$
 and $P_{\omega}R_{\omega} = 0$

(ii)
$$\ker (\omega - T)^{k+1} = \bigvee_{j=0}^{k} R_{\omega}^{j} P_{\omega}(H)$$
 for each $0 \le k$

(iii)
$$H = \bigvee_{j \ge 0} R_{\omega}^{j} P_{\omega}(H)$$
.

PROOF. The relations (i) are obvious. Clearly, (ii) will easily follow if we prove that

$$\ker (\omega - T)^{k+1} = P_{\omega}(H) \oplus R_{\omega}(\ker (\omega - T)^{k}).$$

Since $(\omega-T)$ $(\ker(\omega-T)^{k+1})$ $\subset \ker(\omega-T)^k$ and $R_{\omega}(\omega-T)=I-P_{\omega}$ we have $\ker(\omega-T)^{k+1} \ominus P_{\omega}(\mathcal{H}) \subset R_{\omega}(\ker(\omega-T)^k)$ hence

$$\ker (\omega - T)^{k+1} \subset P_{\omega}(H) \oplus R_{\omega}(\ker (\omega - T)^{k})$$

and the reverse inclusion is obvious.

Using [1], Lemma 1.7 we know that we have

$$H = \bigvee_{\lambda \in \Omega} \ker (\lambda - T) = \bigvee_{k \ge 0} \ker (\omega - T)^{k}$$

thus (iii) becomes a consequence of (ii).

2. LEMMA. The following relations hold:

 $DR=-R^2$, $DR^*=R^*RP$ and DP=-RP.

The proof is obvious, therefore we omit it.

As easy corollary of Lemma 2 is the following

3. LEMMA. If PDF (Ω_0, C^k) CF (Ω_0, C^k) for some open nonempty subset $\Omega \subset \Omega$ and $1 \leq k$, then

$$\Gamma(\Omega_{o}, C^{k}) = \Gamma(\Omega_{o}, C^{\infty})$$
.

4. LEMMA.Let $V,W \in C^{\infty}(\Omega,L(H))$ be given such that VWV=V. Then we have:

DV=V(DF) + (DE)V-V(DW)V $\overline{D}V=V(\overline{D}F) + (\overline{D}E)V-V(\overline{D}W)V$

where F=WV, E=VW.

PROOF. Since VF=EV=V it follows that

V (DF) + (DE) V=V (DW) V+VW (DV) + (DE) V= =V (DW) V+E (DV) + (DE) V=V (DW) V+D (EV) =V (DW) V+DV.

The rest of the proof is similar.

5. LEMMA. Let $E \in \Gamma(\Omega, C^{\infty})$ be a selfadjoint projection such that P(DE) = 0 and $E \Gamma(\Omega, C^{1})(P-E) = \{0\}$. Then we have $E \Gamma(\Omega, C^{\infty})(P-E) = \{0\}$.

PROOF. Let $A \in \Gamma(\Omega, C^{\infty})$ be such that EA(P-E)=0. Since we have 0=D(EA(P-E))=(DE)A(P-E)+E(DA)(P-E)+EA(D(P-E)) and by our assumption and Lemma 2 E(DE)=P(D(P-E))=0, it follows E(DA)(P-E)=0 and analogously $E(\overline{D}A)(P-E)=0$. Because $E(\omega)A_{\omega}^{1}(P_{\omega}-E(\omega))=\{0\}$ applying again Lemma 2 we derive easily $E\Gamma(\Omega, C^{\infty})(P-E)=\{0\}$.

Our next lemma is a restatement of [2], Lemma 3.4.

- 6. LEMMA. Let $A \in C^{\infty}(\Omega, L(H))$ be such that $A = A^* = PA$. Then there exist an open nonempty subset $\Omega \subset \Omega$, and two collections $\{P_{\alpha}: 1 \leq \alpha \leq m\} \subset C^{\infty}(\Omega_{0}, L(H)), \{\mu_{\alpha}: 1 \leq \alpha \leq m\} \subset C^{\infty}(\Omega_{0})$ with the properties:
- (i) $\{P_{\alpha}(\omega):1\leq \alpha\leq m\}$ are selfadjoint pairwise orthogonal projections in the C*-algebra generated in L(H) by $\{P_{\omega},A(\omega)\}$.

(ii)
$$P=\sum_{\alpha} P_{\alpha}$$
 and $A=\sum_{\alpha} \mu_{\alpha} P_{\alpha}$ in $C^{\infty}(\Omega_{0}, L(H))$.

THE PROOF OF THEOREM A. By a repeated use of Lemma 6 we can find an open connected nonempty subset $\Omega \subset \Omega$, an integer min(2,n) $\leq k \leq n$ and a pairwise orthogonal decomposition of P:

$$\{P_{\alpha}: 1 \le \alpha \le m\} \subset \Gamma (\Omega_{\alpha}, C^{k-1})$$

where P $_{\alpha}\left(\omega\right)$ is a selfadjoint projection which is minimal in \mathcal{C}_{ω}^{k} ωεΩ . Moreover, arguing as in [4], Ch.I, §11, we may assume that

$$P_{\alpha}\Gamma(\Omega_{o}, \mathcal{D}^{k-1})P_{\beta}=C^{\infty}(\Omega_{o})U_{\alpha\beta}$$

where U enjoys the properties:

$$U_{\alpha\alpha} = P_{\alpha}$$
, $U_{\alpha\beta}^* = U_{\beta\alpha} = P_{\beta}U_{\beta\alpha}$, $(U_{\alpha\beta}U_{\alpha\beta}^*)^2 = U_{\alpha\beta}U_{\alpha\beta}^*$.

It is clear that either $U_{\alpha\beta}=0$ or $U_{\alpha\beta}U_{\alpha\beta}^*=P_{\alpha}$, $U_{\alpha\beta}^*U_{\alpha\beta}=P_{\beta}$.

Let $1{\le}\alpha,\beta{\le}m$ be given and suppose U $_{\alpha\,\beta}{=}0\,.$ Denote by E the sum of all P such that $U_{\alpha\gamma}\neq 0$. Since obviously E is a central projection in $\Gamma(\Omega_O, \mathcal{D}^{k-1})$ and under our assumption we have $k \ge 2$, therefore $\Gamma(\Omega_0, \mathcal{D}^{k-1}) \supset (\Omega_0, \mathcal{C}^1)$ and consequently

. Er
$$(\Omega_0, C^1)$$
 $(P-E) = \{0\}$.

But we also have

E(DE) = E(DE)E = 0, (P-E)(D(P-E)) = (P-E)(D(P-E))(P-E) = 0whence it follows P(DE)=0. Now applying Lemma 5 we derive $P_{\alpha}\Gamma(\Omega_{O},C^{\infty})P_{\beta}=\{0\}$ and in particular

$$P_{\alpha}\Gamma(\Omega_{o},C^{k})P_{\beta}=C^{\infty}(\Omega_{o})U_{\alpha\beta}$$

Remark that if $U_{\alpha\beta}\neq 0$, the last relation holds valid in view of the minimality of $P_{\alpha}(\omega)$ and $P_{\beta}(\omega)$ in C_{ω}^{k} , $\omega \in \Omega_{0}$. Because we have $\Gamma(\Omega_{O}, C^{k}) = \sum_{\alpha}^{m} P_{\alpha} \Gamma(\Omega_{O}, C^{k}) P_{\beta} \text{ we deduce}$

(*)
$$\Gamma(\Omega_{O}, C^{k}) = \sum_{\alpha, \beta=1}^{m} C^{\infty}(\Omega_{O}) U_{\alpha\beta}.$$

To conclude the proof it sufficies to prove that we have

 $P(DU_{\alpha\beta}) \in \Gamma(\Omega_0, C^k)$ (1)

 $\psi\left(\mathbb{P}\left(\mathbb{D}\mathbb{U}_{\alpha\beta}\right)\right)\!=\!\!\psi\left(\mathbb{P}\right)\left(\mathbb{D}\left(\psi\left(\mathbb{U}_{\alpha\beta}\right)\right)\right)$

 $\psi\left(\left(\overline{D}U_{\alpha\beta}\right)P\right) = \left(\overline{D}\left(\psi\left(U_{\alpha\beta}\right)\right)\right)\psi\left(P\right), \qquad 1 \leq \alpha, \beta \leq m.$ Indeed (i) of our theorem will follow by Lemma 3 from (1) and (*), whence (ii) will be a consequence of (2) and (*).

Let us put $G = \{P_{\alpha}A(D^pD^qB)CP_{\beta}: 0 \le p, q \le 1, A, B, C \in \Gamma(\Omega_0, C^{k-1})\}$. We leave to the reader as an exercise to show that, eventually decreasing Ω_{O} , we may suppose that any $U_{\alpha\beta}\neq 0$ is a finite product of $U_{\alpha',\beta'}$'s belonging to G. A hint for this exercise is that if

 $^{\omega_{O}}\varepsilon^{\Omega_{O}}$ is given then $^{U}_{\alpha\beta}(\omega_{O})$ is a finite product of elements belonging to G , valuated at $^{\omega_{O}}$. Thus we are allowed to prove(1) and (2) assuming $^{U}_{\alpha\beta}\varepsilon^{G}$. Let $^{U}_{\alpha\beta}=^{P}_{\alpha}A(DB)CP_{\beta}$ be given. We derive easily that

$$(\overline{D}U_{\alpha\beta})P$$
, $P(DU_{\alpha\beta}^*)\epsilon\Gamma(\Omega_0,C^k)$

and

$$\psi ((\overline{D}U_{\alpha\beta})P) = (\overline{D}(\psi(U_{\alpha\beta})))\psi(P)$$

$$\psi (P(DU_{\alpha\beta}^*)) = \psi(P)(D(\psi(U_{\alpha\beta}^*))).$$

Putting in Lemma 4 V=U_{\alpha\,\beta}, W=U_{\alpha\,\beta}^* and E=P_ $_{\alpha}$, F=P $_{\beta}$ we have

$$P\left(DU_{\alpha\beta}\right) = U_{\alpha\beta}\left(DP_{\beta}\right) + P\left(DP_{\alpha}\right)U_{\alpha\beta} - U_{\alpha\beta}\left(DU_{\alpha\beta}^{*}\right)U_{\alpha\beta}\varepsilon\Gamma\left(\Omega_{O},C^{k}\right).$$

If we put in Lemma 4 V= ψ (U $_{\alpha\beta}$), W= ψ (U $_{\alpha\beta}^*$) and E= ψ (P $_{\alpha}$), F= ψ (P $_{\beta}$) then, under our assumptions, we obtain

 $\psi\left(\mathbb{P}\right)\left(\mathbb{D}\left(\psi\left(\mathbb{U}_{\alpha\beta}\right)\right)\right) = \psi\left(\mathbb{U}_{\alpha\beta}\right)\psi\left(\mathbb{D}\mathbb{P}_{\beta}\right) + \psi\left(\mathbb{P}\right)\psi\left(\mathbb{D}\mathbb{P}_{\beta}\right)\psi\left(\mathbb{U}_{\alpha\beta}\right) - \psi\left(\mathbb{U}_{\alpha\beta}\right)\psi\left(\mathbb{D}\mathbb{U}_{\alpha\beta}^{*}\right)\psi\left(\mathbb{U}_{\alpha\beta}\right) = \psi\left(\mathbb{P}\left(\mathbb{D}\mathbb{U}_{\alpha\beta}\right)\right)$

and (1) and (2) are proved. We proceed analogously if $U_{\alpha\beta} = P_{\alpha} A(\bar{D}B)CP_{\beta}$.

THEOREM B. Let $\varphi: S \rightarrow L(H)$ be a map such that $\varphi(I) = I$, $\tilde{T} = \varphi(T) \in \mathcal{B}_n(\Omega)$. The following conditions are equivalent:

 $(i)_{\,\phi}$ is the restriction to S of an inner automorphism in L(H).

(ii) there exists a partial isometry \mathbf{U}_{ω} such that

$$U_{\omega}^*U_{\omega}=P_{\omega}$$
, $U_{\omega}U_{\omega}^*=\tilde{P}_{\omega}$

and

$$\widetilde{P}_{\omega}\widetilde{R}_{\omega}^{*P}(Y)^{*}_{\varphi}(X)\widetilde{R}_{\omega}^{q}\widetilde{P}_{\omega}=U_{\omega}R_{\omega}^{*P}\dot{Y}^{*}XR_{\omega}^{q}U_{\omega}^{*}$$

PROOF. It is clear that (i) implies (ii). Let $\Omega_0 \subset \Omega$, $1 \le k \le n$ be produced by Theorem A. If we define ψ by the equation

$$\psi (A) (\omega) = U_{\omega} A (\omega) U_{\omega}^{*}, \quad \omega \in \Omega_{O}, \quad A \in \Gamma (\Omega_{O}, C^{\infty})$$

under our assumption (ii) we have $\psi(A) \in \Gamma(\Omega_O, \tilde{C}^\infty)$ whenever $A = PR^*P_Y^*XR^qP$, $0 \le p, q \le n$, $X, Y \in S$. Applying Theorem A and Lemma 2 we deduce $\psi(A) \in \Gamma(\Omega_O, \tilde{C}^\infty)$ for any $A \in \Gamma(\Omega_O, C^\infty)$ and $A \in \Gamma(\Omega_O, C^\infty)$ and

(*)
$$P_{\omega}R_{\omega}^{*P}\phi(Y)*\phi(X)R_{\omega}^{q}P_{\omega}=U_{\omega}R_{\omega}^{*P}Y^{*}XR_{\omega}^{q}U_{\omega}^{*}$$

for any $0 \le p, q, X, Y \in S$.

Let $\omega_{\mbox{\scriptsize O}}^{\mbox{\tiny }\epsilon\,\Omega}_{\mbox{\scriptsize O}}$ be given. Since IeS, Lemma 1 implies

$$H = \underset{X \in S}{\vee} \underset{j \geq 0}{\vee} XR_{\omega_{O}}^{j} P_{\omega_{O}} H = \underset{j \geq 0}{\vee} R_{\omega_{O}}^{j} P_{\omega_{O}} H.$$

Let $U_{\epsilon}L(H)$ be defined by the equation

$$U\left(XR_{\omega_{O}}^{j}P_{\omega_{O}}X\right)=_{\phi}\left(X\right)\widetilde{R}_{\omega_{O}}^{j}\widetilde{P}_{\omega_{O}}U_{\omega_{O}}X$$

for any $X \in S$, $0 \le j$, $x \in \mathcal{H}$. Using (*) we derive that U is a well defined unitary operator and $UX = \emptyset$ (X)U, $X \in S$.

THEOREM C. Suppose SC{T}', ϕ (S)C{T}'. The following conditions are equivalent:

- (i) ϕ is the restriction to S of an inner automorphism in L(H)
- (ii) there exists a unitary operator $V_{\omega}: \ker(\omega T)^{n+1} \rightarrow \ker(\omega \widetilde{T})^{n+1}$ such that

$$\varphi(X) | \ker(\omega - \widetilde{T})^{n+1} = V_{\omega} X V_{\omega}^{*} | \ker(\omega - \widetilde{T})^{n+1}$$

for any wea, XeS.

PROOF. It is sufficient to remark that under our assumptions, the present condition (ii) is equivalent with (ii) in Theorem B, where $U_{\omega}=V_{\omega}P_{\omega}$.

REFERENCES

- 1. Apostol, C.: The correction by compact perturbation of the singular behavior of operators, Rev. Roumaine Math. Pures Appl. 21(1976), 155-175.
- Cowen, M.J.; Douglas, R.G.: Complex geometry and operator theory, Acta Math. 141(1978), 187-261.
- 3. Dixmier, J.: Les C*-algebras et leurs representations, Gauthier-Villars, Paris, 1969.
- 4. Takesaki, M.: Theory of Operator Algebras I, Springer-Verlag, New York, 1979.

C.Apostol and M.Martin
Department of Mathematics,
INCREST,
Bdul Păcii 220, 79622 Bucharest,
Romania.