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1. Introdiiction

.The problem of synthetizing open-loop optimal controls
into an optimal feedback ( or closed-loop) optimal Qontroi
was formulated from the very beginning of the modern control
theory ([i],[z],[}ﬂ ,[?@ g ete. ) but thé‘number of papers
dedicated to this subject is comparatively small and tﬁé
results obtained up to date seem faf less satisfactory than
. those concerhing open-loop optimal controis.

In what follows we try to review and comment some of the
recent results and new trends in the study of'the time-opti-
mal feedback control.

There seem to be two main aspects of theltheory of time-
optimal feedbaék control that are considered in the works
dedicated to this subject. The first consists in- the study of
1ts propertles and existence; the second aspect concerns its
stablllty to perturbations, strongly connected w1th generallzed
solutions of'dlscontlnuous differential equations. As will be
seen in‘the sequel, both aspects generate very interesting'and
very difficult mathematical problems that are now only partially
" solved. ’ » '

Slnce, as it is convinecingly oroved in Eé] and @él i
the time-optimal feedback control deflnes a dnscontlnuous diffe~

rential equation whose Carathéodory solutions must be the
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optimal trajectories, some very speciai hypotheses~shou1d be : %
made in order tb make a "mathematical object" out of the time-
optimal feedback control.
Such hypotheses were firstly made bv VG Boltyanskll ([1],
{2}); essentially, Boltyanskii’s "regular synthesis" means a -
Wetratificationt of” the phaée épace into differehtiable mani- -
folds called cells (very similar to the stratification Qonside~
red in Differential Topology and Global Analysis, seé [éa )
such that the corrésponding discontinuous vector field is every-
”where tangent to some cells and everywhere trans#ersal to the
other cells, each of his (Carathéodory) integral cur&es passing
successively ihrdugh.a finité humber of eells until feaches
the flnal p01nt. |
The results of P.Brunovsky ([6]) and H.Sussman (Wéél)
-concernlng the existence of such an object are briefly described

and some suggestions for future research are made in section 2.

The next two sections are devoted to the survey of some

" results concerning stability to perturbations of diséontinuous
differeniial equations defined by the time-optimal féédback
confréI 6f linear systems.

In the last éection three problems motivating the need
for stability results on the time-optimal feedback control are
prezénted; a linear system with slowly vafying coefficients,

é siﬁgularly perturbed linear system and the construction of
a bang-bang state éstimator for an input-output linear control

system.

2.Properties and existence of the time—ootimal feedback control

Let UCRP be a nonemptv set called the control. space,

let ' £:RxRxU— R° be a’ contlnuous mapplng that defines

the»parémetrized differential eguation:



i
(2.1) '%—f = f(t %, )

and let xl€3R be a glven point called the target or the

fina} point. For any ﬁoé:R,.xoé&R we define the set QL (to,x )
of admissible controls with respect to (to,xo) .to be the set
of all measurable bounded mappings u(.):[to;ti]-ﬂrU such

5 : n :
thg; the solution 9” (.;to,xo;u(.)):[}O,ti]———a-R of the
initial value problem: :

dx

& = txu) x(ty) =

(2.2)

has the following Dronertles:
(253) gp (tl,to,xo,u( .)) = x; end 9V(t to,xo,u( )) £ x4
. for -any " tE€ [to,t])
For every admissible control u(.)E}LL(tO,XO) we define
the duration of steering XO to #i as follows: '
) T(t,sXgsule )) = tq-t,

and we say that u(.)E’LL(tO,XO) is a time-optimal control

'with respect to (to;xo) o5

(2.5)  Tlty,xg, R ey, x,ul)) for any u()€Urgxy).

The corresponding solution 'gﬁ(.;to,xo;ﬁ(.)) ol K252

will be called the optimal trajectory of the optimal control’ﬁ(.}

If DCRxR® denotes the set of all points (to,xo) for
which a time-optimal control exists then T(.;.)}p———4yg+;
defined by: : :

e R R e R
. o orXgrule 1P ulale or¥g). -

38 Optimél, is called the minimal-time function.

Obviously, the set D 1is contained into the controllability
set, q%(x ), of all-the points (to,xo)GéRan for which the
set Ql,(to, O of admissible controls is not emply. S

The problem of f;ndwnf‘uhe iime-~optimal control may be

considered only for a determined initial point (to,xo)eszRn



_‘4 =

but‘this is not allways the case. As it is suggested 5y some
practical applications, the above time~optimal control problem
may be interpreted as follows: an evolution process described
by the equatiqn (2.1) thas XIEZRn as the equilibruium state
and may be confrolléd using the parameter ﬁGEU._Some'pertur~
batlons deviate the system from the desired state x, and

- the control_parameter w €U. should be used to bring the uystem
bacg to the state x; as quickly as p0351b1e. From this point
of view & "regulator" that chooses a control v(t,x) €U ‘at
each point (%, x) € RxR" need be devised such that the initial
value problem: ' :

2.1 B =Fe,m, x(t) = x5 FE,X) = L4, V(8,3))

has a (Carathéodory) solution WP(‘;to’Xo) satisfying (2.3)
and such that t P—~>—v(t,9p(t;to,xo)) is a time-optimal
control with respect to (to,xo).

We say that the mapping v(.,.):D—>U having .these

properties is a time-optimal feedback céntrol for- the system (2.1)
It for-any point . .(1,x)&€D. there éxistg a gnique open-
160p optimal control ﬁ(.;t,x)EZQL(t,x) which is piecewilse
continuous (as it happens for instence in the case of normal
linear systems) then the time-optimal feedback control is
~uniquely defined byﬁ
(2.8) P Eam) =anltit,x)
but it is not yet proved that any Carathéodory solution of
the equation (2.7) is an optimal trajectory unless some very
special hypotheses about the "global pictUre" of the optimal
tréjectories are made. ‘
If the open-loop optimal controls are not unlque then the
 prob1em of the optlmal feedback (closed- lOOp; contral seems

'Stlll more diffiecult,

A et S AR
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As already mentioned in the Intrdductibn; the special
4hypotheses that make a mathematlcal object out of the time~
Optlmal feedback control are contalned in:-the deflnltlon of
the so called "regular synth681s" introduced by V.G.Boltyanskii
([ik,[z]) or some of its modifications ([6],[}@ ,[?q ,[éﬂ ; P?}).

For the sake of simplicity we assume in what follows fhat
the vector field in - (2.1) 1is autonoﬁogs go - (2.1) tekes the
form: ' |
(2.9) = =¢ = f(x,u)

(we may always write (2.1) in the autonomoﬁs form‘ xt=f(x° y %) u)
O =1; besides, the non-autonomous case is treated in [}Q
[2(3] and [Zﬂ)

It is easy to see that in this case'botn, the tlme-optlmal
feedback control and the minimal-tine functloﬁ are also auto- -
nomous: we assume_thatAthe set GCRn 6f all the points
3:&Rn. for which there exists a time-optimal (open—loop5 control
is an open neighbourhood of the target xq .

In this case, instead of the system (2.7), we have to
consider.the following autﬁnumdus-diSCOntinuous differential

equation:

dx

£2.10) at

f(x) where  f(x) = f(x,v(x)), *EGCR -

“We recall the definition of Boltyanskii's regular
synthesis trying to distinguish four main characteristics:

Deflnltlon o ([}] [2])

The mapping v(.): G(:R D__ 5 UCRP is said to define

a regular synthesis for the time—optimal .control problem to

the target lGEInt(G) of the system . (2.9) ifathe properties

A) - D) lluted bellow hold:

A) There exists a subsetl J(}:G and a partition of the set

G\¢40 ito-t faﬁily ff of connected differentiable manlfolds



called cells satisfying the following properties:

A.1l. Thevfamilyi UP is locally finite and admits the following
; - , ~ : (k)

partitions: jp = Jpl L)j% : -jolf\;f; 2 ceandiaf ;f?

dénotes the set of k-dimensional cells, k = 0, l,... n, then

:f){kljp{‘{) (k) j0&0) f(n) b i EJD(O) 30(0)

A.2. For any cell Sélify, the restriction mapp, VS(.),Agi

i) to 8 g differentisble and may be extended to a:diffe~

rentlable mannlng on a newghbourhood B 28 daT

A.3. There exists a mapping TI(.): Jp —4—:7quch that 4f

SEIUP(k) then II(S)Efja(‘ l), the vector field f(.) defined

by (2.30) is everVWHere tangent to any cell SE:JP and

from each point = x €S there starte 8 unique Carathéodorx

solution </ (.;x) of (2.10) that leaves' S after a finite

time and reaches TI(S) transversally.

A.4. There Dxi§ts a mapping . 2_ (. )'jp ——ijjp such that .
ir SE_:F(k) then ‘EZ(O)ETCF(k+1), the restrlctwon maon of

e o Sszi(S) is d1fferent1able and 4f S # ix then

from every point x&S there starts & unique Carathéodory

solution, 9/(.,X) of “(2:10}) ZLor which there exists &7 O
such that C/(t,x)EZ (597 for *AE(0E9,
" A.5. Prom any point in the "indifference" set QAV? there may

start several Carath&dory solutions of (2.10) enterring

cells from :f:l, and intersecting Uk(? only at the starting

point.
" A.6. Any solution of (2.10) starting at a point xEG

reaches x; in a finite time, T(x), intersecting only a

Pinite number of cells.

B) For any XE:Jrz.the time of reaching 'Xl ' is the same along

any trajectory of (2.10) starting at x ., so the function

T(.):G-—?'R+ representing the duration of reaching the
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target x4 is well defined. The time-function .T(.) is

assumed to be continuous.

0) If foreny k= O0;1,%. n—l we denote:

e s Beels ; se LRLUPEY Jo(k)lg o
(2.12)  m=p® el Il

then the set M has the property in 5oltyanskii's fundamental

lemma: if u(.)E’LL(XO),'u(.):ED,pﬂ«arlj' is an admissible

control then in any neighbourhood of x| there exists a point

y such that the solution ?ﬂ(.;y,u(.)) of -the problem:

(203 = rxu) , x(0) =y

is defined on'[p,tlj and intersects M for at most finitely .

many values of tE[O,tl:].

D) Any Carathéodory solution, 9”(.;x), of (2.10) satiffies

Pontryagin's Maximum Principle with the admissible control

FHEU (x) defined by:

(2,14 B = VPR 3 |

if we define H () iR'xRPxU—~R and H:R'xR"—= R Dby:
(2.15) % (uxp) =<p,Exw) - 1

(2,16) H(p,x) = supﬁﬂ, (p,%,0) ; ueauﬁ

%hen there exists an absolutely continuous mapning

p(.): [0, T(x)] —> R® such that:
2T dt(t) = (Dgg(p(t) 7p(t x),u(t)) a.e. on @ T(x]

(2.18)  H(p(t),{ (1;%)) =# (_p(t),'cfu;x),u(t)) a.e. on [0,T(x)]

We recall that V.G;Boltyanskii ([11,[2]) provea that
_property C) in the above definition_ié satisfied if the set

. M defined by (2.11}, (2.12) is a "piecewise smooth" set of
dimension less than n and that the Carathéodory solutioﬁgﬁ_‘

of (2.16) ("marked trajectofies")'are time-optimal tréjectories.
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In &ﬂ., P.Brunovsky proved that property C)« .in Definition
2.1 holds if the closure of the set 'M adnmits an analytic
Whitney stratification; p.Brunovsky proved also -the first
existence theorem for the regular synthesis: if BER? s =

‘compact convex polyhedron with the vertices: ' w;,W,... mepr:

£2.19) 9 ="co {wl,wz,... ng

if the system is linear, i.e. (2.-7) is -of the form:

a% .

and satisfies the following normality condition: the vectors

' L p=l S g g
B(wi—wj),AB(wi—wj),... A B(wi—wj) are linearly independent

for any 1 # J then the time-optimal feedback control with

the target x,.= 0ER® for the system (2.20) defines a regular

synthesis with some additional properties.

H.Sussman proved in Eé] a very éeperal theorem stating
the existence of a non-optimal discontinuous feedback control
for an analytic system of the form (2.7) " on'a reai analytic

“manifold; as in.[ﬁ:], in [?é] some results concerning-stratifi-
‘cations by subanalytic sets are essentially used.

In an attempt to prove more general existence theorems
for regular synthesis and possibly give algorithmical methods
for its construction in particular cases several aSpecté should
be cdnsidéred: | ‘

1. It seems reasonable to try to construct the "stratifi-
véation" if in-Definitien 2.1  fyonm trajectories éatisfying
Pontryagin's Maximum Principle (2:15) = (2;18); :

- 2. It may not be easy to prove the-coﬁtinuity of the time-

_ function : T(.):G—>R,_  1in pfoperty B) buigit seems possible
to use the results.in [?é] to define a more general synthesis

. that does not require the continuity of ﬁhe function T );

L PRI M AR S
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e It comld be pbssible to find easier verifiable condi- .
tions for property c) using either Brunovsky's condition .
in [Q] that the closure of the ot M admits a Whitney sl
fication or Boltyanskii's condition assuming that M is a
piecewise smooth set of dimension less than n.

. ' Tt turns det that the main problem is to use Pontryagin's:
Maximum Principle to construct a stratification :ﬂ of the
phésé space that satisfies the axioms A.l - A.6 in Definition 21

On the other haﬁd as Boltyanskii himself pointed out in
[j] , Pontryagin's- ‘Maximum Principle (2.15) - (2.18) is
dlfflcult to use because it 1nvolves two dlfferent but simulta=
neous operatlons: the max1mlzatlon in (2.18) and the "integra-
'-tion" of the differential equations (2.13) -and (2.17). In [3]_,
the separation of-the two operations is sﬁggesied under the
very restrictive hypdthesis that for every p ¢R™ the function
H(p,.) defined by (2.16) is differentiable. |
| The introduction in [8] of the generalized gradient for
locally-lipschitzian functions mékes Boltjahskii's suggestion
workable under hypotheses similar to thqée that insure the
existence of the optimal controls. |

Let us assume that UCRP is compact and let f:RnXU-ﬁ'Rn

that defines (2.9) be of class Cl with respect to the x-variable

PR,
DX
From Theorem 2.1 in [8} it follows that under these

fem - (%, u)h—*' —=(x,u) 1is continuous.

hypotheses the "true Hamiltonian" ([é]), i(.,.), defined by
(2.16) is a locally-lipschitzian functlon.and its generalized
‘graéient is given by: |

(2a20) H{p,x)-= co &(f(x ), ﬁgﬁlip,x a3 uGZV(p,x)}
where the (upper- smicontinuous) multlfunctlon V(eye) iR XR~PJ(

ig defined by:
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. 22) V(p,x) ={u€.U . Hip, x) =t (p,x,u)}

pefinition 2.2 ( 3],[29])
The admissible control ,u(.)EfLL(XO), u(.)i[o,tﬂ—4'~U

ss said to satsify the Support Principle if there exists an

absolute]y contlnuous mapping p(.)‘[@ t1]~4~Rn' such that

the mapp‘lng t)——-—b— (‘f(t Xo,u( Y),pit))iis & solution of the

“Hamlltonlan ‘inclusion" ([é]) 3

(2.23)  (%,-P)E O H(p,%)
and sétiSfies the condition: _ :
(2,208 HE Fole); Pltsxgul.))) ave,. on [0, 4]
It is easy to prove ([éé]) that under the above hypotneses

any admissible control satisfylng Pontryagln s Max1mum Principle
(2.15) - (2.18) satisfies also the oupport Prlncnple 25 23)-
(2.24). The converse statement -is true if the following
convexity property, similar to that ensuring the exiétence of
the optimal open-loop controls hold:

(2.25) H(p,x) ={'(f(x,u) ‘338 ==(p,%, ux) u(:V(p,x)f

If the condition .(é.25) is satisfied_then for any absolu~
tely continuous solution (?p(.),p(.)) of the Hamiltonian
ineclusion (2.23) ‘there exists, via Filippov's lemma, a me asu~
rable mapping u(.) satisfying (2:24)4:. 2,150 (2,17) and
therefore the Maximum Principle. ‘

It seems likely that if (2.25) is ik S A
for any solution of (2;23) there exists a corresponding
‘"relaxed" open-loop optimal control.

. the case (2. 25) is satisfied 1t ‘seems reasonable to .
expect that the "backward" intevration-of - (2.23), taking into
account some properties of the "ad301nt varlable", Dis [}{} [?é]
'.[éi] [%i] ) may lead to the stratification in the Definition 2.1

80. one may optaln more general and constructive existence theo-
rems for the regular synthesis. ‘
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%+ Generalized solutions for discontinuous differential

equations

Let us suppose that there exists a time-optimal feedback

vcontrol v(.):GCRA~>U for the system (2.9) and that it
defines a regular synthesis (Definition 244 ) . ,

s it is remarked in [}é] inApractice,‘the value v(x)
of the control correspondlng to the state x '1s determlned
after maklng a measurement of the state and 1f this measurement
ig in error say x+ &(t) is -measured rather than X, the

governing equation of motion will have the form:
dax
(3:1) . 3% = Bz + (1))

rather than (2.10).
Likewise, as it is shown by the problems treated bellow
as applications, in many cases the equation of motion may have

the form:

(3.2) L =Fx) o+ F(v)
where j (.):[pfyé)——*"Rn is meésurable'énd "small" in some
norm (usuallyv L_.or L, - norms). :

It is intuitively obvious that the inner'perturbation &
s 0 S S ) aé well as the "outer" one in (3.2) 'destroys the
stratification structure in Defiﬁition 2.1. Koreover, as the
following exaﬁple shows, the systems fB.l)'and (B.2) ma§ not
have any Carathéodory solution from some p01ntq in the phase
space.

Example S (L@] [?j])

Let us consider the tlme-optlmal control problem to tne
2

ordgin. (Xl,yl) = (0,0)ER" for the system;

: X = -x 4+ ul
(33) e
Ly=au



where u = (ut u?}e;U = co{'u(l),u(z),u(B)} y W)= (1 &y,

= (-1/2,1), = (-1, 1/2)

) (3)] J

| Applylng Pontvagln s Maximum Principle (2.15) - (2.18)
equivalent, in this case, to the Support Principle (2. 23) (2.24)
one may prove that in the half-plane 1) x<:0} the
time-Optimal feedback control is given by:

U5 af x(O',y<.O
(5.4? vix)= u(q) i Oy =0
- u(B).if 2L 0y ¥ >0
One may ﬁrove also that this time-optimal feedback

control defines a regular synthesis in the sense of ‘Defanition 2.1 :

' Let us assume now that a small outer pertﬁfbation ef the .
form f‘(t) = (& sint,E,cos t) where & € (0,122) occurs in
the system (2.10) corresponding to (3.3). ' :

It is easy to see now that the perturbed system of the
form (3.2) dqeé not haﬁe a Qarathédory gsolution starting from
a point (X ,O) o < 0: the y—component of the state
variable (x,y) for x( O satisfies the (un—perturbed) differ-
ential equation (corresponding to (2. 10)):
: s [T N )
(3.5) y=f0 if y =0 |
| i nleEfeiaE g - i
(fér which y(t) =0 is a carathéodory solution). but the
corresponding perturbed equation satisfied by the same
componenf is the following:v
1 + & cost if ¥<L0
(3.6) y =< gcos t It iyt
i me A

which does not have any Carathéodory solﬁtidn starting at the

poinf y(0) = O (see also the Example 2.5 in [;5] )z
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1t¥well known that Carathéodory-solutions do not make
gsense for discontinuous differential equatidns unless s&me
rather strong hi?otheses, similar to those iﬁ'Definition 2.1;
are made. There ére already several definitions for generaiized
solutions for discontinuous differentiai equations (see [}é}
and [}%] ) but it seems that there are many reasons (including
the minimality property in [?g]) to consider Filippov's
generalized solutions as the most suitable at leést for the
problems in‘Controi Theory. .

The results on the regular synthesis discussed in the
preceding sectién éeemed to show that Carathéodory solutions

 are still suitable for optimal feedback-conthl but the
possibility of perturbations as in (3.1) or :(3.2) ‘pnd the
example 3.1 éompels us tp'considef some sort of generalized
solutions. | .

In what follows we will consider only Filippov solutions
(called F-solutions) though in [?é] it is Shown that Krassovekii
or Hermes solutions may be ag-useful.

We recall first the definition of Filippov solutions:

- perinition 3.2([L0])
An absolutely continuous mepping ?9(.):[£O,t1]__*_gn

will be called an F-solution of the equation (2.7) 1if 3t

satisfies. a.e. on [to,ti]_the differential inclusion:

(B XEF5(1,x)

where the set valued mapping F%(.;.):RXRH~—*"6QRH) is

defined by:

(3.8) Fz(t,x) =m m g6 F(t,Bg(x)\ A
% £70 pwy=0 P o .
where Ba(x) denoﬁes the ball of radius £y 0 centered at x,

/L(;) denotes the Lébesguelmeasufe and ©¢co M denotes the

closed convex hull . of the set M.
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The problem to be studied now is whether the F-solutions

of systems of the form. (3.1) or (3.2) are close to the

optimal trajectories of (2.9) (which are the Carathéodory

solutions of the equation (2.10)) if the perturbations f o)

are sufficiently small in some sense.

A strong reason to consider the F-solutions more suitable
than other generakized solutions is the existence in [}Q] of
very good theoreﬁs'concerning the existence, uhiqueness,
continuous dependence on initial data and the right-hand side,etc,
For the problem we are concerned with, the hain'tool is .
the follow1ng very strong "clouure theorem! in [?é]

Theorem 3.3 ([}é] Theorem 3)

n

Let ‘f,fl,gl,fz,g2,,... :RxR—> R be measurable

meppingé that define the differentisl equations:

(3-9) X
(3.1.0) x

Eldxd

]

]

fk(t,x) + gk(t,x) T e

and have the following properties: ; : ; it

(i) for any compact subset DC RxR® there exist the measurable

bounded real-valued functions TL(.),‘ZkK,),j’k(.) such that: o

(3.31) . e, X)”<: (t) “ace.~on- D . ‘
(3.12)  Jr (e, xi<m, ((©) acec. on D, k=1,2,... - §
(5413 “gk(t )P (1) ace. on D, k=1,2,.... |

(3.14) \yj?k(t)dt = 0 ag k——r~50, D =[§,q x GCRxR",
oY . , :

(ii) there exists & sequence r — ™ 0. as k—»Or 70

such .that: .
(5. 15) T Ly XXE(;WEO 0%, B. (x) N Woe.tons Bkl 20N,
{ k ;
Then if Qf k( e Bo’ ﬂcﬂé b} — ”n.,'k=1;2,..;’is an : .

F-solutlon g 15:10) remalnlng in _D then there exists a
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subsequence icfkﬁj of ﬂcféﬁ that converges uniformly to

an. P-golution of ~(3.9); in particular, iFf iﬁ?k(f)} converges

uniformivte %ﬂ(.) then '?ﬂ(.) is an F-solution of (3.9).

- Using this theorem bne méy easily derive results stating
the stability or instability on a finite.time—iﬁterval of the
time-optimal feedback control to outer perturbations of the
form (3.2).; for control problems it seems reasonable to
require stabllltJ on the interval [0,®®) but this kind of °
results do not follow directly from the Theorem 3.3 above. The
same is true for results stating the stability to inner perturba;
tions of the form (5+1). o

There are several kinds of stabiiity'to perturbations of
the time-optimal feedback control that are studied in tﬁev
literature: v

Definition %.4

The time-optimal feedback control v(.):GCR*—U of

the system (2.9) is said to be L,(Leg) - stable to outer

A @ : g
(respectively to inner) perturbations if for any compact

neighbourhood G&:.G of the target xi and for any & > O

there exists C{>'O such that for any xtsG and any measurable

bounded function § )2 [b T(x]-—*w 8% satlsfv1ng~ X
: T(%)
'(3.16) j“&(t)“dt éc;. '(respecti.v_ely! “g(t)”écr‘a.e on [O T(X])*

any solution %/(.;x;.}(.)) ofiiil%.2) {respectimely, of (3.1)

for outer perturbations) satisfies: :
T30 7) “<7J(t;x) - ?p(t';x;f (.))“45 fot any tEf_Q,T(xﬂ

‘where %9(.,x) is the Carathéodorv oolutlon theeteh 0,50

of '(2.10). (the timer -optimal trawectory tlirouzh’ "x) *and

T(.):G"*’R+- is the minimal-time functlon.
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Definition 5.9

The time-optimal feedback control v() of the system (2.9)

(I,oo) - strongly stable to outer (respectively

I?
4
to inner) Derturbatlons if for any compact neighbourhood G-C:G

is said to be

of the target x, and for any 6 L0 there exists C?? 0

such that for any measurable bounded mapping ‘§(.):[O,°°)“4*'Rn

alisfying:
SERBLES £t Gl

Os) J»-Hgmll EH< Gois K5031, 240 o (ToapsRLItEly n§<t>li<cf
= T e : , _ ; "~ a.e. on [0, T(x))

for any x£G , any F~solut10n< 9ﬂ(.,x \f( Fe R of e

(respectively, of z.1) for outer perturbations) satls?les;
(3.19) i]xlv—_- ?p(t_;x; j(.))“éé‘ for any t 70(x)

it ([16_]) “

The time~optimal feedback control v(.) of the system (2.9)

is said to be stable with respect to the measurements if for

anv compact neighbourhood G C:G of the target Xq s for any

6;7 O there exists Cr7 O such that whenever. § & ){@ T]-APR

is a measurable mapping satlsLylnp: ﬂ&(.)cm écf and sdich that

a Carathéodory solution 99 (.;x;.g(.)) of (3i1) exasts on

B,7,] then I¢(.ix) - %(.;x;g(.m]méé :

For obvious reasons we introduce the following:

Condition 3.7: every F-solution of (2.10) is also a

Carathdodory solution of (2.10).

Condition %.8: through every point of G there passes a unique

1o the right i F-solution of (2.10).

- It is easy to prove that if the time-optimal feedback
eontrol - wl.)  of the system (2.9) is stable with respect
to outer perturbations in the sense of Definition %.4 then

Conditions 3.7 and 3.8 are satisfied. On the othér‘ﬁahd it is
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difficult to prove that stability to measurement. in Definition
3,6 implies Conditions 3.7 (see [}é])

From the Theorem 3.3 above it follows that if F(.):G—sR"
defined by, . (2.,10) is measurable and bounded on compact subsets
then the time-optimal feedback control is stable with respect .-
to outer perturbations in the sense of Definition 3.4 if and
only if Conditions 3.7 and 3.8 hold.

e The stability to inner perturbations in Definitions %.4
apd 3.5 was not yet con81dered in the llterature..In [}%] &r
is proved that the outer perturbatlon j»( o)A B2 becomes
an inner perturbatlon by the change of variable: \gg(s)ds
and theréfore>any absolutely éontinuous inner perturbation
becomes a (measurable) outer perturbation by the reverse change
of variable ( if the vector field F(.) 1is continuous then
the inner perturbation f (.) defines the oupér perturbation
F(x+ j(t)) - T(x) but this is not the case if f(.) is
discontinuous). '

It seems though that Filippov's closure theorem 3.3 could
be used to obtain'the same type 5f spability results for inner
perturbatlons as for the outer ones. |

Tn order to apply Theorem 3.3 to systems of the form (,.1)
it is sufficient to prove the ‘following statement: if T
defined'by (2.10) is measurable and locally essentially
bbounded then for any sequence of .measurable bounded mappings
3 k(.):[p,T&}-—4FRn satisfying: ujk(.)n & f?k Sl GHEE
k —e 90 , there exists rk7'D rk-w—r-o as k—p “Cguch that:

'(3..20) %-(x’rjk(t))emco f(B Gy A a.e, on @,TO]XG
' P =0 k :

Since according to Eﬁﬂ, if f£(.) is locally essentially
-bounded §(x)€LF§(x) a.e. on G (where Filippov multifunction

Fz(.) is defined by (3.8)) it follows thaf‘there_exiéts a

Toeot 16949
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a null-set A C:G such that f(x)Cl(~)co f(B tx)NGA) S Lo
anyg 7 O an@ €GN\ AO . Thc statement above followu now

from the fact that the set { (t X)uw § (t}ELAé is a

e oy g R P SR ST

null-set in P,T,]x¢ since in this case f(x+ f(t))E

‘ o)
em co i‘(B (x+ E(t))\ A)C_mé"o f(B ,éX)\ &), ﬁ,,-én«-?
(M=0

In_fact, Filippov's closure Theorem 3.2 may be used to
‘obtain results concerning stability or instability of the
time-optimal feedback control with respect to inner and outer
pérturbations acting simultaneously.

In order to prove results concerning the strong stability
dn Definition 3.5 e properties than those in Conditions 3.7
and 3.8 ére needed ([é],[§A],[}§]) s LT instanqe, a necessary
.conditiOn for strong stability in Definition 3.5 1is that for
any xé&G the mapping defined by 79(t;%) =X for ay Tix)

is & uniquevto the right F-solution of (2.10).

While- the results concerning the sfability to perturbations
of the equation (2.10) may be obtained more or less directly"
from the gene?alitheorems in the theory of discpntinuous
differential equétions, the difficult problem that remains to
be solved is to characterize the contrql systemé (2o 9) - for
which Condifions 3.7 and 5.8, necéssary for stability, are |
éatisfied, As we shall see in the next section, this problem
is now ohly partiaily solved fdr some particular cases of

linear systems of the form (2.20).

4, The case of linear stationary control systems

The simplest (and'also, the.best knoﬁn) time-optimal
'confrol problem is that of steering any‘point xER" Hothe. —— e
origih,lxl = OER®, in mihimal time, through the linear system
(2.20). The normélity_condition mentioned in Sectionh 2 ensures

the existence and uniqueness of a tim&¥optimal open-lo0p
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coﬂtrol for any pdint' x -in a neighbourhood AG, of the origin,
the continuity of the minimal-time function T(.):G =ER
the fact thaf Pontryagin's‘Maximuﬁ Principle is a necessary
and sufficient optin@lity;conaition, the existence of a unique
time-optimal feedback coﬁtrol %(.):G—U, the fact that it

LS

defines a regular synthesis ([6]) and soﬁe other prOperties»([?];
[«):[s].7], [he], (5], [17] - 28], [23] s [24] » [51] s ete- .

- H.Hermes was the first to remark in [?%] that there are
Optimal-controi problems for which Condition? 3.7 is not’
satisfied énd thereforem the optimal feedback control is no£
stable with respect to measurements (Definition %.6) as well :
as in the sense of Definitions 3.4 or 3.5. o

The first results characteriziné classes:of time-optimal
control systems for which Conditions 3.7 and 3.8 are sétisfied'

were proved by P.Brunovsky in [4}: :

Theorem 4.1 ([4])
' Let us consider the time-optimal control problem to the

erigin o x 3=O<ZR2 for the normal 1inear system (2.20) in

the ecsoe ‘n-= 2.

~Then Conditions 3.7 and 3.8 are verified if and only if

does not exists a vertex w of the polyhedron U such that

its polar cone H(w,U) ={ pG_R2 1 PN (P for any ,,.'ueU}

contains the eigenvector of ~-A® corresponding to its largest

- eigenvalue but does not contain the other eigenvector.

From the results in [@] and [7] it follows the torresponding

~theorem for linear systems with one-dimensional inputs:

"Theorem 4.2 ([6],[7]5 : ] : 2

The time—ontimal-feedback control satisfies Conditions 3.7

and 3.8, for the normal linear systemé (2.20) . in the case

U =[-1,7) sna B =penr’.



A weaker version of tﬁis,iheorem,(in which Conditions 3.7
‘and 3.8 are satisfied only énazoeighbourhood of the origin)
‘was proved by other methods in [}%].

Plnally, two other theorems concerning Conditions 3.7
end %.8 were recently proved in [ij] for "mlnlmally controllable"
linear systems of the form:
L R blu, + bou, , x€R°, |u <1, i=1,2.

The conditions’im {}9} are expressed in terms of the
doterminants:. A
(4.2) a(0)= det(} AbT Agaﬂ , d(1)=det @ ALY bZJ

d(2)=det[_b B ,Abg:l g @l 3)= det[b Ab? b bZJ

and of their signs: )

(4.3) cg(j) = 8GN d(J) , § = 0,1,2,3.

ToeoremA-.S ([19] )

The time-optimal feedback control for the strictly normal

system (4,1) satisfies Condltlons 20 ond B RE c?((ﬂ C§(2)=

= & ey = nsimnd det[bl b2, exp At)uu(zi]% O where

B =[b},b%] ana u(z)-(c?(1> deay)s -

Theorem 4.4 ({ig])

The time-optimal feedback control for the minimally

°

controllably system (4.1) satisfies Conditions 3.7 and Pas

iff a(0).a(2)y 0,7 4(1).d(3)y O and either d(1) = O or d(2)=0

but not both or d(1) £ 0, d(2) # 0 and det[bY,b%, exp(~At)Bu )]
%,O. ‘ : .

~ Most of the ébove,resulté were proved as preliminary steps
in proofs of theorems stating stability .to perturbations of

the time-optimal feedback_controi ([4];[iﬂ ,Ejﬂ).

We recall now the stability results proved so far:
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Theorem 4.5 ([?])' l

The time-opntimal feedback:control of the normal system

(2.20) in the case n = 2 for which Conditions %.7 and 3.8 are

satisfied (see Theorem 4.1) is Loo- strongly stable with

respect to outer perturbations in the sense of Definition %.5.

In the case the dimension ‘of ‘the get  BU «dis.-2 :in [5]
is proved a stronger theorem stating that the.solutions of (%.2)
reach the target point x,=0 at a time close to the optimal

one and remain there afterwards.

Theore}m 1.6 ([1% : [19] )

The time-optimal feedback control of any linear system

satisfying the hypotheses in Theorems 4.2-4.4 is stable with

respect to the measurements (Definition 3.6) in a neighbourhood

of the origzin.

Theorem 4.7 ([14:‘)

The time-optimal feedback control of a normal linear svstem -

; : _ G
(2320) =aiiafyinge Conditions 3.7 and %.8) is L1 - strongly

stable to outer perturbations (Definition 3.5).

From the above survey it follows that. there reﬁains much
work to be done to characterize the'normal.linear systems for“
which Conditions 3.7 and 3.8 are verified‘andvtherefore are
stable to perturbations in the sense of Definitions 3.4 - 3.6;.

" On the other'hand, from Theorems 4.1,4.3,4.4 it follows
thaf stability to perturbations of the time—optimal feedback
con£r01 (inifactaniConditions. 5ifuand 5.8) ds hot;a "generic”
property even for normal linear syétems, i.e. there exists a
significant class of systems that are not stable to perturbations.

Tt seems reasonable to suggest that at. least for the
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unstable cases one should try to find suboptimal feedback

controls that are stable 1o perturbations.

5. Applications

We review shortly the results obtalned i [15] [1‘%:] and
[?%] concerning some control problems that 1ead in a natural
way to perturbed systems of the form (%.2) and so stability
results are needed.

5.1. Linear systems with slowly varying coeff1c1onts([?ﬂ )

Let us consider the time-optimal control problem to the

origin x,=0 for the system:
(5.1) % = A(Et,e)x + B(et,8)u , sERE ueUe R

where Eiy o0 is a small constant, A(.,.),B(.,.) afe continubus
matrlx—valued functions and yCp -ds & comnact convex polyhedron
In practice one takes & = 0 and the time-optimal feedback
control VO(.):G(:Rp-wP-U of the stationary system (2.20)
where A = A(0,0) and B= B(0,0) is used to control the origi-
nal system (5 iar ‘ |
Therefore the dynamncs of the controlled uystem is defined

by the equation:
(5.2) % = AlEt,8)x + BELE)V (x)

which may be written also as follows:

&

(5.3) % =4h00,0)x + BLO,0)v (x) + Alet,£)=-A(0,0) x +

+ B(at,E)—B(o,o) v, (%)

Since every Filippov solution of the system £553) e s
(Filippov) solution of & perturbed sysfem of theFfowma (52) 5
these solutions will be nelose" to the corresponding optimal -
tréjectories of the system (2.20) (so they will reach a certain

‘neighbourhood of the origin) if the time-optimal feedback
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control vo(.) is stable to outer perturbatiohs in the sense.

of Definition 3.4 eand if for any Filippov solution gﬂ fe)iiigt

(5.3) the "perturbation" ti—-*'[\(ﬁt €)=a(0, O):If.(t_) +
[?(&t £)-B(0, Oi]v (7p(t)) is small enough.

: Using the continuity with respect to %. of the minimal- -
-time function of the system (5.1) 1t is proved that if vo(})
satisfies Conditions 3.7_ and 3.8 and if t‘% 0 1is small
enough then vo(.) is a suboptimal feedback éontrol for‘the
system (5.1{ in the sense that any Filippov solution of the
- system (5.3) _reaéhes a certain neighboufhood of the origin
in a time close to the minimal one. ﬁowever, these solutions
remain on [9,00) in the neighbourhood of-the origin only if

°

the functions t—% A(Et,£), B(Et,E€) have a certain bounded-
ness property ( Ed]).

5.2. Singularly perturbed linear systems ([E%])

Let us consider the time-optimal control-problem’'to the

origin (O, O)GIPn m

(5.4) { %
(5 £y

where ¢y0 1is a small constant.

for the syéﬁem:

i

Anx % oy ¥ Bau e B yER ., velcR,

sl U

Ay X + Aoy + Bou

As in the preceding examplé, in practice one takes., €= O
and, assuming that Azglis an inveritble matrix, one gets the
1" (R 2 - o
reduced system" of the form (2.20) where A = All A12A22A21

L =t

The time-optimal feedback control of the reduced system,
'vo(.):GCan-—~¢w-U is used to control the original system so

one gets the differential system:

(5:6) .{ o= Ajyx + Aoy + Byv, (%)

il

(5.7)’: Aoy X + Kooy # B,y (%)

21



o
where (5.6) may be written as follows;

t.a) X = Ax + Bv, (x) *[A-All]x + Ay oY «-.'I:B-Bl:lvo(x.)

Therefore, the first cbmponent (the "slow" one) of the state
variable, (x,y), will reach a bertain neighbourhood of the origin
in a.time close to the minimal one if the time-optimal feedback
control of the reduced system, v,(.), is stable to outer pertur- -
bations in the sense of Definitions 3.4 or 3.5, and if for any
(Filippov) solution, (906.),7P(.)), of the system (5.6)—(5.7j,
the perturbatioﬁ t — [%—Alﬂgﬂ(t) = Ay, 7 (1) +[§~Bl]vo(%7(t))
is small enough. In [}%] it is proved, essentially, that if
vo(.) is Ly = strongiy stable to outer pertqrbations and if
€ >0 is small enough then the first componént of’any Filippov
solution of the system (5.6)-(5.7) starting in a ceftain
compact .subset GJ:_G reaches a éertain néigﬁbourhood of the
origin in a time clbse io the minimal one and remains there -

afterWards.Mbreover, it is proved that if B,= 0 then the second

component of the state variable has the same property.

525, Bang~bang'state estimator for input-output control systems(@iﬁ ‘
- : : . ,

Let us consider the input-output control systems;

e . 2 =fx+Bu , x€R", vEUVC R
(5.10) ¥y

H

o SR L

and let us consider the problem of finding’a s£até estimator
(observer) for ihis System i.e. to Tind = matrix X and s
mapping v(.):RP-Siomy rsuch that A - Kee i a stable matrix

and such that any solution of the'system:‘

1

(o) X = AxX + Bv(z)
(5.12) z = Az + KC®(x-2z) + Bv(z)
reaches a certain neighbourhood of the origin as quickly as

possible.




The Secondicoﬁponent, z, in the system (S,ll)-(5.12)
is an estimation of the state variable, x and can be,computéd
from the equétion (5.12) Written'as:

(5.1%) 2 =z +'K(y-—,sz) + Bv(z)
where the output y is available from observations.

In the cla381cal englneerlng control theory a linear
feedback control of the form v(z) = -Lz is taken such that
A - BL is a stable matrix. If the control space UcRrP _is a
bounded set then the linear regulator above will not be sultable
for states outside a limited neighbourhood of the origin so
we have to chcosé another kind of»feedback control,

If we take v(.) to be the time-optimal feedback control
of the system (5.9) and if we assume that it is stable to
perturbétions in the sense discussea.in Section % then this
feedback control will défine a good state estimator Qroyided‘
we chooée the matrix. X such that for any Filippov solution
(?0( )s GP( e el o(5.11 e (5,12 - the "pertufbatian"

t i— KC *(P(1)=F(t)) in (5.12) (which is en equation of
the form (3%.2)) 1is small enough ([}5])

The examples examined above show that fhere is still need
fq? results concerning stability to pefturbations of the time—
optimal feedback control (so that we can avoid the unstable
casés)‘though'the main pfoblem seems to be that of replacing
altogether the time-optimal feedback control by a stable sub-

optimal feedback control.
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