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A C*-ALGEBRA APPROACH TO THE COWEN-DOUGLAS THEORY
C.Apostol and M.Martin

Let H be a separable infinife-dimensional Hilbert Space
over the complex field C and let L(H) denote the algebra of all
bounded linear Operators on H.

For any open connected subset Q@ of C and for any positive
integer n, let Bn(Q) denote the operators S in L (H) which-satisf
fy: ' .

(L) o=SEHY =H, hea

(ii) v ker (w=S)=H
we

(Aid)dim ker (i~ S)=n,  weq.

Lot 8 be a. cubset in L(H) containing the identity operator
I and an operator TeBn(Q) and let ¢:8-L(H) be a map such. that
0 (I)=I and @(T)eBn(Q). | : : '

M.J.Cowen and R.G.Douglas [2] initiated a systematic study
of the unitary orbit associated with an element of Bn(Q) by means
of complex Hermitian geometry techniques. To be more specific,
they proved that SR il unitarily equivalent with T if and only
ifA@(T)lker(w-zg(T))n-'—l is unitarily equivalent with leer(w—’l’)m-l
for any we® (the corresponding unitary operators depend on u).

Suppose S is included in P Ehe commutant of T and
o (S)c{(T)}’; in Theoremvc below we show that p is the restriction
to: S of an inner automorphism in L (H) if and only if ¢ (X) lker (w-¢ (T))m-’l
is unitarily equivalent with Xlker(w-T)n+l for any XeS, we (the
correspondiﬁg unitary operators depend on w only ). If S={T, I} we
recapture the result of Cowen and Douglas. '

In fact we shall give a local description of the restric-
tions to S of inner automorphisms in L (H), without the assumption
'SC{T}’ (see Theorem B). s

The above results are consequences of our main Theorem A on
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some C -fields of finite-dimensional C*-algebras.

Throughout thé paper S will denote a subset in L(H) contain*
ing I and TeBn(Q), where £ is an open subset in C.
» For any we®, the operators Rw,Pw will be defined by thefapm:‘
tions: v ; '
R =(u=T)*[ (u=T) (w-T)*17%
B aT=Ralo=omy, .

It is plain that Pw is the orthogonal projection of H onto
ke (o= ).

For each wef and each non-negative integer k put

k
AS ={PwR:py*XRng:OSp,qsk, X,YeS}
BX = 'p R*?y*XRqP :max (p,q)=k+1,min(p,q) <k, X,YeS}
w wow wow P.q 4 e i

and denote by Ci, Di the C*-algebras generated in L (H) by Ai,
resp.AEL}BZ.

The union <) ¢k is obviously a C*-algebra which we shall denote
k=0 ;

by C:. : . o

Let C(2,L(H)) denote the *-algebra of all L (H)-valued in-
finitely differentiable functions defined in @, with the involu-
tion defined by the equation :

A* (w)=A(w)*, BeC”(q,L(H))

and let C” (@) denote all C-valued infinitely differentiable func-
tions defined in 9. _

We shall denote by P(Q,Ck), (Q,Dk),P(Q,Cm)_the *-subalgebras
incies o, L)) determined by the conditions: :

r(2,C%)={acc™@ L (H)) : A(0)eC)

r(e,0%)={aeC” (2, L (H)): A(w)eD¥)

IR, )=l (o, L (H)) « A(w)eCy.
We have PeF(Q,CO), ReC” (2,L (H)) where P and R are defined by the
equations

P(@)wa, R(w)=Rw-
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Finally observe that the usual g%”and_ag derivatives deter-
5 - w .

mine two linear maps in Cw(Q,L(H)). We shall denote this maps-" by
D resp.D. It is plain that we have
(D) =Dt - “necT (o L)Y

THEOREM A. Thehre exist an open nonempty Aubéetvﬂé:ﬂ and
l<sks<n with the propenties:
() . O9Enie, 07 | i
GET T w:P(QO,Cm)+Cw(QOfL(H)) L5 an algebraic homomonphism
sduch zthat y

‘ v (2 (O"DTA) P)=y (P) (OPD%y @)y (), = O<p,q<l, AEI’(QO,Ck_l)
then | _ »
¥ (P (O°D3R)P) =y (PXOPDy (8) )v (P), O<p,q, AeT (QO,C‘”) :
The proof of this.theorém will_be given after.some prelimi-
nary lemmas. A
1. LEMMA, For any w 4in Q we have:
(1) (u=T)R = T and P-R =0
w w w
e
(1) ker (w-T)¥"1=.v RIP (H) for ecach o<k
j=0 Qi)
(iii) H=v BRI P (H).
S0

PROOF. The relations (i) afe obvious. Clearly, (ii) will

' easily follow if we prove that

kex (w-1)*1=p () @R (ker (- 1¥).

"Since (w—T)(ker(m—T)k+lX:ker(w—T)k and Rw(w-T)=I—Pw ‘'we have

ker (o-T)%+L

©P, (HICR,_ (ker (w-T)*) hence

ker (-} P () @R (ker (u-1)¥)
and the reverse inclusion is obvious.

Using [1], Lemma 1.7 we know that we have

H= v ker (A-T)= v 'ker(w-.T)k
AeQ k>0

thus (iii) becomes a consequence of (ii).

2.LEMMA. The fofLLowing neLations hokd:
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DRECRZ DR* =R*RpP and DP=-RP.

The sproef is obv1ous, therefore we omit. it.

As easy corollary of Lemma 2 is the following

. 3. LEMMA.I§ PDP(Q kM:P(QO,Ck)ﬁon sdome open nonempity subset
250 and 1<k, then : :

P(Qol )=F (QFO'C )-

4. LEMMA.Let V,WeC  (Q,L(H)) be given such that VWv=V. Then
we have: ) :

DV=V (DF) + (DE) V-V (DW) V
DV=V (DF) + (DE) V-V (DW) V
where F=WV, E=VW.

PROOF. Since VF=EV=V it follows that

V (DF) + (DE) V=V (DW) V+VW (DV) + (DE) V=
=V(DW)V+E(DV)+(DE)V=V(DW)V+D(EV)=VOWﬂV%DV.

The rest of the proef is..similar.

5. LEMMA. Let EeF(Q G2 ) be. a 4e£5ad10Lnt p&OjQQILOH such
that P(DE)=0 and ET (%, G (o~ E)—{O} Then we have ET (,C” )(P-E)={0}.

' PROOF. Let RerT (g, C )be such that EA(P-E)=0. Since we have
0=D (EA (P- E))—(DE)A(P E)+E (DA)P-E)+EA (D (P-E)) and by our assump-
tion and Lemma 2 E(DE) =P (D(P-E))=0, it follows E (DA) (P-E)=0 and
analogously E(DA)(P—E)=O. Because E(w)Ai(Pw—E(w))={0} applying
again Lemma 2 we derive easily EP(Q,Cm)(P-E)={O}.

Our next lemma is a restatement of [2] , Lemma 3.4.

6. LEMMA. Let AeC” (Q,L(H)) be such that A=A*=PA. Then thenre
exLst an open nonempty subset asa, and two collections
{Pa:lSaSm}CCw(Q (L)), fn 2 1<0smIQCT (0) with the properties:

(1) P (w): l<a<m}a&e AeﬂéadJGLnt pairwise orthogonal phro-
JectLoné An the C*-algebra genenated in L(H) by {P JAlw)}.
(ii)s P=x Bt and A = ¥ e SR (QO,L(H))
o 2 o

THE PROOF OF THEOREM A. By a repeated use of Lemma 6 we can

find an open connected nonempty subset Qé:Q, an integer min(2,n)<

<k<n and a pairwise~orthogonal decomposition of P:
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@, :ISaSmN:F(Q Ck"l)

" where P (w) is a selfadjoint projection which is minimal in Ck s
wed . Moreover, arguing as in [4], Ch.I, §11, we may assume that
k=1, ' :

PaF(QO,D )PB—C (Qo)UaB

where UaB enjoys the properties:

i v ® iy *
Uk ' aB S L R -
It.is clear that either U B:O or U BU*B=P ; U;sUaB=PB.
Let 1<a,B<m be glven and suppose U B:O. Denote by E the sum
ofiall P such that U, #O Since obviously E is a central projec-
k-1

Edlon=in P(Qo, D
k-1

) and under our assumption we have k22, there-

A

) =2e.,C7) ~and consequently

fore F(QO,D Yot

EP(QO,Cl)(P—E)={O}.
But we also havek.

E(DE)=E (DE)E=0, (P-E) (D(P-E))=(P-E) (D(P-E)) (P-E)=0
whence it follows P (DE)=0. Now applying Lemma 5 we derive
par(go,cw)p8={0} and in particular

| ST :
| P T(e,,C )PB—C (QO)UaB. .
Remark that if UaB#O, the last relation holds_valid in view of

the minimality of Pa(w) and PB(w) in Ci,wsﬁo. Because we have
m

: k
r(a_,C )_ r P, Tr(a,,C )PB we deduce
o ,
IB=1_
2t K I i, _
) I, C0= I € an, ap*
o,B=1

To conclude the proof ‘it sufficies to prove that we have
(1) P (DU, g)eT (2 65
w(P(DU B))*tp(P) UD(w(U )))

¥ ((DU B)P)—(D(w(U )))w(P), 1<a,B<m.
Indeed (i) of our theorem will follow by Lemma 3 from (l)

and - (*), whence (ii) will be a consequence of (2) and ( )

Let us put G= {PaA(DPDqB)CPB.OSp,qsl,A,B,Cer(QO, onaeT
leave to the reader as an exercise to show that, eventually de-
Creasing Qo' we may suppose that any U #0 is a finite product

of U a’g’ s belonging to G. A hint for thlS exercise is that 1£
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WLER is given then U B(wo) is a flnlte product of elements belonqlnq to G ,va-

‘luated at W, .Thus we are allowed to prove(l)and(Z)aosumlng U g€ eG.
Let U B—P A(DB)CP6 be glven. We derlve easily that

* Y k
(DU aB)P’ P(DUas)ef(Qo, )
and
¥ ((DU_ g)P)=(D(y(U_ g)) ) (P)
w(P(DU* sl b= w<P)(D(w(U* 13y
Putting in Lemma 4 V=U _, w=U* and E=p , =B e hage
o B af ; o B <
P (DU B»)=U (DP ) +P (DP_ LA e DL ST TR
If we put in Lemma 4 V—w(U ), W—w(U ) and E=¢(Pa),F=w(PB)
then, under our assumptions, we obtain ey
V() (D@ (U, 8)))=0 (U, ) (DP )+w(P)w(DP ¥ (U, 0) =0 (U, )0 (DU% )y (U, )= (B0 )

and (1) and (2) are proved. We proceed analogously if U e
—P A(DB)CPB

THEOREM B. Let ¢:S=L(H)be a map such that o (I)=I, T =
=0 (T)eB (Q). The following conditions are equivalent:
(1) ¢ 48 the nestrniction to S of an innex automonrphism in

L i(H) z
(ii)there exists a pantial Lsomethy U, #4uch that
iU =P . 5 5t=p
Y w W w w w w
and

7+ * =d3 _ LY AN o
P R (Y) cp(X)Rme u R Y*XRwa |
“h0n any weQ, 0<p,g<n, X,YeS, whexe ~-symbols are assoclated wAth
T :
PROOF. It is clear that (i) implies (ii). Lek QSZQ, 1<k<n
be produced by Theorem A. If we define ¢ by the equation _
V() (W)=U A () U¥, wen, AeT (2,,C")

under our assumptlon (1ii) we have w(A)eF(Q 5 ) whenever
A=pR*Py*xrp, 0<p,g<n, X,YeS. Applying Theorem A and Lemma 2 we
deduce w(A)eP(Q ,C ) for any AeF(Q C ) and AaF(QO,C ) and

* *P dp - *P qrq%
(") Pwa o (Y)* @(X)Rwa Uwa Y XRwa
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for anys0=pre, X, YeS,
Sliet w,eR, be given. Since IeS, Lemma 1 implies
‘= N \% j 3 Lo 'j )
f XeS jZOXRwOPwdH jZORwOPwOH'
Let Uel (H) be defined by the equation
UXRI P x)=¢ ()R B U «x
Yo e Yo Yo Mo
for any XeS, 0<j, er Using (*) we derive that U is a well defii=
ned unitary operator and UX=0 (X)U, XeS.

THEOREM C. ' Suppode SCIT} ', ¢ (S)C{T}'. The gollowing condi-
tions are equivalent: b
(1) ¢ L5 the nestriction to S of an innex automorphism in-
L(H) s
(i1) there exists a - unitary operator V :ker (1)1l
~ker (u-T)*1 such that : b

@(X)lker(w—T)n+1=VwXVZlker(w—T)n+l
pon any weQ, XeS.

PROOF. It is sufficient to remark that under our assumptions,
the present condltlon (ii) is equivalent w1th (ii), in Theorem B,
where U —V P -
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