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The Feﬁchel—Rookafellar duality theoxry for mathematical '
'pfogramming in order complete vector 1attices and
‘ :f” B applications S
; oy

. Constantin Zilinescu

0. Introduction
In the last few years one notes the'éttempt'to generalize
_the duality theory for mathematical pfogramming when the -~
objective function takes values in an'order,compkme vectoxr
lattice.Zowe [13] extended the Fenchel duality theorem for
that éase, and Rosinger [7] treated the same problem for the
case when the cbjective function is not convexo.In this paper we
present the Fenchel-Rockafellar theory for the same case.lNote
. that the objective functioﬁ is not sﬁpposed to be convex,so
that we reobtéin the results in'L7] .The approach,parallel to a
certain extent to that of Rockafellar .Léj s 18 based on the-
-notibn of conjugate set in [10] and the subdifferentiability
criterioh of Zowe [14] We apply the results to calculate
conjugate operators and subdifferentials{ so we reobtain the
results of Kutateladie [3] concerning conjugate operators and
subdifferentials,some of them in more general conditiong.We also
give a Kuhn—Tacker theorem which generalizes that one in [13],
' Using a theorem of Ursescu |12] ,concerning multlfunctlons w1th
closed convex graph,we establish a useful criterion for the con-
$inuvous vergion,which represents a generalization of a similar
result of Robinson [5) e

lePreliminaries

Throughout this paper X,Y,Z deﬁotehfeal vector spaces and
Z is also an order complete'vectoriiattice,i.é;,z is an ordetr .
vector space (order symbol <), -inf(u,v) = uAv and sup(u v)=

. . such
= u\Vv exist for all u,ve Z,and for each nonempty ACZ ~ that A



_ -2 - : | = s
is orderkboundod from béiow'in Zy “InfhA exiéts.The\éet g8

= {z:z‘z,o§ of pozitive elements of Z ig called the pogitive
gone of Z.By the definition of éﬁvorder vector space, C/1-C =

u{o},c.i;c:c,‘/lccc‘for'all AeR(R ={Aer: Ky 0%

If KC Xy lA, At s COA denote the 1ntr1nalc core (rela~
tive algebraic interior), the core (the algebraio 1nterlor) : ' |
and the convex hull of A, respectively.If X ig a topological

vector space,then intA denotes the topological interior (see

[47 )e A subset ACX is said to be lineally closed - if each line
meets A in a closed subset of the line.One has (see [9] );

Propogition lel ., The positive cone of an ordexr complete

vector lattice is lineélly closed. ' . i 3
- Let £f: D(£) C XY Dbe an operator,aﬁd'AZ:.X‘Then f(R) =
= {f(x): x €& A f\D(f)} .In the sequel we shall need the follé—
wing. - '
Lemma lel . Let X, Y be a linear vector spaces, A,BCX,
DCY and S: X—>Y a linear operator.Then |
(1) co(A xD) = (coA) x (coD), _
(ii)  S(coh) = coS(a), € RN »
(iii) co(A+B) = cod + co3B. ‘ | |
;Proofo (i) It is clear that AxD c cod x coD.Let X & coA
and ye€coD.Then S'J,ie (0,1} ,xieA,ixl,;ov.,n such that

i=1

n, . n ;o :
%=l Agmgoend 5 A=, 3y € (01) vy €Dy,

‘ ' m ‘
cvegll SUCh that y = 2__._ /"”a 5 end 5?1 ./wj = loThen

xe S A0 2 s 2 S S

K o= : 2 M)x, o= N 2’__ Ao X
N = A i=1 §=1 004 /A'J Bl .
n m n_ . n m

y Zobla el Bl ek dpiime SE5s el ody Yy = P Z:/ll/uaa"
J=1 | J=1 di=l "/ =l g=l !
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= 0

i=l =

: ~ . B . im . 5
Bak L, . > 0end > Ty EA, . = 1, (X4,¥:) €A XD,s0 that
i /3 R S 1273 .

; (ic,y)_ € co(AxD)e

i), it is obviouse

(iii) Tet St Xx X=X , S(x,y) = x+y, and R
S(AXxB) = A + B, ~ ‘ '
Applying (i) and (ii) one obtains g_é_(A + B) = co A+ _g_gB-.

Lemma l.2 Let 'Al’AZ’“"An be convex subsets of X and M =

= {(x - xl,.,..,’x ~ %)t x eX,x ehys Lsksnl C X%, Then (0,0,..
o..,O)eiM if and only if |
k=1

FY K. A,) Tor all k, 2<ks<n. (1.1
=l - T |

0™ (

' ' ' B .
Proof. Note that if A is convex then 0 & A if and only if
Vx € A BJLX % 0: - /lx-x € A; if (0,0,604,0) € M o (Lo1)

2 n
holds then JE€ [\ A,
: i=1 "
_ . k-1 ' ’
Suppose that (0,4e¢e,0) € M.let x e M) A.,xk & Ays then

(eXyooeyg=Xy=X) 9=Xyeeey=X) € Mo It follows that JA >0 such that
’ k ;
(A, iy, lxk, AZyeeey AZ)E M, -leee, ¥y eX,xiéAi such

that-

Ax =y - x. t/i, 1€i<k ~ 1,

11
l.
/lxk= Y = Xy

’ k-1 :
r .
It follows that x, = ) = eee = =l b = e N A.,g80 that

)»_x =y -x', Az = ¥ - X'y, which imply - A (x - x) =



: - : . K :
Py | \ = m 8 s
= X xké: C) A, = A . Therefore,0 & ( g:} Ay =) for

all k, 2sk<n.

Conversely,suppose that (l.1) holds. Note that 1t is
sufficient to show that for x, € A;y L<ign ( hence (;xla..,vxn)
e M) ;})g>0 such that /l(xl,...,xn)élm.We shall show,by induction,

¥k, 2<ksn

(2,) Jlvyo Vi, 1<i<k Fx € 4y Lxyt 2y = ooomAx +xk

3

If,(Pn) is true,denotlng by x the common vglue,we have
- ’ = 5
/?_(Xl_pao.',xn) = (X Gad Xl’.ee',}c L X'n)el\qo

90 that (0,e0e,0) € Mo

Let k = 2. We have xz - Xy €4, = Ay, Since O 2t (Ag= A, )it
follows that 3,1:>O,xi € Ayyx,& Ay such that - /1(x - X, ) =
T ' 4
= Xp = Xq 5 80 that ,lx + kl -,lxz + xzo Hence (P ) A5 Lrueh
Suppoge that (Pk) is true and show that (Pk+l) is also true,
Let A0, x; € A;, L<i<k such that

,lx1+ Xy = eee = «1xk + X = Xe
1 k k
Then i X € {Z} A.: hence pE. X - X CD .§i~ Ak+1’

. k
Since 0 € *( [‘\ Ay~ A1)y it follows Ty Oyt AR,
=1 L =l

1. v A 1, ’ ey ;
‘X k+16 Ak"f‘l sguch that A_'( "'""""“""‘/1 o K Xk—i—l) = x' e X'k+l.

Hence
! I

A :
A»'Xk+1 -+ ;}C'k+l o= m X 4+ x' = m (/lxi -+ Xi) + x!' for

4 Léds ki,
so that
A4 A (¥88s ' d Jo S5
R 3 '
L g T+ L xi Y W % R werse L e X'k+l’
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2 ! i ‘ :
Dividing by 1 + —f:—T , btaking into account that A. are convex
sets,we see that (Pk+l) is true,so that (l.1) holds.

Definitiion 1.1 « Let A C. Xyl <1 <n Dbe convex sets.We say

that Al,...,An are in general position if there exists a
permutatlon {ll,...,l { of the set §1,2,¢0.,n] such that, for the .
~correspond1ng rearrangement ,(l.Ll) holds.
: Remark l.l. The above definition for Ai convex cones can be

found in 3] -and L8] & B .

Remark 1.2, From Lemma l.2 we see that Al,o..,A are in
general position if and only if (L.1) holds for every rearran-
gement of the sets Al?""Ah' |

If ACX ,let C(4,%) = U A(4-X) for XxeA and H(A) =
(x, )1t 70,x e tA% o A

Remark 1.3 . Let Al,a..,A be convex sets,Then Al’°“’An

are in general position if and only if C(Al,x),...,C(A yX) are ln
general position for some (every) X € f\ AjoIf H(A )soes s H(A, )

. i=]
are in general position then Al”'°’An are in general position,

Remark le4, If Af\f\ A £ D » then Al,OQO,A are in general
k 2
posiblon.

Lemma le3. Let Z be a complete vector lattice.If the set
{Az.AeRﬁ is upper (below) bounded then z<O(zWOL :
Proof.Let Az <z for all AGR oThen {//lCR y Zg -
« AzelCilet /U (0,105 Jba = (1 /‘L)z €C.Since C is lineally -
closed it follows that for/UL one obtains an element of C,
ile€ey~ 2€C,
. " Ve denote by Py the operator. Py: XX Y—aX,PX(x,y) =%

X
As in the case Z = R we have:

and by PyD the set PX(D), where DCX xY,

Lemma l.4.(i)f Let- L1 DCX xY->7Z De an operator.For
x&PyD let D ={g: (x,y) €D} and for y & PyD lgt D, =
—{x. (k,y)e D} « Then



..H. 6 =

i

- imb Tolny) = inf inf™ £(x,57) s G

x_GZPXD - yeDy | yePD Xé:Dy ‘ (X,y)%D

every time when one of them existso

(ii) ‘Let A,B C Z. Then
inf(A + B) = infA + infB ,

when infA and infB,of inf(A + B) exist,

Let £ D(J.)C,X»aY be an operator and Y an order vector
space with ’che positive cone P.We say that f is convex if D(TF)
i a convex set and £(tx + (1L ~A)y) g Af(x) + (L ~A)E(y) for
all x,y€D(f) and /16(0 Lys i dn addition D(f) - is a cone ‘and
Plt +y)g f(x) + £ly) for.all x, yeb(L) , £ is sublinear o.Let

ACXXZ; we say that A is a set of epigraph type if (x z)E A,z

= (x,2') €A, |
Theorem Llel,(i) Let f:-D(f)CX-—,\Z be an operator.Then

f is convex if'and only if
epi £ = {(x,2) + xeD(f),ze2,f(x)c2t C Xx%

is a convex gete

(i1) Let ACXxZ be a convex set of epigraph type.lf ’7/::6
Py A glnf {z: (x,z)eA} then the operator

\fA: Pyh —>2Z, \fA(x) = inf{ %l .(x,z)e—Af

is cgnveonurthermore, \fA is the greatest convex operator Y’ with
the property AC gp_;__\f o
Proof. (i) The proof is the same as in the case Z = R.
(ii) Since ACX xZ is a convex set it follows from
Lemma lo.1l (ii) that Pyh is convcx.Lm xl,x c P A, AE€(0,1) be
fixed Let (xy,%q YEA and (x552,) € A; then ()&x + (L = A)xyy
/\z ¥4 -/()z ) €A, so that

AR (1 A ey + (1 ..A),Jzo

e

SO P U O PP
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Fix 2z, and take Zl arbltramly such that (xl,zl)é s Then
Vo€, (xy2))€ bt (A% + 1)z - (1 =D)my)A s
and consequently, _
or equivalently |

( \{)A(lxl + (1 = A)x5) ER) KfA(xl))/(l ~A )L Zre
Taking now Zo ‘arbitrarily such that (X29Z2)€'A’ 4i1: follows that

Yl Az d (L =A%) €Ay () + (1 =A) Py(xp)e
Hence LPA is a convex operator.Since (x,z)é_A implies \PA(X) Lot
- we have AC epi \€A‘ Let g PyA-—>Z be such that ACepi g; then
(x,2) € A=>(x,z) € epi g=>g(x) s z=7g(x)‘.<;inf Lz (x,2) eA% = \PA(;;:)'., :

The proof is completee

Theorem l.2, Let AC.X;cZ be a convex set of epigraph ’cjpe
Suppose that there exists x € (PA) such that inf{ 4 (xO,z)é A}
existse.Then inf J\z (x,z)€ A} exists for all x& Pyl

Proofe. Since A is convex it follows that PXA igs also conveXs

Let x €PyA; since X € 1(pA) then 3t07 o Vie [-6,1] ¢
. . : to
. i
o ») = A Py . = .
(L -t)xo + tx € Pyho Let x; (L + ’uo)xo ’cox, then x mo
& : - | .
Xy + "I'TQ’%' + x.Since x, € Pyh, there is .zle 7z such that (Xl’zl_)

o)
€ A Then for evexy w <7 such that (x,2)€ A, we have

% ‘ %
1L o> = g e s
(ama T, i L 2T to' o ‘I‘"_+"Q't"° z) =

9]

=) (Xo’ i l 1‘""“" z)€ 4.

Hence

& % _ _ A
L B L& . e
1 *’-to‘zl + mo z 7, inf {z g (xo,z)e AJ y




o\ that

Consequently inf { Zt (x,z)é—Ai exists, The proof is completeo.
Corollary 1.1, Let £i D(f)c.X—Z be an operatér.,zf there
exists'xoeéi(ggp(f)) such that inf { z: (xo,z)e;gg(ggg £)§ exists,
then~inf{ z: (x,2)€ co(epi £)} exists for every xe coD(f).
: Proof; Take A = colepi £); then gob(f) = PXA}Hence
xc.e-i(PXA)9 35 that Theorgm 1027 applieso.. ‘
When inf-{z: (xy2)€ co(epd £)} exists for every x & coD(f),

we call the opera%or Lfoo(e i £) the convex hull of f and we

denote it by cof .Let X,Y be vector spaces; L(X,Y) denote the
space of linear operators from X into Yo

Theorem 1o3. [14] X, Z be vector spaceu,Z be~g compleue

vector lattice and f: D(f)(’x&az a convex operator.rf X = D(f)

then there exists T e L(X,Z) such that

Tx - Txos;f(x) - f(xo) for all z&€D(f). (1:2)

Definition 1.2, Let £:D(f)c X»2Z Dbe an opera%or and X Ex D(L)s

The set of all ligear‘operators satisfying (1;2) is the sgubdiffe~-
rential of £ at xo; denoted by /2>f(xo).
2¢_Duality'Theory ; ;
et ACXx% be a set of epigraph type.According to Stoer
and Witzgall [ 10, Def;4,65] we introduce the conjugate of the
set A as follows:
AC = {(fj:,z'): T IR, Ve ¥, V(’x,z)éA: % z'ﬂxj.

Proﬁosition 2ail

(1) 4% is a convex set of epigraph type,

(ii) 4% = (con)®,

(iii) T£ A® # @ then inf {z‘ (x,2)€ coA4 ex1sts for all
, x € Py(co A)Jand_

SRR — o




- G
inf | =s (x,z)e‘g_gA};sup{’l‘x -zt (2,20)en’f
' - - : , (2.1)
)VLXG_C__O_PXA.. :

Proof. (i) and ‘(ii) are obvious.(iil) Let (T,z') € Ac;
then R (x,2)e co At z + z' » Tx.,Fix x € coPyA; then | :
)VtzéZ,(x,z)eg_@_A => 2 »Tx ~ 2', 80 that int § 23 (x,2)e g_g_Af.
exists and inf { z:(x,2)€ COA{ »Tx - z'. Taking the supremum in
the right hand side with (T,2') & A% we obtain (2.1). '

Theorem 2.1, Let ACXxZ be a gset of eplgraph type and,
26 (P (coA)) T . dngal 2t (x,92)¢ coA% _ exists,then '

inf 23 (:; 2) € coA max 4 Tx = z%:
{ : i $25 0% (2.2)

(T,z'?éAcf 8

Proof. Theorem l.2 assures that there exists the operatbr'
\?c s P(coA)—~>Z , given by L()COA(X) = inf{ %8 (x,z)é—g:_Q_A} o
From Theorem l.l we have that \f’coA is a convex operator. blnce
X, € (P (coA)) = (D( &FCOA)), we can apply Theorem l.4. for the
convex operatox ‘{)ce;A‘ Hence 5‘ T, € L(X, Z) such that

X - DX £ KPQQA(X)_ - Y?_QA(Xé) for all xéD(\(’EﬁA).

Hence ; ' :
g 4B YQQA(XO); T x  for alll(x,z)eegl \PEQ_ADA,

so' that _
Z + TOXO - \fggA(Xo) ) Toxlf?r all (x,z)€ A.

c
It follows that (-TO,TOXO - \{) coh (xo))éA s So that
| c
inf \z: (xo,z)‘é S:_Q_A} = %)Q_Q,A (x,)y sup { TXg = z';(T,z')GA f
7/To}‘co - (TOXO - \r_q_gA-(Xo)) - \PQQA(XO)°

Hence (2.2) holds, _'which completes the proofe

Definition 221 e £ D(f)'C X =>iZ- be an operator.The
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conjugate operator of f is the operator £°; D(fc),c (X, Z2)> 2,

_ £%(1) = sup § Tx - £(x): xe;D(f)f", :
where D(£°) = |2 € L(%,2): sup { Tx - £(x): xeD(£)} exists] .
» Theorem 2.2.Tet £: D(£)< X7 be an operator.fhen (epiii)®
= epi fCeHence fc is a.convex operatore. |
Proof .We have _
(T;z')ér(ggi f)céﬁ>z o Z'T}TX for all (x,z)e epi fi,
' :S f(x) + z'3% Tx for all xe€D(L)
ér-vz_':?'_[‘i\: - f(x) for all x € D(L)
&TeD(E%)  md z'y (D)
&=>(1,2') € epi T e
Gorallarﬁ 2,1, Tet £ D(2)CX=Z be an operator L

(epi £)° # § , then cof exists and (gof)® = £%.
Eroof, it is an immediate consequence of Proposition 2.1
(ii) and (iii) and the above theorem,
| Corollary 2.2. Let f: D(£)CX-—Z and x_ € B(f).Then T€
) f(xo) if and only if Té:D(fc) and :
g+ FHIL) @iz e
Proof. It is immediate.
Let now % :' D(%>)C:X><Y—9Z be an operator.We consider
the following primal problem '
(CP) inf
(%,0) €D(P)

¥hen gg@> exists we can assoclate to (QP) the relaxed problem

wmma

(g)). v‘(%’Qg,zg&gD@) . '%%(X,O) = inf {‘g_g_c}(x,o):‘xe PX(Q_QD(% )
- ' Nnx x 4 O} )} °
Let |

Ao §(Y’Z): J x e X such that <%(x,y)sizg o (2:3)

We have the follcowing relations:

$(x,0) = iz | ¢ (x0:xer 0B Nxx {df.

T R e

s S
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b o SR R BT HE00 o = | (244)
ool By o Repn IR ATOL Wil gt (24')
Pyh = BD(P) | . (2459

Py(coh) = Py(coD(d)). - (2.5')

Remark 2.1, A i.s a set of epigraph i:ype;._if #D is a
convex operator,then A is a convex sete.
Prop031t3_on bl _ | .
(1) inf § $(x,00: (x, O)eD(qw; = inf Lzt (0,2)e4.(2.6)
L) e co.cf ,exn.sts then : ‘ ‘ . »
‘inf co é (.80 (x,0)€ coD(c{a)} ;Lnf{z (B, z)écoAf (2461)
Proof, Let D = ((x,2)€ X x2: (x,0,2z)cepid} and

f: D—~>Z, £(x,2) = z. Applying Lemma l.4 (i) one obtains

= inf 2 .

. inf inf z = inf J.f _
xePYD zer zc;PZD . acD zePZD

But zePZD = Exé X such that (x,0,z)-€ egi% &> (O,z.)é"A;

hence "inf 2z == inf { zt (O,z)e A{ s Let x € PXD<=>1]z €% such thal

zéfib

(x,0,2) € gg_:_g% ¢=> (x,0) € D($ ).Then inf z .= inf{ z: (x,0,2)€
z€D . :
9_2}_%;} = c{;(x',O)OHence *

inf inf =

xePXD zeDX

il

inf { @ (x,0): (x,00€ ()5 .

pherefore. (2.6) holds.To ol.sita;.i.n (2,6') we t‘ake D, = gol _gs‘ggci? Yo
- Let us determinate the conjugate of A given by (2.3).‘
m,')eA Cﬁ'Wym)em 7z o+ z'?Tj
&= V(x,y)é D(Eg )z, {D(x,y) + z' 2Ty
&> Yx,y)€D(P)t 2% 0x + Ty =P (x,¥)
4:4:> (O,T)é D(%c')\ and\z'},cf;c((),’l‘).

Hence

2% = {(7y2"): (0,T) eD(% )yzty ° (0; M YERIRISR 2
Taklng into account (2 1) and (2. 6) it is natural to conplder as

the dual problem of (?) (or( @)) ’che problem



e
T c{:""(o 1) (0,)e D(E°) ] .
Ir A ;‘ ¢ then, from the def:ma.tz_on of (&), (' FP) and (Z.1)
we have | . ' e
' int? » in29 > supd ” (2.8)
Theorem 2.3, If Oéi(co P D(<I>)-,and inf { Zs (k,O,z)é

co(epi cf{) )% exists, then co{; exists and

in.t{ o % (x,0): (x, O)é—coD(gf) ¥ =
= max { - ¢ °(0,1): (0,1)€ D(cp° YY) (2, 9)
Moreover,x is a solution for (¥ ) and J.nf? = maxd if

and only if there exn.u’c K C L(Y,Z) such that

P x,00) + $OC0,T

i

’
or equivalently
}TeL(Y,Z)_ such that (o,m)e3 QS(XO,O).

Proof. From the conditions of the theorem, passing through
(2.5') and (2.6') ,we have that 0 € (coPA) = *(coP,D($)) and
;Lnf{z. (0,z) é coA} J.nf{z:' (x,0,2) € colepi {? )} exists.Thus :
we can apply Theorem 2.1 to obtaln |

inf {z: (0,2)€ _(;_Q_A} e fnax{ - z':1(T,2')e AO} ’
Hence A® £ B ,and, consequently,by (2. 7)5epi. (% s (epi % )c;é Q),
so that _g_g_cﬁ exists and max ‘[ : A IEEL e Ac} = max{ % (Oy T)
(O,T)QD(%) c)} « The rest of the theorem is iﬁunediate.

Tn what follows we obtain some important cases particula-
:r'i'zing cI) A
~ Theorem 2e4o Let.F;' D(P)CXXxY—>Z be an operator and S€
L(X,Y).Suppose that O el {Sx-«y: (g oyr) f:___.c_;_gl)(F)} and inf %\z: o e
- 8%,%) G»CO( pi F)} exists.Then co F exigts and

inf %&9_}3‘(}{,33{): (x,Sx)206D(F)3 =

260
max{:— F(T 0 8,~T): (T 08,-T)€ D(E )} ( )




Moreover,xo_ ig a solution of the primal problem. and inf ? =

= maxﬁ if and only if there exists T € "L(Y,2) such that
P(x_,8x_ ) + F (T 8,-1) = O,

or,equivélently .
there exists TEL(Y,Z) such that (To'S,~1)é JF(x_,8x ).
Proof .We take <{>: D(c}b e o S AL W @(X,y) = F(x,S%~¥),
where D(P) ={ (z,y): (x,5%x~y)€ D(F)f = 4 (x,Sx-y): (x,y)€ D(F)} .
Thus ¢o (PYD(45)) = cO { Sx-y: (x,¥) €ED(P)] = {SX~y=(X,y) é—ggﬂ(FX,
by Lemma l.1 (ii).The conditions of the theorem assure that O€
l(_g_o_PYD({) )).We also have |
-
P (2,05)

sup { iTlx + sz - @(X,y‘): (x,y)en(cp )}
BUR YilliE o Tl F(x,Sx-y)t (x,Sx~y) € D(F)f

It

i}

"

sup { DX 4 Ty (Sx~y) - F(x,y): (x,y)€ D(P)

H

sup { (T, + Iy0 8)x-+ (~T,)y - F(x,y): (x,¥)
| € D(7)f

i

(2, + 7,0 5,-1,)
SRS Tl N

To épply Pheorem 2.3 we must calculate co(epi cﬁ ) oWe have egic% =
il Il(x,y,z): F(X,Sx—y)ng s {(X,SX»Y,Z): F(x,y)< z; = U(epi F)
where Ut XxY¥x Z->X xY x Z,U(x,¥,2) = (%x,5x~y,2).1t is obvious

_that U is a linear operator.Hence by Lemma 14 (ii) we have
colepi §) =',{(X,SX~Y,Z)= (x,y,2)€ colepi F)f o

Therefore epi %c £ ¢ ,so that epi ¥4 $ , hence coF exists

and » o ' o
tnf [z: (x,0,2) € co(epi® )f = inf {z: (x,8%,2)€ co(end)
- .inf | coF(x,5x): (x,5%)€ coD(F)]
éxists.

. Now (2.10) follows from (2.9).The rest of the theorem is immedigte .
Another important case 1s furnlis»hed taking P(x,y) = £(x) +

+ g(y)s



= L4 -

Theorem 2.5, Let £: D(f)C X->Z, g Dlglc. ¥4 be two
operators and & € L(X,¥).If O el(S(_q_g_D(f)) - coD(g)) and inf{ Zq+
+ 7zt (x,zl)eg_g(egif), (Sx,zé)eg_g_(epi g)} exists,then cof and
cog exist and' ' '

; :Ln:f‘§ cof(x) + cog(Sx): x ecoD(f) Ns l(coD(g))} (2 1)
. = max {wf (T8 8= & (-T) 95 € D(f ),—-TGD(g )f’

Moreover,xo is a solution of the primal problem and i'nfg = max<

if ‘and only if there exists T € -D(g%) such that ToS D(£%) and

:f(x‘)+f°( 08) £Tes(x ), _
- < {2.12)

g(x)~*g( = =T 0 8(x ),

or,équivalently'
;‘JT = L(Y;Z) such that To S eﬂéf(xo), S D’g(SXo)o

Proof. Let us take {): D(é)ez,éﬁ(x,y) = £(x) + g(Sx~y),
where D(cﬁ) = {(x,y)‘ x €D(f), Sx~y € D(g)? = {(X,Sx-y): X €D(L),
y G:D(b)} Mhus PD(P) = | sx-y: % € D(£), ye'D(g)} e

S(D(£)) - D(g)olence 0. € T(S(coD(£)) - cob(g)) = “(coPyD(¢)),
where we have used Lemma 1l.L1(ii) =~ (iii).On the other hand we have

g_g,f_c{b {(‘x?y,z): £(x) + g(8x-y) ¢ 2§

{(x,8%-y,2): £(x) + gly)<sz |
1(x,8%-y,21+ 2503 (X,29 )ég_p_; £,(y,2,) € epi g} :
. Betiue. Bog xYxZ-aXxYXZ,U(x,zl,y, e (x SK~Yy %)+ Z )° U is

i

#

I

a linear operator and U(epi f x epi g) = epi cf «By Lemma Ll.l (.1)
we obtain

. co(epi®) = U(colepi £)x colepi g))
e {(x,s::—-y,,zl+ z5) (%42, )ec,o(eg_ £),(y52 2)600(?_9_(_283)- )
Hence ' a

: int i fotin @_(?_Ei—‘}’)f = j_nf{zl-k 2,8 (Xy2) € co(epl i S
' (8x,2,) € co(epi g) | |

existe.Thus the conditions of Theorem 2.3 are verified.So

T T i




e P "
inf {co & (x,0): (x,0) € coD()] = max ..430(0,‘1?):(0,’}?22 e

We have

(?C(Tl,Tz) = sup{ BZ 4 DY f(x) ~ g(bx-y): x€ D(f),SX-—yéD(g.)} :
= sup{ 1% + 1,(Sx~y) - £(x)-g(y): x€D(£),yeD(g)
= sup {(T, + 1, os)x + (=2, )y~£(x)-g(y):xe D(£),ye D(g)f.
= oup{(‘.l? + T,°8)x ~£(x): XGD{f)} + sup {(uT )y-8(y):
Hence ~ yéD(g)}
" (T1s1,) = £5(Ty+ Tyo §) + g° (~1,), (2.15)

when T. + T,0 S en(£®) and -TZGD(gC),Since D(tﬁc) # © it follows

i 2
that D(£%) # 8 and D(g%) # $ , and,consequently,cof and cog existe
Take (x,0) é'coD(cit’;) = /l(x,Sx-y): ek EHEODE ) < § ye—g_gD(_g)f oFrom

(2.13) ,applying Lemma 1l.4(ii) ,we obtain -

co é('x,m = inf { z: (x,0,z)e c_g(ggi_cf)i
= inf 6 zl+ Z 5 (x,zl)e 'c_:_g(_e_g_i ), (SX’ZZ)-
. €co(epi g)f
= inf | zl?' (x,zi)égg(g_p__i_ £)§ + inf {zz:
. (8x,2,)€ colepi g){ o
Hence - '
o $(x,0) = cot(x) + cog(sx). | (2.16)

From (2,14),(2415) and (2.16) one obtains (2.11)e

Suppose that inf$ = max® and x_ is a solution of the
primal problemoﬁl‘hen there existisl’l‘ & TitE's)~ such that T o SeD(fC’),
" 1€ D(e%) and o '
£(x ) + g(ox ) = -f T D ESTL T
f(x ) + £° (TOS) - TOS(X ) + g(&x ) + & (-T) + TOSiX )=0

But : 2
£(x,) + £9(20 8) - T e8(x,)%0

o d :
g(Sxo) + g (+T) + 7T S(xo); 0



G-
Since 21”2’27/ O, zy + 2z, = 0 imply zl' = 0 (when C N ~C =
= {0} ) it follows that (2.12) takes place.The last equivalence
of the theorem is obvious,and the proof is complete.
From Theorem 2.5 one obtains immediately:
Theorem 2.6 . Let g: D(g)CY-—>Z2 Dbe an operator and
S eL(X,Y). If 0€Y(5(X) ~ coD(g)) and inf {z: (5x,2)e colepi &)}

exists,then cog exists and

gng | ggg( el sx€cob(g)f = max { ~ g (T) 7 € D(g"),
| Do §=0 fa
Moreovexr, :x; is a solution of the primal problem and meD = maxa)

if and only if there exists T (:D(g ) such that
“TeS = 0 and g(SXO) + gC(T_) =

or equivalently

Oo

il

HT e o g(SXO) gsuch that ToS.

Proof. Take in Theorem 2.5 fi1X—>2,f(x) Oe

i

Ar a first glance it seems that Theorern._2.4 is more
geheral 4han Theorem 2.6, In reality we can obtain Theorem 2.4
from Thecrem 2.6 taking g = F and replacihg Sy x> by S: X+ XxY
ix = (x,.Sx).,,E.'t is easy to verify that (0,0) & j“(f‘?(X)—ggD(F)) if
and only if Oe;.i{Sx -~y (X,y)e.ggD(F)} ., Thus we have the full
.eq‘u.ivalencge between Theorems 2.4.and 2.6. The form of the fun-
: _ction in Theoxrem -.2..4, is more convenient for reptimal control
problems,

Theorem 2.7. Let f£8 D(£,)CX2Z, 1Sk&n If coD(£;),0..

X €EX, (X,zk)é

_..,Qg_cg]}(z’:‘n) are in general position and injz{ Zoteseth

co(epi fk), lék.s n}’ exists,then ggfk,l sk<n exist and

g
e c ] . C g
lnf{g" e == ’B\ Q-QD(fk)J 7 maxé = £ TPy T € D),

A O T P B NGRS e

0.8 e R RS
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Moxreover, X, Fenan optimal solutlon for the p:r:.mal problem and

in:fg) maxﬁ' if and only sig 3'2 éD(fk ). 5 1<k <n such that
R

: Tk 0 and 5
k=1l - % - fk(xo) T fk(lk) = Tkxo,lskgn .

k=1

H

i}

or, equivalently

0 € 0z, (x) + 0 £ (X, benot D 1
. % :
Proof. Consider g: D(g) C s 2, g(xl,...,xn) =2 fk(xk)gD(g)z
b | k=1 :

n : : ,
X D(:f:‘k), and S: X—>X1,5% = (Xyee0,X)elt is easy to see that
k=1 - :

c 2 o B =
D(g’) = €=<l D(£,) » 8 (Tyse0e,T) = k%jl £y (T, ).Since coD(f)ye0
ikt c;_gD(fn) are in general position,Lemma 1.2.shows that (O,..
s éi{(x = Xppeee,X - xn): xed 5%, & _c_gD(fk),lskgn] =
= i(S(X) -~ coD(g)).Hence all the 'hypotheses of Theorem 2.6 hold,
so that we can, apply ite ’l‘herefore the conclusmns of the theorem
gre true, using & similar argument to that of Theorem Zo4.

. Let now Y be ordered by the convex :. cone Q.l\e say that
g:D(g)CYﬁZ‘ is .. increasing if D(g) - QCD(g) and x<y implies
g(x) < g(y).Denote by L+(Y,Z) the'.sp'ace of increasing (positive)
linear operators from Y into Z, able ' '

Theorem 2. 8 Let i" D(f) € X*>Y 'be a convex operator and

g.D(g)CY-—bZ an J.ncreasa.ng convex operator.Suppose that O €& t(g,)-
e £(X)) and inf )\g(f(x)): x & D(E), :I:‘(X)eD(g)] exista.Then
inf | g(£(x)): x€D(£),f(x)€ D(g)f =
’ 8. : ; -
= max{ - g°(2)=(T o 1) (0):7 €D(g%),0€D((T0£)°)
Moreover, x 1is a solution of the primal problem if and only if

Jp €D(g%) such that 0ED((Te£)®) and g(flxy)) + g(r) =

. . ' e el .“‘ | .
Mm?\ /\Kv%g% = Tf(x, ) = ~(Te £) (0),



g
or,equivalently A |
J éBg(f(xo)) such that oefa('rof)(xo);,

Proof. Consider cﬁ D(%?)C_XXY—»:*Z, c{)’(}:,y) =20 Ex): T )
where D(<}>) 2 {(x,y): x €D{E), Tlx)y + yéD(g)} « It is easy to

see that“c? is a convex operator and PYD(<I>) = D(g) -~ £(X).0n
the other hand '

; c m m

i1

.sup{ ,E + LY ~P(x,y): (x,5)€ D($)J
sup { TqX + Ty - g(£(x) + y): x€D(£),f(x)+
+ yE€D(g)f

H

= sup { "l‘lx - Tz:f‘(x_) + Téy - g(y): x&D(1f), y@l)(g)}"

(’Dzé £z xeD'(f)j + ‘sup { sz-—'
- g(y)s y€D(g)g

ti

45]

=
o]
P

3

=
b
H

= (B0 2)°(D) -+ g7 (2,),
When 'l‘ze D(gc) and TleD((.fl‘zo f)c),Applying Theorem 2.3 one
obtains the assertion of the theorem.
Remark 2.1.1f g: D(g)CY¥—>Z is an increasing operator,
then D(g°)C 1 (Y,2). 4
Indeed,let TeD(gC) and yOeD(g).Then for every q€Q,y -

- q&y_ss0 that 2(y - q) <&y~ ) + g°(T) caly,) + & (L);

hence Tq 7 Dy g(yo) - gC(T)o Applying Lemma 1.3 one obtains .

Tq30 for every g€ Q.Hence TE€L'(Y,Z)q
Corollary 2.3. In ‘I‘heérem 2.8 suppose that g is v subli-

near.Then : ;
| inf {g(£(x)): x€D(£), £(x) €D(g)] =

= max | ~ (2e£)%(0): 7€ 0 g(0),0€D((20£)°)],

Moreovexj,xo is an optimal solution of the primal problem if and

3'1' é/ag;(O) such that g(:ﬁ‘(xo) and O é-/a(’i‘o f)(xo).
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ST o
Procofe. The corollary is an immediate consequence of Theorem
248 taklng into account that D(g ) =70 g(O),g (P )z Qs
Theorem 2.9. Let fk:
operators ,Y a vector lattice and T € L+(Y,Z)¢Suppose that

D(:t‘k)CX—%Y, 1<k<n, be convex

| inf-{m(fl(x)v...an(x)): xégé& D(fk)f exists and D(fl),;..,D(fn)

are in general position.Then

. n
inf | m(fl(x)v..Oan(x));'xe é:a D(fk)} -

. ) n -’
=mm{~2: (2 of)(s) TeL(YZLZ:T -
. k=1 = s

. ) ¢ Il ; ;

Mbreover; X is an.optimal.solutionfof the primal problem if and
| only if
| HT eL(YZ),1<k<n,mmhtmw j& T, = Ty T Lx Wae
vew VE_(x)) = 2: T,f, (x) and oe}_‘_?(” )(xo)e %

b \

Proof. Let us take f: ﬁf& D(f )CLX%%Y f(x) = (fl(x),o.
..op,fn(x)) and g Py Z, g(Fpreeesyy ) = T(ylv..oV3 Yo It is easy
to gsee that f is a convex operator and g is an increasing convex :
operatoroAfter some calculations one obtalns Tﬁg(o) {(Tl,,.,Tn):

_TkéLL e, Z), (P} oSince D(g) -~ £(X) '= Yn, we can apply

the precedlng corollaryoThus

| o
inf {T(fl(x)v;.ern(X))::xe—("\ D(fk)} -
s

£ max:{~ (2{; T o £,)°(0): Ty GIJ(Y'&), g{; 1, = 1,0

g n -’ _ 6
érp(( ggi kaafk) {} o

Applying Theorem 3.4 in the-fplloWing sectioh,taking into

account that D(fy)y0.0, D(f,) ave in general position,the con~-



~ o
clusion‘; of the theorem folléxvso
As a c.onsequence' of Theorem 2,7 we have the following
uandwwh theorem (see [147] )o .
Corollary 2.4. Let £: D(£)C %%, gt D(g)CX—Z - be such
tha‘c f and-~g are convex operatoi'solf Oéi(D(f) ~ D(g)) and
£(x)y g(x) for all x & D(£)MND(g) , then there exists TéL(X,Z)
end z €7 such that
D/~ & £(x)  for all xeD(L), Sk o
TX z?g(x) - for all }.cé;D(g)'_. ‘ (2+18)
Proof. Since £(x)y g(x) for all x € D(£)MND(g) , it :
follows that there exmts inf { £f(x) = (=g)(x): xéD(f)ﬂD(g)}zOo

Applying theorem 2.7 we obtain

Oé_.inf% (X )= ag(x). xéD(f)ﬂD(g); =
= max | - £y S =) T entE °) A ~ D((~g)")},

C
Hence,there is T € L(X,%2) such that O0<&~f (T) - (-g)°(~T).Take

z = £9(1); then (-g)%(~T)< ~z, so that ]
Px - £(x) sz &=Tx ~ o <£(x) for &ll x € D(L),

and
=Tx = (=g)(x) & ~ 2&=>Tx ~ z22g(x) for all xeD(g)e.

The proof is complete,

In the sequel we give a neceggary and sufficién‘b condition
.%o exist an operator T €L(X,Z) with the properties (2 )=(2. 18).,
Compare with Sandwich theorem 4,3 of [14]

Mrﬁ 2510 2 Let £1: D(T) CXZ ‘gnid ‘gv D(g)c X——#Z be
such that £ and-g are convex operatoxr.Then the.following assertions
are erquivvalent: o
(i) there exists a convex operator F: X—»Z with F(0)< 0
such that ‘ .
' I(Xl) -—g(xa)jr,-al*(x -X2) for all X eD(i‘); eD(g) (2:19)




(ii) there exist T €L(X,%2) -and z €Z satisfying (2.17) and
(2,18). ' LA
Proof., Suppose‘ (ii) takes place.Hence
| Txl— Z Sf(xl) for all X, € DLL),s
Tx,~2 yg(x,) for all x,&D(g),

so that :
f(xl)-g(xz)?, Ixq ~2=IXy+ 2z = 'll(xl-—xz) Vxle.D(f)’ X, ‘€~D(g)_o'

Taking ¥ = T it is clear that (1) is verified.

Suppose now that (i) is verifiedoLetGC;: D(£)x D(g)—=>Z,
G(xl..,xz) = f(xl) 29 g(xz).It is obvious thams a convex opera”c'éro_
Let F: X xX—2 be defined bj -E-‘-(xl,xzj = F(X1~X2).Since F is con-
vex,s0 is F.Clearly,we have D(G) - D(F) = XxX -, so that (0,0)¢

j'(D(Gr) - D(F)).We also have G(Xl,X (=F) (Xl,xg) for all (xl,x2)

5)
D(G) D(E) = ’D(G)‘.Consequently we can apply the preceding coro=-

llary.Hence there exist Ty, T5€ L(X,2) and z, €7 such that:

G(xl,xz);;ﬁ.‘lxl-k T_sz —.zoV[(xl,xz)eD(G) v (2420)
L A A V(xl,x2)€XxX.(2.2l)

From (2.21) we have

TX+T2x-zo>/~F(O) htx e x&E>

1
-_(Tl + Ta)xzzo -~ F(0) Vxéxo

Taking x = O we obtain z, £ F(0), and Lemma.l.3 shows that

Tl + Tz = Oeslet T = Tl = - TZ; from (2.20).we obtain

Txl - Ix, = z(') g f(xl) '~_g(x2_) \7[};1 e b(f) , XZGD(g)',

oryequivalently,
2 f(xl) - Tx, % g(xz) o TXZ - zo‘bg(xg) - Ix,

.- Vxlé': B(LY, X2€ D(g.).

ATaking T inf{f(x) - Tx: x € D(£)% , which exists aince D(g)
£0 ., we obtain £(x) 3 TXez ’le ?_Dv(f) and g(x)< ’I.‘x-z"l/ﬁte-b(g)g
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‘which comple’ceu the proof.

We want to establish a condition to assure *chat :LnfSD

s

= inf SD’.L’ whexre

(91)  inf {f(x? + glx)vexie DN D(g)}_
and -
(P,) inf [ cof(x) + cog(x): = € coD(£)N cable) f

when cof and cog exist. In that case, gL 2 inf {f(x) + glx)s

xeD(i‘) N p{g){ , we have inf 9 = mePl if and only lfA
ggf(x) + g_gg(x) 2V for all X ecoD(f) NcoD(g) , or,equivalently

’d—/l ?OinéD(f) L& 1og h' ,'Zl /li’-‘ V 1,(70,3’36 D(E’S)s
s q= :

m
Lefyam, > /j\j:;
.

» .
‘Z_)xx 31/433-—>Z:/1f(x)+2:/4.ag(y3

i=1

We shall say that £: D(f)CX—Z and g: D(g)CvX-)Z' sa‘cisfy

condition (H) B

. . n

m
- F e
(1) =
A T R Bl B S T
X, = Y = . X + . BNy .
Gl g ;3:1/3 R = =1 ,h Ve

" Note that if 0 & (coD(£) ~ coD(g)) condition (H) implies the
existence of gQ.f and cog(see Theorem 2.7} and- cof (x) + cog(x)>

0 for all x & coD(£) N cob(g).S0 we have

: Propositiion 2.3 . Let O & 'F(QQD(f) - -g_gD(g)) and v =




= dnf { f(x) + g(x): %.C D(f)f\D(g)} o Then f~v and g satisfy
(H). if and only if 102 P | = 102P . ‘
In [7] Rosinger has used the following condition:

(CI) V‘/l’...’ An €R+, Xl,...,xnéD(f) ® yl,ooo,yné' D(g):

n n n - ’ 11'/{ :

It is obvious that in condition (GI) we can take,li;'o,

BN

el

=
nrﬂs
}-—!

: Propositién 214¢ f and g satisfy (H) iffand onday. dida £
.and ~g satisfy (CI). ‘ | ‘
: Proof.It is clear that if £ and g satisfy (H) then £ and
~g satisfy (CI).Conversely,suppose f and -g satisfy GBI )sd oines

dll,...,;lnlé-(o,oo), xl’XZ?';°’xn e D(f), yl,...,yne;D(g),

AL
Ci= 1

(2,22)

%Aixi = %Aiyi=> 1251 Ase(xg) o+ %,zigwi)}oo_

. n 4 = »
Take ,li> 0, x;€D(£), 1€ign, %Xiz 1,/3 >0,y;€h(8),1<ism,
; e ; : 1=

fi/‘f 1 such that éﬂixi = é:‘l j¥5 = %+ Then
& & m e m 1
i gzi’lixl & iéi‘al(jéi fﬁ) ot EZiv gzi i - /ubxl’
m_ mn n
X = = fLJyJ = §Zil J( féi.xi)yj =ﬁ§§£\ fgi/ll /Ajya -

i)
ME
M
o
:
ToF
=
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From (2.22) it follows that

o

B o Aoty s Yor: Sovi RakysiBiEad
e £ g
i=1 =1 7 /}3 et l/AJ Y3

or,equivalently,

L A E(xy) + Z_/Aag(y V7

Thus (H) 4is satisfied.
ﬁemark 2.,2. From Propositions 2. 3 2o4 and Theoreﬁ 2,7 one
obtains Theorems 1 and 2 ‘and Lemma 3 0f [7] , teking into account
that (0,00 M (D(£) = D(g)) =X :melles 0 € (coD(£) - coD(g))
" Remark 2.3. From Theorem 2.7, taking into account the disw ‘ §
cuggion in Section 5, one ‘obtains Theorems 2 0 f Dragom1resca o :
{2] end Theorems 2 and 3 of Zowe [13] concerning the Fenchel
.duality. | s . =
Remark 2.4. From Theorem 2,7 one obtains Theorem 6 of
Baif [1] in the case of vector lattices.Note,if Z has only the
least upper bound propefty,in Theorem 6 [1| one has rather 3

equivalence than equalitye
3. Applications

In this section we apply the resulfs of Sectioﬁ é to cdculate
conjugate operators and subdifferentials. |
Theorem 3e.l. Let F¢ D(P)CX xY—>Z a convex operator,
8 € L(X,Y) and %): D(%’j»a Z,\P(X) = F(x,5%),where D(P) =
= {x: (x,5x%) G.D(F)} s AL 0 e-i{Sx~y: (x,y)¢€ D(F)} y then

DY ©) = {ur U=y By S (v, EE0EDT ,

(3.1)
OOy = punt |30 (e, P08 (T, T, ) eD(®), U = 'J.‘l emgog] o

and
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/b‘f(x) uim b Dy S: (T9,T,) @F(X,SX)} el e D((f?)',(Bo?;‘

Proof. Let U € D(\f ) take F: D(F)-»2,F(x,y) = P(x,y)-U(x),
where D(F) = D(F).Hence _Qéi {bx-y.(x,y)el’)(}u‘)f .Since U< D¢ ‘F ,),
it follows that (Y°(U) = sup [ Ux-F(x,5%): (x,5%) € D(M)} exists,

So, we can apply Theorem 2e4%

i

- \{)C(U) i { F(x,8x):(x,8x)€ D(F) [=

il

max | ~FO(T o's,~T: (Lo 8,~1) eD(F)f

or equivalently

\f) lhgrain { FO(T o §,~ 1)1 (Te8,-1)eD(F)} .

But

7° (TlsT ) = BUp { TIX + sz -"l_f‘—(x,'y): (x,y)€ D(F)j.

i

Sup)l TlX + T2y - F(x,y) + Ux: (X,y)e D(F);
FC(T By Lol ‘

with D(F') 4 {(T - U,T P)t (25,1,) €D(F Gapds, Consequently,

i

¥e () min{F"'(To S + U,~1): (To S + U-T)e D(2%)f

tl

min 4F°(T,,T,)1 (2,57,) €D(F°), 1+ 1,05 = U f.
Hence it is verified (3.1l).It is easy-to verify that

RLX 70 Si ($1,T2)e’b F(x,5%)) C 9 P (x) for all x € D(P).
Let us show the converse inclugion.Let U€ 0 (x ); then §x,)+
+ Y°(U) = U(x_).Therefore,there exists (T;,T,)€ D(F°) such
thatugfrl + T,05 and ' % bud 4.

| k 5 3 =, 3 e
F(XO,SXO) + F (Tl’TZ) = (Tl + Tyo S)xom DX+ TZ(SXO),

80 that (2,1 )€ 0 P(x_,5x, Y cHpgige @ kf)(x )C {1+ T 0 5 (11,12)

é} F(X s SX )} , and (3.2) is verified. _ L e
Theorem 3.2. Lét f: D(f) C X-22 and gy D(ICY>T Ve

convex operétors gnd S GtL(X,Y)oLet_(f : D(%i)éé Zis L(’(x) =

- £(x) + g(5x), where D(¥) = D(EINS™H(D(g)).If O0EX(S(D(L) -
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~.D(g)) then

D(\()C) i Tza 5t (T9,T ye b(£® 5t s )}
.%%U)=mn1{f(T)-+g(q}T émﬁ)fﬂéDQ,)Uz

:Tl‘+ﬁ}208f

aﬁd : ! : ,
/b'\{)(:x) = 5\‘}}1 + T2 & 5 Tlé Bf(x),Tzé’Eg(Sx)f .for all

Proof. Take PF(z,y) = £(x) + &(¥), L’J(I‘.) = D(f)x D(g) in ‘the
preced:mg theorem.Then 7 (ll,T Yo £ (‘l‘ ) + 8 (T ) and ('11,1‘ ) E
7V P(x,y) if and only if (Tj,” )E D(F°) and £(x) = gly) + £© (T4 )+
+ g (T ) = Ty% + To¥s which is equlvalen’c by the same argmnent
as i Theorem 2.5,%t0 Ty &0 f(x, and T (‘/Dg)(y) The prrzyof is
compWete applying Theorem 30le

Theoxrem 3.3, Let g: Plglc, 1% ‘be a convex operato:L and

o 2 AA——— A VO

SEL(X,Y) Let P : D(ie »> %, Plx) = g(8x), where D(P) =
. 5L (D(g)).If 0 € F(5(X) -D(g)),then

il

{D(\("’) = jre st Ten@)} s
\f)c(u) min  g°(T) + T (%), Teos = U} ,

and

i

D ) ()

Proofme take in Theorem 34 2 f: X2, £(x) =

o ss0 e? ngK)} for all x € D(Ple

From Theorems 273268 and 2.9 one obtains,respectively:
Pheorem 3.4, Let fk. D(£,)C X X—>Z,l<k<n ,be convex
operator SOSupposo that D(fl),..',D(f ) are in general position.
Leti @f’: r\ D(fk)—az, Lf(x) =21—1: fk(x) .Then
' k=l . '

»
~ "
N -~

¢y -
\D(\{) E Tk: keD(fk), 1<kenf

1\9 (U) = min J1 z, £C MEME 1‘{21 T, U]




o
/3( i ol for all D(P)
\f .X) k[::]. k(}x) or a 2 ((f)é

_ Theorem 3¢5,  Let f: D(f) C X— Y Dbe a convex operator
and g: D(g) C Y—>2Z an inoréasing convex ope:’ra;cor, where Y is".'
- orderédo Let \{?: D((() ) —> Zy &f(x) = g(£(x)), where D(Y) =
%{X; %8 DEEY o Bl )E D(g)} . Suppose that O € i(D(g)'n
~ £(X)); then | |

{D(\f’c)
&_{9°<U)‘

Ve = U Paenm: Te De((x))] for all xeD(P),
Theorem 3.6. . Let £3 D(f,) C XY be convex ope-

i

Ulp((r o £%): 1€ DEN]
nin ] (D) + (r o £)%(0): 1€D(g%),
| U en((2e0)®)] ,

il

and

i}

rators, l<k<n, ¥ a vector lattice and T € LY (¥,2) .Let P

(1% 12 i i \P(x) = T(f (&)V,.,. V:E (x)) «Suppose that D(i‘ Do
el © |

...,D(fn) are in general posi’cion; then

n
BLp%) = {Pz;lsk. TkeL (Y,2), Z:T - T, S eD((T o f)) )j

¢ () -Q-.mml\z (1,0 £,)°(5,)0 e LT, ),

£ g - e Do 2%, 2 8- 0
__T =T,S GD((T of)) ‘____S = U

. 1 j2¥ ; :
KB\F(X) =U%£;_;/3 (1) 0 £y) (x)3 TkéL+(Y9Z),1§i 7 = T,T(E) (V..

. _n :
o o¥E () & 1%;'—:[ kak(x)} ~ for all, xé.D(HQ) ;

‘Remark 3.l. The most part’bf 4the formulae for calculating
_conjugate operators and su.bcla.fferentlals in this sectlon are
given also by Kutateladze [3] .But Theorems. 363, 3+5.and 3.6

are -gtated in more general conditions.Thus,the formulae in



_'l‘heorem 3,1 and 3.2 do not Ffollow from those of Kutateladze .
T}worem 3,7, Let 1‘. D(F)C.mez be a subllnear operator,

PCX, QCY. be convex L,ones, SéL(n,Y) and Yy € Ye Suppose that

D(F)-P is a lineaxr subspace of X and o (S-(D(F) (\P_) ~QoThen ;

%7 0,827 ¥ => P(x) 2 2y SR

it and only 1T

A N R AN BT TRV M

3

€ LK, B 256 17(Y,2) such that

(304)

Ty + T, ¢ 8 GDF(O), DoV Zge

AP e AR AR T P Y

Proof JLet T, € L¥(X,2) and 1,eL(Y,2) satisfy (3.4) and
x 30, Sxyy,eThen ' '

< B, 0 88 £3.X +.% oiSx < D) Ty

By S LY 2 <4y 2

¢] 0

so that (3.3) holds.

Suppose now that (3.3) holds. To show that (3.4) is verified,
let us consider C§>: D(cfi) C X x%. X =30 C{D(x,y)' g F(x), where
D(Cﬁ) = {(x,y).: x € D(F) NP poxEY, 2 ¥ 4 Q'}o It is clear

that ei> is ccnvex,‘fie have . §

PYD(‘fP) = {y- x€D(F) NP, Sxey +y o+ Q}
SEDEE) B)= Q=

{H

so that 0¢€ (‘3 D(zf)))owe alqo have %S inf )Lc%(x 0): (x,O)C
D(% )} = jnf )1 F(x)t x 2 0,82 2 ¥ } . Hence we can apply
Theorem 243, éo that

int [P, 0): (£,0) €D( )] = max { ~ & °(0,1,): (0,1,)€

. X :
D(c{)c)% . Let (O,Tz)&D(ch ) o Then
$2(0,1,) = sup | Ty ~ P xmy): (ry) €D(P)]
sup { @ (SY~y -y ) + I‘(x)‘ e D(F)ﬂP,ye Qj'
sup { Tzobx - F(;x) x € D(I‘)HP} + sup{@r iy
yé Q} "TQyo

1 -

i



ey
Since D(F)ﬂP is a conme and T, S - F is posn.’clve homogeneous it
follows 'bhat ‘I.‘zo Sx - F(x)< 0 Vx (= D(F)(\P and sup QT p. 8% =
F(x) : x € D(F)NP | = 0. Analogously,we have T, O and sup] 1oy
y€Q] =0.Therefore @C(o,mz) = = 1,y ;T2 0 and T,° sx ¢ P(x)
le € D(F)NP.Let IP‘ P>z, I (x) = 0.The last assertion is
equivalent to Tyo S € O (P + 4 )(o) Since D(F) - P is a linear

subspace of X we can apply Theorem Jod 110 obta,m ,)(I‘ + I ) £0)=
DI‘(O) +/bI (0)s It is obvious that /Z)IP(O) )it (X, e Hence

’

. . % +
_:Lnf{F(X): 5 0y 7Y } = max ? yof T, € L (X,Z),T2€—
| | s Bes Ty Ty se 0 7O
which shows that (3.4) holds. ‘
Remark 3.2, Theorem 3,7 represents an analogous genera-
lisation of the Farkas lemma to that one in Zilinescu [15) ,

but under different conditionse
4, Applications to the Kuhn=-Tucker Theorem

Suppose that Y is ordered by the convex oo:oe B Liettafs
D(f) C X-727 and gt D(g) € X—=2Y be convex ope'rétor.Consider 'fhe_
following pro’olemé: '

Py inrlf): &x)<s 0 S o »

Theorem 4ol Su.ppos_e that: & i(g(D_(f)) + P)eThen X, is an
optimal”solution foxr (97). if and only if X, is admisible and :

there exists T2 D such that
‘Tg(x ) =0and 0 € UL + Teog)(xy)e (4.1)

Proof. Suppose X, is an op’c:.mal solutlon for (?) Let C}B:
D(C}?) @ X.XY->Z %(x,y) = f(x), where D(ciIB) (x,y) eD(f)ﬂ
Dlg), glx)s y}_ o We have . ' : ‘F '

4

po() = [yt xeD(RINDCE), )< T} = (D) + 2o



i SQ' :
20($) =y Jxe nOND(), )<y} - e@@)) + 2.

Hence Dé:iPYD(45). Since X is an optimal.solution for (99);3
follows that inf {gﬁ(x,o): (x,O)éED(%i)] exists.Thus we can apply
Theorem 2.3, If follows there exists T € L(Y,Z) such that (0,T)€
0 c})(x 20) jis80y
. Ty £ & (x,¥) mc{a(x »0) Jvi(:sc y)e D(ﬁé)<—>
Ty < £(x)- ~ £(x,) Yx e p(£)N Dg) , ex) s yeo>
Tg(x) + Ty € £(x) - £(x_) ¥ x e D(£) N D(g), ye P =>
By <0 for all y& P.
Hence T £ O. Thus there exists 1 > 0 such that
£(x )< 2(x) + Tgx) ¥x ()N D& .
Paking % = X, we -.obtain 0 £ Tg(ko)ggno =30, g0 thet Tels ) = 0 and

£(x,) + Telx )< (£ + T og)(x) Tx € D(2) ND(g) 4=>

0 €0(f + Tog)(x,) o
Co'r}ve;v sely,suppose that %o is admissible and there exists T> 0
such that Tg(x,) = O end 0€ O(f + To g)(x )a Then for all
X € D(f)ﬁﬂ(g) we have

f(x,) + Tglx )e £(x) + Tg(x)

g0 that for all x€ ﬁ(f)f\D(g) such that g(x)so_ we have f(xo)s
f(x)o.Therelfore Z, is an opt:u.mal solutlon. :

Cotollary 4ol, 0 T(g(D(£)) + P) and O € (D( e = i),
then x_ 1s an optimal solution for (@) if and only if X, is an

o
admissible solution and

352 >0 . such that Tg(xo) = 0 and /bf(x )N (= ﬁb(’l‘ g)(x ¥) £ L

Proof. Since OCi(D(f) - D(g)) = (D( ) = D(T o g)).He can
apply Theorem 3,4 to cbtain K)(f + T Og)(X) “/Df(k) + /D(TO g)\y).
Now apply Theorem 4elo
. Goro]lax‘i ¥s2% Tet g D(g) X—Y be a con\rei‘ operanor'

and £ D(E)-»3 ,E(x) = 0, where D(g) ..b. g(x) € of If 06

e e

B AR AP
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L(g(X) + P) then

Ve = VDo g)(x): T%0,78(x) = 0 § for all x € D(E),
- Proof. Let x € D() and T 7 O such. that Tg(x,) = 0
and UE 2 (T o g)(xo) Then

Uﬁ: - Uxo_{ p 4 g(x) -~ To g(x’c‘)) for all xeD(g)e -

Thus for all x € D(g) we have Ux - Ux < 0 = g(x) & 'é(xo), s0
that Ue€ © §(xo). Conversely, let U €0 é(io).ln the pi'ececi.jnng
corollary take f = =~U; it is clear that X, is an optimal solu~
tion for probiem'(g)). Consequently, there exists T70 such -
.thét Tg(xo) =0 and UE 0 (.o g)(xo).'The.proof is complete
Consider now f: D(f) € X—»Z and &y D(gk)CX—ﬁYk,
l¢k<n , -be convex operé_’cors, where ;fk is ordered by the convex
cone Pk?Le’c G = {x: gk(x)s O} o Consider the following problem:
(Ql) inf 4:?(::): gk(x)é O,lékén}. |
Theorem 4.2 . Suppose that D(F) , Gl',...,Gn-are in general
position and Oé—i(gk(X) + ) for all k,1€k<n. Then X is
an optimal solution fox (9)1) if and‘ only if X is admissible’

; + .
.and there exists TKGL (YK,Z), lkgk(xo) = Oy ligik £ ny)and

m )
0¢ f(xo) 4 1%1 (T4 o gy) (%) | (402)
Proof. Note that is an aptimal solution for ( l) if and
only 4. n_ |

0€0(t + oz gl ) o¢

e b gk(,x) =-0OaiBor LhHe operétors £ and gky lL<k<n

we can apply Theorem 3.4 so that. 4 ‘ i 5

~ where gk: G

—

@ (£ + Zl‘l. gk)(x) :f)f(x)'.-.r 2% ”ng(x‘) o
k=1
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Since Oél(glr(X)x-k Pk),.,webcan apply Corollary 442 to get (4o2)%

5, The continuous case

Throughout this section all vector spaces are topological
véctcr-spaces and the cone CCZ is normal, 1.€o ., there exists a

base \8/0:6 nelghborhoods of the origin in Z such. that

= (W+C)NW - C) for 811 weﬁ

The system of balanced neighborhoods of the origin in X is denoted

¢ ;
I/(X) oThe . operator f: D(f)CX-=Y 1is said to be continuous at

x_if x €& intD(£) and £ is continuous in the usual sense.at X o
w : 2 g : : o
Theorem Sel., Let X,2 be topological vector spaces,CCZ - be
a normal cone and f: D(f)C X—7Z a convex operator.Then Fols

continuous at X, if and only if

Jzez ’V‘web&v}ve ()/(X) le EX ot 13 f(x)ez + W = Co ' (Del)
Proof. Suppose that £ is a continuous at X, € intD(£) .
‘Then . |
bt\z’t-ll? 3‘«’6 ?y(X) V XEx, + Y f(y)ef(x ) + W=>
1z - (=) Juew Ive zf/x) x e xy + Vi £(x)€ 5 + lim Co

Let ws show now the sufficiency of (5.1).Without loss of generality

we can suppoqe tﬁat X, = O and £(0) = 0 ( btherwia\s' take f(x) =
jf(x + X) - f(x )).Let We u7, since Lﬁj/lp a base of neighborhoods

of the origin, it follows there exists W euﬁ“ such that (0,1} * Nl

+ [0,1]- w cw N (W) Using (5.1) Jve I)/z() Vxew

f(x)-ez + W) = Co Since W)€ W Ji € (o, 1] Wté[n /H Aze

wl‘, et A€o, /1 o] and x € V. Ve have

F(Ax) = f(lx + (1 ~/1>0> «—‘Xf(m + e -/\).Lw) = Af(x) ,

so that

7 ey B P P

PR
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£(Ax) € AE(x) - Cc'Az + AW, - AccW, + [0,1)-W, - ¢
CWN(W)-CCW - Cq
On the other hand | “ |
- £(0) = £( 3Ax + L -amed £z« } 2ecam,
80 fhat , ‘ &
£(Ax)e ~f(=Ax) + CC~(WN(-W)=C) + C = WN (W) + C +
_ + CCW + C,
since -xé€ V.Consequently .- .. /16['_0,/1'0] Ver: f(/l%.)e(v.'-fc:
((W+C) = W, Hence f is continuous at X_e ‘ e

? O e
. Corollary 5.1. Let f£f: D(£)CX—»Z be a convex operator.If

:

-f is continuous at %o then £ is contj_ﬂnudu‘s on int Bl i o
Proof. Let x ¢ intD(f). Since. the map ¢— X, re(x = X ) is

continuous, it follows that there is ¢ » 1 such that u = x_ +

+ g(x =R Je ;Lnt D(f) Let “Jeﬁ leeU% such that [0,1]- ‘f.lc Ve

Since £ is continuous at X, € inth(Lf), JV & )}/(X) V[x ex, Vl

f(x)éf(xo) + WloLet V2 = (L -é_(xo + vl.) +€;— (XO + ?(X-»Xo)) =

_ (- l ' $ =1 L . . X g

= (1 = )V + e X, + 5 X, + X=X, =x + (1 §)V1° Hencevz_
is a nelghborbood of X.lhet x'le V2, hence x' = (l - g,];)v + %J:" u

for some VeEX -+ Vlo We have f(x!' )<(1 o -)f(v) + % £ 0ad),

so that
f(x')e (1 - —)f(v) + -f(u) -~ Ccc(l ~ -)(f(x ) Wy ) # m"‘(u) ~C
= (l- ~)£‘(X ) + w:ﬁ‘(u.)+(l- -——)W Cc(l )f(x )+ --i‘(u)+W G
Consequenbly, Jz = (l - —-)f(x ) + *g“f(u) VWGM)’ ;JV =(1 = m)V
| ’Y)x'e x + Vi £(x')€ 2z + W ~ C, which completes the proof,
Coroliarx D ¢ -(.‘) Let £3 D(f)C X7 be a convex operator
Suppose there are .some z €& Z and VS v/(X) such that f(x)<z fob
e B XCX i Vg Then i‘ is continuous at X9 and consequently, on,
intD(£). '

(ii) If intC # § +the above condition is also necessary, il.ee
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if £ is continuous at x ce intD(f), then there are gome zeZ and

AR Sy IR S R P e i

Ve mX) guch that 'f(X)< z for all xex, + V., | : | é
Proof. (i") suppose that Iz K= Z,V € [/Q/(X) vxex + Vi

.f(x)<z o JEi equivalem"lyga € Z, V & 19/(}{) bl'xéx + V
:ﬁ"(x)e,zo - CoThen :{z = AOVWt"H?/ f}rV V Vxex + Vi £(x)e.
% + WG, so that, by Theorem Baly 218 cont;nuouo at Xy and by
Corollary 5.1, £ is continuous on intD(£) e

(ii) Let Zlc intC; then 2z, = ce V/Z). Since f is
continuous at X o JV g lﬁX) )[}Xex s o Tiz) ef(E, ) + Zl - C.
Therefore, Zz = zl + i‘(x ) }V & ﬁ/a) #XGX + V ) <z .

Corollarv Gede ket f. D(f)C:i~ﬂZ be an operator contlnuous
at X, é-lntD(i) and A convex set of epléraph type, such that
At)epl £,If inf { z (x ,z)é-A_Z exists, then \PA' P. A—éZ,‘fA(x)~
' = inf‘{ A (x,z)é:A] is continuous at Xq0 and consequently on
int (P,A)> int (zoD())s
Proof. We have
- coD(f) = =.coPy (epi f) = Py (co(epi f))C;P A°

Since % € intD(£), it follows thet x € int Pyhe By hypothesis,
inf}‘z:(x ,2)€ A] exists, so that, according to Theorem a2y

\'PA(;{) exists for all }"éPXA’ and by Theorem lel (ii) \()A is
coﬁvox.But £ is continuous at X, 1 8O that VWGH}/JV = ZFX)
ﬁxCx 4+ Vif(x) éf(X ) + W , Since epi £CA, we have YA(X)\_f(x)
for x€ D(:ﬁ') o so that le ex_+ V. \{A(x) €z, ) W2 C Applylng
Theorem Sel, \IDA is continuous at X and . consequently on 1nt(P A)

Denote by B(X,Y) the space of contlnuous linear operator

~be’cwoen X and Y. 4
Remark b,,.., Let £3 D(£)CX2Z.1T £ is Acontin_uoas at some
X, € intD(f} , then n(£°)CB(X,2), and consequently J£(x)CB(X,

%) for every x €D(f)e
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_ Indeed,if T € D(i‘ ) then £2(1) + £2(x) 2 2% for every x €D(i‘)

Corollary 5.3 implies tha‘c T is continuous at Xyt ‘and consequentfy

on s ' ‘ _

Mo obtain the continuous version of Theorem 2.3 it is suf-

fiq_ient to stengthen the condition Oéj"(PY(QQD(ﬂiv-))) in such a v

way to obtain that \f)ggé\ be con’c;nuous' at 0, where A = |
PY xZ(%CL{f)“ Taking into account Theorem 5.l, such that a

condition is the following:
}zez VW%LJ/ ;(Ve ()/(Y) 'bty eV 5137 X (5553
! 02
; c}(y,x)ez + W 4+ C, .

Mo hold (5.2) it is sufficient to have -

f]zlez JVG [ﬂ(Y) Vyev :—/(xeX.: %(X’,y)s«z, BB
or, | v
f]xoex such that 43(3: ,¢) is continuous at O. (504)
To obtain the = continuous version of the othef resulivs
in Section 2 we must take SE€B(X,Y) and rewrite ‘conditions
(562)=(5=4) for the corresponding operaltor Cj’ .
In Section 3 1o assure ‘Lhat \focoA is continuous at
0 for every étb Cf(x,y) ~?5(X,y) o Sy, where S&B(X,2), we
must use a condition of the following type:
3zeszeH} .'VUG-/}EX) :{veﬁ/(v) }xe«xlfyav

: | (52l
Hx‘e—x + U c’%(x',y)‘éz + W - C‘,

It is obvious that a necessary condltlon for having VCQA
continuous at O is O é:(PY(QgD(q?)))l mhe following resui% ghows
that this condition is sufficient-for (5.1) to hold in ruther ge-
" nezail caéeSa :

Theorem 5.2. Let X,%2 be Frdchet spaces and Y a barrelled

space, and ({3: D((P) C Xk Y-rZacg convex Qpex‘ator with clc;segi
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epigraph;lf 0 e (PYD(@) )t and inf -{@(x,o)a(x,o') ¢ D($ N
exists,then Y (y) z :}Lnf | c?(x,y):(xgy)é'D(:q:)f exists for

every y € PYD(cﬁ) and Y is continuous at O. Moreover (5.2') |
holdse ' : ‘

Note that in our condition, by The oren 3¢34 V) exists
for every y € }?YD(cP ).Thus we must only show that (5° 2') holds;
To do this, we shall use the following theorem of Ursescu stated
in somewhat more general setting in [L2] .

| Theoren o Let X be a Fréchet space and Y bé a barrelled
space.Let F: XX be a closed convex multifunction-(i.e. &E‘EP_E F

= {(x,y) y eF(x)} " is a closed convex set.If (Ranve F) £ P
then (x)(\(mm CE_EI‘(X+U) |
P(x) C lin int P(x + U) : ‘

e

for all x € D(F) and UC &(X) , where lin A denote the alge-
braic closure of A, '
Proof. of Theorem 5.2, Considexr the mulhfunctlon PiXX%Z—>

.Y defined by F(:r z) = {y. (x,¥,2)€ epid | = { ye CP(x,y) < 2z¢ .
Hence graph F = {(x, z,y) (x,¥,2) €epid] . This constitutes a
reorlentatlon of ___p__ri) » so that F is a closed convex multifuncti
on..Range P = Py(graph F) = Py(epiP) = Y(D(cp)).nenoe 0¢
(m F) s Let (x % )YeX x Z such that 0 eF(xo,z )é’>cP(1X:0,O)
D anbre e Shows @it < Pl e Z}L(x) Jve J”y)

gsuch that V Cft((x 2% ) + U x W) s Or equivalently

Vweﬁueﬁm Eve ')/(Y) V’yev Jxex +Uz€z + W

& ‘Is(x»y) < 2 &>

’V/W.6 ,Uél)/(x) ;{Vé I}VY) ‘Vyev gxex +U. @(x,,y)

&e it W - C.
; _ - 0
Hence (5.2') holds,and consequen’cly\f’ is continuous at 0,The proof
ia complete. : *
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Theorem 5.2 represents a generalization of Corollary 2.1
in [5] « |
. Wie want to remark that ‘formula (4. 3) holds with T€ B(Y,2)
it 0cdnt (glo)Hn) . AL, intP # - § then the abové condition is v

eciuiva lent to

?x € X such that g(xoje ~intP, . (5%5)

Indeed, let y, €& intP and suppose that 0 & int (gl J{)FP),
then ;/107 0. such that A T g(X) + P, so that }X e X, pé—P
such that - /loyo & g(xo) + p o Hence ~g(xo) ) peintf, since
P + intP = intP.

The following theorem represénts, the continuous version of
fheorem 4.2 and a generalization of Theorem 6 in [_13]. In this -
case X, Yk,Z, are topological vector spaces, the cone P CLY ‘ls
closed and convex, int P ol l<k<n and CCZ 1is closed.

Theorem 5.3, Let £f: D(£)C X—>Z, gk. D(g, )Ci->‘£1, be convex
operators such that g, is continuous on 1ntD(bk) F D e &uppose
the:c‘e is some X € D(f) such that gk(x ) € = 1nth,l <k <n. Then
X is an OP'leul solution of the problem

. And {f(x): gk(x)éo, 1< kéng ’
i emd only Af SFls ad.miséible andaTkeE+(Yk,Z), Tkgk(x) 5
1<k en such that _ 4

. n
0C V£ + k?;l/D (T o &) () o

Moreover ,if g, are Gateaux differentisble at X, then X is an
optimal solution for the above problom if and only if X is

admisgible and 0.8 (xk,z), fkgk(x) = 0, L<k&n such that
s . : s
2o T (%) €= 0£(D)

Proof. We must only show that if as D(g)CX”’Y is comvex
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and Gateaux differentigble at T (&intD(g)), then B
-/Bgfyz{gWE)+siseLm;n,ngeSCPnbyﬁ. (5467
Since g is Gateaux differentiable at X it follows that % eintD(g).
Let xe X Dbe such that X + x eD(g); there is some 1T 70 gsuch that
0<% é’co implies X ~ tx €D(g).Ve have for t (0,1 j
4
g@) = g( 755 (& + %) + i%? (X - tx))

2 - =
i 8@ 4w ¢ Ry E(%-tx)

&> g(®) + tg(@)=tg(®@ + x) + g(X - tx)
= g(®) - g(E-tx) <3(g(X + x)-g(%)) '

2=> g<ﬁ)“§(i"tx)'.s;g(i'+ x) -g(%)

&= g(:’c‘-—tzzgg(i) < g(T + x)-g(X).
letting t¥ O one gets = |
g (X)(x)< g + x) - g(X) for all x€X such that X + x¢€
D(g) or, equivalently '
g (X) (x-x) =g(x)~g(X) for ali xeDlg) .
Hence g'(X)e Dg( 7) oIt easily follows that {g () + 5y s EeL(xy),
Range'SCi;P I')(-}?)} CO g(X). Let now S €L(X,Y), S€ 0 g(X)s we have

sx<g(X + x) -~ g(X) for all x € D(g)-Xo
Since T€int D(g), there is some t > 0 such that X + tx€D(g)

for -t€ (0,%,)e For such t we have
5(tx) < g(X + tx) ~ g(X)&sxg (g(F + tx) ~ X))/,
Zétting ¥ 0, taki.ng into éccoum: that P is closed ,we obtain
Sxgg! (fc‘) (x) for all x€X,

so that (S-g'(X))(x)€ PN(-P) for all x€ X, Therefore S€{g'(X) +
UeL(X,Y), Range UCP N(-P)] . Now, if T€B'(Y,2), then Tog

47

<

is convex and (Tog)' (%) = T og(X)e Since CN(~C) = {0] , it
follows from (5.6) that ‘0 (To g)(X) ={T o g'(X)f. The proof is

e R o S TR T s
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completeo :

After this paper was‘élaboiated we taked knqwledge of the
Thera's paper [11) . Some of-our formulae to calculate subdif-
foxent ials result from that of Thera.We also remark that the The—
rats formulae to calculate ¢ - subdifferentials ( £7 0) follow ‘&
from our results.let us show that, in the conditions of Theorem

 3e3, we have
{(x) {T o g5 éffb g(Sx)! for all Xé;D(Y7).

Tt in oleas that JEe s we atsn)] €0 _P(x). Let show the
converse inclugion. Let U e L(X,2), Ué-/b ¢(.x); this means thaf
Ux - Uz ?(k) ~‘f(x ) +E t}x é—D(Y>)< D
9(x,) - Ux, ~£€ () - Ux ¥ x éD(f) >
Y(x ) - Ux ~-¢<inf { (f(x)‘é Uxs - D(Y ,f
= {g(Sx) - Ux‘ Sx € D(g)j
Taking in Theorem 2.5 f = ~U; it follows that E}T élD(g ) such
that To8 =U .and
filorg)im BEg panEiS ;o BY 52
g(sxm,) + g (D) - To5(x,)et b
by g(5) + aSx,) - Te 85,2t V3 ERUEIE
Tty - T o Sx <8(y) - g(Sx-o) ve Vyenpe
re 0gsxy).

=Y

In the paper of Thera is also stated Theorem 5e2 (without proof).
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