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By erban Aa Basarab )
Abstracts Let N/F be a field extension over a base field
K, We investigaté some situations vhen certain objects attached
to ¥/K (places of F/K, the Kochen ¥{ng of F/K and the holo-
morphy wing of F/K with X p-adically closédj'éan be obtained
by contraction from the corresponding objects‘attaqhed_to N/KS
As applications we prove the existence of some bounds in the
theory of fields and formally p~adic fieldss ‘ '
- Oontents " v

—~ ~

Oo Introducﬁmon

.lo Finitely Oonerated field OYthSLOHS over an Lnter«
.nal £ield.,

2., Extensions of placeo.

%+ Background from the theory ok formally p~ad10
' fieldse

N Oontracﬁion propertieé for Kochen wingss :
5: Contraction properties fox holomorphy ¥ings's
6e Bounds over arbltrary Ease fields;

7; Bounds over p-adically closed fieldss

Do Introounblon

; _ Let & be a baue fleld ﬂnd N/T be a field ettenulon
over K. he are lnturesbed to Ilnvestig qtﬂ situations when the
followlng qaeotlonu adinlt affirmative aﬂ°warsp = ;

I) Let P be a place of- g/K which is rational over a.
fl?ld extension L of K¢ Can P be” extonded to a place Q of N/L :
whxch is-rational over the same field L7

By Ohevqlloy’v placo e&tenoion Lheorem ths is always -
possible if I is algbbralcally ¢losoda There estists a rich.

h)'mho,uorkuwau prepared Wnils the author was:a Humboldt
fellow at the University liecldelberg. :

as
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" mathematical literature concerning this problem and 1ts various

aspects. We shalf{”ﬁ Section 2 thad! the afore mentioned ques—
tion has a partially affirmative answer if the base field K is

N oL internal.field ln an onlaxgemanﬁ in.hobinson'sansa,Fis ar ;{:Q

k.

flnitely generatbd fleld extension of L, N is aﬁ infbrnal fleld
~extension of K naturally attached to F/K as in Section 1, and
P is a place of F/K which is rational over an‘internal field

: extensxon L of Ke

I1) Let K be a pmadically closed. £ield (se% for definids

tions Section 3) -and N/F be a £leld extension, over X, If N is
_ formally p~adic then E'1ls formally p=-adic ﬁOOx We ars inﬁere@ted

in s;tuablono when thé converse is also tru@o

III) Consider the same data as in Problem IIQ Lot R (T)

~and R(N) denote the corresponﬂlnu Kochen rings of . the fields

F/K and N/ Let r(;) and T() be the corregpondlnw Eochen =
ideals in R(F) and ﬁ(N)o By definition R(P)C.R(N)K\F and
T(EFICTMINTFs We look for situations woen thé previous inclue.
sions bscome equalitiess .

IV) ‘With the sama data as ebove let H(F) and H(N) denote
the corresponding holomorphy wings of ¥/K and N/K. Ve are
jnterested in situations where H(F) is Lha connraculon of H(ﬂ),

B OPY - P H(F) H(N)nFo

We shall prove in Section 4 and 5 that the problems
II - IV admit affirmative answers if K is an internal p-adically

closed Field in a sultable enlargement, F 1is finitely generated

over K and N Loalnternal field extension of X naturally atta~
ched to F, as in Section L.

As applleations, we derive. in Sectlon» 6 and 7 some
results_coneernmnﬁ,the existence of bounds Ln the theoxry of—
fields and formally p-adic fleldss SRR G

In a £irst wersion of this pan@r, “the £hress was lald
upon the existence of bounds in the theoxy of formélly pwadic
fieldss Prof‘DréPeter Roquette suggested to change the‘poinﬁ
of view and accentuate the structural aspects as in the Lformu-
lations of probieng I) =~ IV). It is a great pleasure for me

o exproess here my warmest thanks for his advices and

encouragement in the preparation of thls works
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1o Finitely generated fiod extensions over an
Anterpal #iglas o oRRh 88 GE

LB Lot us.. cons;der a. wathematlcal btructura M. aontalning g
a non ~enpty fanily IE; T 3 oy O Fields, 'the polynomial frings”

o [Xl, voo X ] for 1€ I and arbitrary n, the finitely genera=
ted field extensions of L for i€ I, the set 5&5 of natural
numbers, est.cey and take an enlargement d, in Robinson'sense,
of M, e S Sty ' £

_ Let K denote an internal fleld in the enlargement ﬁ%,
considared fi&ced in the following, The main ailm of this sece
tion is to construct a fuanctor with good properties from the
category of finitely generated £ield extensions of X int#c . the
category of finitely %generated,internal field extensions of Ks

As a first step we construct a functor from the category
of finitely generated K-algebras intfp the ﬁategory of ilnitely ¢
generated lntefnal Kmalbebras.

Theorsem Lo 10 Every flnltely generated Kualgebra4 A can
be embedded in a fuaotOrlaJ manner intxw  a finitely generabud
internal K-algebra A such that tho following conditions are

satisfied8~

l) A is Hoenerated by As

4

2 & is a falthfully £ 1o Aumodule,

)) If x = (x g fame X ) is an aﬂbltrarJ famnily of genora=
tors of the Kmaleebra A and a denotes the ﬁ@rnel of the ca. &
"nonical X = morpfiem3 "5 : ;
K@ﬂ K [Xl, vesg X ]»%Az Xb¢=x, then the kernel of the canon1~

cal internaJ'K - morphxsma?“ [A}?Az Lppx Is a Kk['x] lees
il 'S [X]/ ”‘LX]'g P@ In.partlcular A is uaiquely .

s

deternined up to an internal isqmorhism-OL K—algebrass. -

A

A ‘
4) A has no nilpotent elements LLL A has no nilpotentﬂ
elements. - ~

. ; T e ‘ : e
5) A is an integral domain 1fi 418 an integral domailne
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Proof. Let C denote the category whose objects are the
Kualgebré"éi the standdrd type Lf ]/ g wWhere X = (Xl’ oeey Xn)’
neld, and a is an ideal in h[X] 3 and whose morpﬁlums are the

.Jﬁmorphlmms of. Lr@lgebfaoq Let- 0 .denote the_inteLnal ua*ebory
" whose obJects are the internal hmdlbebras of "the type K© [X]/a,,'

where X m(Xl, o0y X ),nC %L KF[K] is the lnternal wzng of 3

.internal poljnomvals in X with coefflclents in K, ’is an
1nte?n1 ideal in K“[Xi,and whose morphisms are the” internal

morph1s$s of K-algebrass '

: Let us ohOW fhat C can be ldent1f1@d, with a non~ Iull
subc!ﬁgbory of C A= EZ[XJ/ is an arbitrary ooaect in G, 3
let A denote:the Lnueﬂna] Kmaljeg?a i [XJ/ 19 Where afis infer-
nal ldeal in K‘[z1 ybeaeLated Dy as Since~ K‘[XJ KI:Xlg 680 gk ]
is Noetherian, a is finitely beneraﬁed, and hencé alis the
ideal a K’ [x:] generated by a and A ¥ A ’l”[X]Kd[X] §If A=
K[x]/ag B K[Y}/b, %= (xl, eiy Xo)e Tk (Tyy Wie, 1,)and

1 A ?B is a mobphlsm in O then £ induces a morphlsm
AA

A~%’B 1 O and wae have the commubative diagram of K—'
' alﬁahrass
)

L, 1 . Y

i*l‘“

'»’>———+5>>
o —> Y

where FA and i are .canonice Since K“[X] ls a falthfully flat
K[k] - module [7] 20344 1t follows by EMJ L, § 345, that A
X8l faith - fully flat B 2 module, in partlcular iA and. iB
are injective and hence the map . G(A, B)“$>G(A, B)a f%-;f is
injective. It is lmmedlate that the maps A%%iﬁ and.” f%~>.f
define a: functor 73 0 ?Oo Sinco for arbltrary objects A and
B in C, the map O(A§ B)»ﬁ>~C(A, B)x. f}w&_ﬂ is injective we
conclude that the functor Ay 0 '>6“ib an émbeddinga By
enlarw@ment pPLanpr []9:}the imag e‘of G is g_nonmell
subcate&ory of O‘ : '

, Sinca 3 O ~ﬁ>0 is .a funcuor Rl 1ollows that i A and.
B are arbitrary obaeotu in G and £ A»ﬂB is an lsomorphnsm in

Cy nhogwﬂz A~*JB is an Loomorphlum e Qo So, if A iu a finite=

- L LSl S e

e ARV A
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ly generated K—alg gebra, wo can choose an arbitrary family '

P (%15 oooy X o) of generators of A over K and define & to

be the factor Kual obra h‘fX]/&Kﬁcx], yhele a lS tho kernel

n_:_,

of the canonlcal K - morphlsm F[A]aﬂ XP9x° A io a faith&ully i
flat A-module and is uniquely determined up to an internal’
isogorphism of K-algebras. Thus the statoments 1) =~ 3) are prowv
ved. It remains to prove 4) and 5)0

Lot A = K[x]/ L X = (X e Xn) By [7] 205,
: > K&‘m { P€ K‘E[X][ (E}we’ﬁﬁ\/)P € aK“’"‘[X]}
4 : \/a&ﬁEX] R : i

It follows that a is a radical ideal in K[ X] iff’:

3]? E?]lo a radwcal ideal in K‘[i}, therefors & has no nllpotenx

olements iff A has ‘no nilpotent elements, as contended,

_ By [7] 2.6., a is prime in KZ[X] 1 a KEEX] is prime

in Kﬁ[X] g honce A is an integral domain ifx A is an Lntevral '

domaine QOEGDQ . ’ i % E
Pronositlon 1 2o Let f: Af?B be a morphlsm between

flnltel% generated K - algebraé and assume that 4 is an inte-
gral domaino Let £ Aﬁ*}B denote the correspondinv internal '

»morphlsm of K~algebras, Then f is lnaectlve LEE f is inaectlvea

. - Proofe Let y= (¥ ooy ym) be a famnily of genera=
tors of the A = algebra B and let b denote the kernol.of the

canonical A-morphism A X]~—> B: YF>y. Then B Y A[¥] /b and

it is easy to see that B = fYJ/ g[f} Conglder the cano~
‘ nloal commutative diagram of A oo algebraqx ‘
A . a
f

- T ae, Al
2@y 14 A | 51\ /
A{Y]/Am 8, A A.{z]/b Afﬂ

Since, by'mheorem l 1,7 A is a fqiﬁhfully flat Awmodun
1e, it follows trat £ 1s inaeotjve SERAE “ is injectives Wio have
to shows that the iInjectivity of f implies the ingectivitg of f

- The opposite implication is triviale b B %
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Assume that f 485 not 1naect1veo Since A is an integral
domain it follows by Theorem l.l. that A is an integral do-

~,@maino -Let I denots. the,faald of.. quoclents of. Aa in. partmcular F?:

'is an lnternal fleld. As f is not 1n3ective it followq thaﬁ
o P [1] = 7 [1]. Since ¥ 12 nternal £ield, F¥[Y] is a

" faithfully flat ¥ [¥] - module, and hence vr[3]= 0 ¥ “[y]az[¥]=

E‘[on Ve conclude that £ Ls not injectives QeB«De - )

Y

Gorollavx Lot A and B be flnltely generatad K~algebras
which ar® integral domains and whosg fields of quoéxents

" Q(A) and Q(B) are isamorphlc over K. Then the corresponding.
A

internal K”ngebrds A and B are integral domains and the
lsomorphlbm between Q(A) and Q(3) can be liftnd to an intarnal
Kmlsomorphism betwedn the iLBldS of quotlents Q(A) and. Q(B).

PTOOfa Ve may: identify the K-aigebras A and B with
flnitely gmnerated gubalvebras in th2ir common f£ield of
q_uoﬁlentﬁ. B Thus A = L[:X‘.l, s00g XIl] B I{Eyl’ XY ym] fo3

_Xl, °eoy 9 yl, YY) y EF, and Q(A) Q(B) Fo Let G

A

= Kirxl, ‘se ey ,.y;, boog ym]'be the subalgebra generated by
A\)B9 We have Q(C) = F. The incluomons £3 A~>C and.gs B0

' induce the correuponalng "internal morphlsms of K - glgebras

f& A*%O and.g Bv%O° By Theorem l. l,, A, B and C are integral
domamns, and by Proposltlon 1:20, (3 and are injective, and.

hence we have the commutatrve diagram of internal field
extensmonsa :

/;i//// Q(G)'\\\\\;ﬁi\
\/

Q(ﬁb

Q(B)

with © and g lifted to ¥ and %o To prove that lolh) s Q,(B)
.are inﬁejﬁallJ isomorphjc over K wo have Lo show that ¥ and’

¢ are lgomorpalﬁmoa Since @A) = Q(C) = F Lt follows that

Q(A) and Q(O) axre gbeneraﬁed by the same subilela T, As the
image by F of Q(A) is an: internal gubfaeld of Q(C) extending

T we conclude that £ is an inmOIPhlwmo With ‘the.samoe argu=

{

A R
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ment it follows thal: g is an ioomorphism too. QoBoDo

‘Thus ‘we obtained an analogue of Theorem lele for
flnltely genﬂrated field extensions of the internal field Ko

I ety v S e
qp?‘x,i}: AT -,a ,.x» npy e '-J

Theorem 14}. Each finitely gsnerated field ektension P i
of the Lnternal field K can be embedded in a functorlal W3y ine
to a flnitely benerated internal fleld extension F of X such
that the followlng conditions are satlsfieds

A

1) r is generabed by Fo

2) If x = (x g Jekivy & ) is an arbitrary famlly of gem o
nerators of F/K. énd a denoteo the kernel of. the canpnical Ke
morphisn K [ X7]+F: Xrex, then the kernel of the canonical inw
ternal K-morphisn'K[X]->F: Xr> x is a K°[X], ieeo there is a
canonical internal K-isomo¥'phism fyem the field of quotients
of the factor r1n§ K“[?] /aKa[v]onto Fs

Thus F e unlquelx determlned up to an internal
K-isomorphism of fields. The map FF%F ilnduces an embedding of
the catebory of finitely generated field extensions of K into g
nonwfull externgl subcategory of the internal category i

finltely generated internal field extenplons of K¢ -

Now let us investigate the propertiss of the fleld
‘extension F/Fg Let /L be a field extension over K where I Rl
and F ara finitely génerated over K. Tne exrenolqn F/L induces
naturally an internal field extension F/L over K., Thus we
‘\ , ‘have the following dlagram of field extensxons of K3

oA

-

On the other hand., ulﬁﬂe L is avalnternal field in
the same enlargement ém and N LoF is ilnitely generated Ve
L, we can embedd as above the fisld QXuenulcn.ﬂ/ﬁ into a

corresponding interndl fleld extension N/La_ e
~ o
. Propesition 1@49 a)g P and N aro 1nternally isomorphlic

An g o0 Sl A 4
over L. A g R ;
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b) T and F are f{ﬁmmy disjoint over T

Proof. &) Let us show that F satisfies the necessary
conditions from Theorem’l 3. to be identified with the internal
*“Pield ex:'bensd on ¥ of L gttached £6 the Finitely genera*ea field’™
extension N/L Since F is ®generated by P and FCN 11; follows
that ﬁ is generated by N. As the constmctlon of N does not
depend on the choice of the generators of N/L, it suffices to
sbow that F satisfies condition 2) from Theorem l.3., for a par-
ticular family of generators of N/L. Assume that P = L(y), where
¥ = (Fys eoes ¥p) € F' and hence N = L(y). We have to show that

the kefel of the canonical internal L ~ morphism f 3 LLYJ—-> F:
Yi»y is generated by polynomials in T [Y] Let L = X(x), where

X = (xl, coey )G L LTt K[x] and A = K’Tx] be the

correspondlng internal K - 8lgebra attached to A. By definition,
L is the field of quotgZnts of A. Consider the commutative
dlagram of internal K—-algebras i o )

"fYJ —> T*[¥] -—%F_f. '

'*[x YJ /

- where /‘*(X) %y /u (Y) =5, Y(8) =%, v (Y) ~.Y; and/is the
canonical inclusion. Since, by definition of F, Ker/L = PK fX YJ
for some ideal b in K[X, Y] and vy is surjective, it follows
that Ker(fol') = bA{'TY] o As T is the field of quotients of A,
we have Kerf = Ker( foi). T Fly]=1v T “‘[Y] » end hence I{:erf
is generated by polynomials in L[Y] C L [Y]

_ b) Let F = L(y) whit y = (yl, gy ym) and let B L[yj
Denote by b the kernel of the- canonlca.l L - morpifrlsm LfYJ ~> 1
YM Yo As we ghowed at a), F N can-be idem;ifled viith the
field of quotients of -the 1nternal L - algebra L [YJ/bL EYB’

therefore 3O deflnltlon o:f II, N = L. P can be 1den't1f.Lcd wa.th the
_f.i.eld of q_uotiem,s of the L ~ algebra ¢ = Y}b L[Y]m
ted by

Since ¢ = T T ]iu the subr‘*ng of N gex e‘ by BU.u and,
@ = B@LL J;t; follows that ‘Lhe L - algebras B a,nd A are finearly
digjoint over L. As P is the field of quotients of B we conclude
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PhateRane T axe @znearly disjoint over L. Q.E.Do

Theorem 1o5. Let F be a flnltely generated field ex-
tension of the internal field K and F be the corespondlng
1nternal field extension of ¥ autached %o P. 'Then the exten—”%
gion F/F is regular and the degree of tranocendency of F : e
equals the degree of ° transcendency of P/K

Proof., We use induction with respect to the number n

- of generators of F/K, in order to reduce the proof to the case

where F/K isvgenerated by a single element. This reduction
step is carried out as follows: Let L be an intermediate field

between K-and P and assume that F/L is generated by a single e-

lement, whereas L/K is generated by n-1 elements. Let us
con31der the follOW¢ng diagram of fleld extensions of K:

s N
5

"*»A»a/,//' F'PJ

e s

By 8r0p051tion s 4.; the internal field extension‘ﬁ
of the internal fleld L, attached to the finitely genera&ed
field extension N/ﬁ can be 1dent1fled with F. By induction L
ig regular over L and the degree of transcendency of L/K equals
the degree of “transcendency of EVK. By Proposition l.4., B and
f are linearly disjoint over L and hence the regulerity of ﬁ/l
implies the regularity of N/F. On the other hand, since linear-—
1y disjointness implies‘algebrgh iﬁdependence, it follows +%hat
the degrees of trancendency of F/L and N/fFare equal,

a“p

Now, if we assume the theorem proved for one—generator'

_exten31ons over an internal field, then we apply this to N/L

and conclude that N F is. ‘regular over N and the degree of
transcendeﬂoy of N/L equals the degree of §€tranacendency of
F/L. Since a @ower of regular exztensions is again reguldr; it
followa that ﬂ/F ig regular. On the other hand we have the
equalitiess /

~a



: - -:lo'-» = :

trdeg (F/K) = trdeg(L/K) +'trdeg (F/L) = Ftrdeg (%/K)'+
. 4+ trdeg (N/L) - ﬁtrdeg (L/K) + “trdeg (F/L)

= trdeg(F/K)

Lo, ;._r‘ft-‘.j'\(:'_‘_‘.‘:%j'\“'--.w fo BRSO ASDE "’f\—\} i ’ “‘1‘ {\* Sy f"“ ‘-‘ﬁ FE

“:3” S g ‘Y’jg kfﬂ"‘p*-’ﬂun B R

Thus it suf;lces to prove Theorem 1.5 under the addi-
tionel hypothesis that F E(x) is generated by a s;rgle ele—
ment X ;

We . dlstinqulsh two cases.

Case 18 x is algebraae over K. Let f€ K[jxi]denote the
irreducible polynom1a1 of x over K, Then P = K{x]% Kljx]/fK[ﬁ}

The polynomial fe KtﬁK] rnmaﬁﬂs jrreducible in KﬁTXI Indeed,
if f admits a decomposition ¥ = g.h with g and in X [K], then
deg(g)< deg(f) and deg (h)<5deg(f), hence g and h are contained
in K [X] . We conclude that Pz [i}f KR[‘JN z:[y]/EK[:X]M
Thus Theorem l.5. is trivially valid in this case,.

Cage 23 x i trenscendentsl over Ke Tnen FEK (X) and
F 5 (X) where X is an indeterminate, In partlculdf the degree
of transcendency of F/K and the degree of transcendenCJ of
F/K are equal to 1y The proof of the regularity of WV@ £oll.ows
the lisie of proof for the case 2 from [24] Theorem 3¢5, QouoDa

Remark. The regularity of the extension ﬁ/P in the par-
ticular case P = K(X), with X = (X}, weey X,) and nefy, is
announced in [7] 2¢50. without proofe

20 Extension of places

Let X be an internal field as in Section 1% We show in
~ this section that Problem I from Introduction hass3 éartially
affirmative answer if F is a finitely generqted fisld extension
of K end N is the internal field extenqlon 7 of K attached to
F as in Section 1. :

Theorem 2.1. Let F be a flniﬁely gennrated field exton—
glon of the internal field K and let F denote the intermal
field extension of X attached to F. Leﬁ P be an arbitrary place
of F/X which is rational over an 1nternal Tield extension L of
K, i.e. the residue field FP is a subfield of L/K. Tet

”(xl’ seoy Tn) be a famlly of generators of F/K such that
.IKEx] is a subring of the valration ring Op of P. Assume that
xP is a simple point on the affine model V of F/K whose generic

point is x. Then there exists an internel place Q of F/C which ie

L, ioea ?aQé: L 5y and Q coincides with P on the

o TS T
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subring K [ x]"_

Proof. Let a8 denote the kernel of the canonical K-

| morphlsm K[Xﬂ-?F’ X b> x. Then h[mﬂ = KA[X] is the coordinate
e

1 1,_.5,,}*‘;

ring of ¥he affine Variety V and P = K(x)” is The FIaI TSP e
tional functions on V over K. Let Tys esey T € K[ X ] be some
generators of the ideal a. We enviSage V as belnﬂ defined by. the
system of polynomial equations over K

(2.1) rj(xl, XY %) == O‘ for j 1, eeoy 8.

- A
The internal extension F of K is by deflnltlon, the

field of quotlents of the internal integral domain K [xj-

=g [XJ/;KﬁX]' Let V denote the internal affine variety over K
vvhoseﬂvenerlc p01nt is x. Then X [x] 1s the internal ccordina-~

-te ring of V ana B K (x) is tne internal fleld of internal
rational functions on V over K. We envisage V as being defined
by the same system (2.1) of finitely mang polynomial equations
over K. Since, by Theorem 1,5., the degree of transcendency
- of F/K and the degree of transcendency of F/K are equal, it
© follows that the dimension of V and the internal dimension:
of 6 are equal’,

- Now, the condition for a point to be'simple on V dan'
~ be expressed by saying that at least one of the minors of order
.n-dlm (V) of the Jacobian matrix (§?-A)ZL§* gn does not
& lgjgs
vanish at that point. Since V and V are defined by the same
systen (2.1) of polynoniel equations over K and dim (V). =
dlm(G), we conclude that.thg condition for an internal p01nt
to be simple on V coincides tﬁe correspondiﬂg condition for V.

As, by hypothesis, xP is simple &n V and xP is rational
over the internal field L it follows that %P is a simple point
“on V. By enlargement pr1n01péie [19] and by [10] Corollary A.2,
the internal specaallzatlon d-—%>YP can. be emtended to an in-
~_ ternal place Q of ﬁ/& such that T o= (XP)C L. By construc«'

tion Q coincides with P on X [x ]| as contended. QoE.Do

Corollaxry., With the same data as in Theorem 2l iy
assume that the place‘? is rational over X, i.e. FP = K, and
the p01nt xP ig 81mp1e on V., Thcn there is an internal place Q-
of F/K such that =0 in ratlonal over K, i.e. F Q = K and coinci-



- 12 -
des with P on K[k}

_ Theorem 2.1, can be improved if we assume that the fini-
tely generated field ext ensiﬂn F/K satlsfles Zariski's 1ocal o
unlfo”W1"at10ﬂ theovem"Fo“ each modél Vol F/K in the sense of
algebralc geometry and for each place P of P/K which lies ovexr
the coordinate ring X[x ] of V over K, there is a model W of
F/K such that F lies over the coordinate ring K[y] of W over K,
X [x] is a subring of K[y] and the center yP of P on W is a
: 91mple pomnt.

It 1s knovn that Zariski's loczal unlformlzatlon theoren
‘does hold over an arb;trary field X of characteristic zero [28]
and also for function fields F/K of dimension £ 3 without any
restriction-concerning the characteristic. We_shall.prove in
Section 6 the existence of séme bounds related to Zariski's
theorem, ' R

- Theorem 2.2 uet F be a finitely generat@a fleld exten~
sion of the internal field K such that F/K satisfies Zariski's
" locel uniformization theorem. Let P be a place of F/K which is
rational over an internal field extension L of K, anﬂ,A~K[.x]
be a finitely generated subalgebra contained in the valuation
rind QP of P. Then there is an internal place Q of F/K which is
. rational over L and coincides with P on A.

Corollary. With the some data and hypotheses as in
Theorem 2. 2. assume that P is ratwonal over K, 1.eo FoP.=Ko
~ Dhen there is an internal place Q of ?/K which is rational over
X and coincides with P on A, ‘ '

3. Background from the theory of. formallv v-adic fields

- 2The theox Ty of formally p»adlc fields was initiated by
Kpchen in [11], in a complete analogy to the claggical theory Qf-
‘formml;J real fields. Important developments of this theory
were achieved by Roqueite in [26] [23] and, tovether with Jarden
. in [16]9 where a Nullstellensatz over n~adlcally closed .fields
is provcd° Amajor role in the proof of ths resulis of [16] is
played by the model theory of Henselian waliled Lields initiated
by the welllmown series of papers of Az, and Kochen [1], and
Ershow 18] o

' The-possibility to extend tha. Sramenotl ot G AHEEEY
.offfofmally p-adic fleldl is suggested in [11] as wéll as in
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[16] An extension of the theory was fulfilled by Transier [2@],
[27] A different framework 1s developed by the author in [2],
where the principal results of [lo] are proved in a more gene-

Wt pal ‘eontext and sotig’ ‘examplas and APPLLE atiGng are Alsclisasdy e

Now let us give the main definitions and results from
[2]'which are useful in the rest of this worka

Let k be a fixed field equipped with a nonmtrlvial place

P, and the corresponding vaﬁmatlon Voo Let L, L and L denote

the follow:x.nD first order 1anvuages: : .
L the language of fields extended with 1ndiv1dual contanb.

naming the elements of the residue field k N
Vo
L the language of ordeled groups extended: with LndiVim

dual Gonstants naming the eleuments of the value vroup
V (k)e :

L the language of valued fields extended. with indivie
dual comstants namino the elements of k@

Assume that there are given a theorg,m in the language

L, and a theory T in the language L subject to the condltlons-

a) The models of T are field eytensions of“kv s and kv

is a model of T4

b) P is b axiomatizable9 ised tf e is an arbitrary
model of T then every Iintermediate field between &% and{is a

model of T too@

a9 The models of T are Ahelian llnearly ordered groups
exteno.:mo v (k), and v (x) is a model of T '

b!) ’.D 18 M- - axiomatizable, iiey 1f H is an arbitrary
model of T then each lnﬁeraediate ordered group . betwean vo(k)
and H ls,a model. of .1 tooe : e .
o~

_ Let W denote the theory in tho language L having as
modelu the valued fields (X, v) suoaect to thoe condltions
vextends. v o the residue field K& is a model of T, and thé value .

gToup v(K) is a model of 100 ‘. Thusg_bbe theory W is %%_m axioma =

tizable and the base Ileld (ks v ) la a prime model of Wo

- Let A and [ be drbitrary sets of rational functions
with coefficients in k in countably mauy indetermin?tese We say.



e
that the ordered pair (/\,[ ) satisfies Sonaiition (cl) if for

‘every valued field (K, v) extending (k, v,) the following
stat ements are equivalents

Gensetasritaon ) P (IGTRY is 8 model of W.““ég‘fQﬂwétw"“'*‘ﬁx-w¢~?“J»*ﬁ““
2) a) For every £(21y oeey 3 )G/\t’ and for every
(al, .ooo, a )6 Kn V(f(51’ o0y 8 ))> o b i i defined in

(al, cosy an), and _ : 5 :
" b) for every f(z1 PR )6 F‘ , and for every
- (ay, veey 8,)€ Kn V(E(a)) eeey @ 5))»0 if £ is defined in

(81 ooes By)e
We agsume in the following that there is at least one

ordered pair (A T‘) satisfying (cl) Inother words, W admits

a system of axioms of the special form afore‘described. ;

Now let us consider an arbitrary model (E5ew) dof W, -
and let p be the corresponding place of K. Let F denote an
aritrady field extension of K and let u and u' be arbltrary '
subsets of P,

Deflnltlon Fis called formally p~adlc if there exists
a valuatlon w of P such that (P, w) is a model of W extending
(Ky v)o P is called formally p-adie over (u, u') if the exists
a valuation w of F such that (P, w) is a model of Wiwdc Q and

u'meo

. If P is formally p-adic over (u, u’) then each interme—
diate field betwen K(u, u') and F is formally p-adic over (w, u'),
In particular, if P is formally p-adic then every intermediate
fleld betwen K and P is formally p-adic too,

The Kochen rlnh ﬁ; °(F) of F over (u,u‘) is defined as 4%
the 1ntersect10n of the valaatlon rings Q where W ranges over -
the set of 'valuations of 7 extending v such that (F,w) is a. mo-
del of Wy, u Q and u'@m o Bdg formallj p—adlc over (u, u') iff

B

'~ The Kochen idesl r ,(P) of Ru ,(P) ig defined as tho g
intersection of the maxlmal 1dea]s m, of the corresponding value~
~tion rings Q afore mentioned. s '

-In particular, for uCZQ and u'C m v* We obtain the
(absolute) Kochen ring R(P) of F and the Kochen 1dcal r(F) 2
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~
-The Re¢dmann space S(F) of F/K ig defined as the set of
- oall places P ostubJecb to the follow1ng condltloncz

‘wb ?“!H vwﬁﬁ’v‘ B

e '..,“ X L 3 o x.r Aoy .\_f\ arXed 5 s, IR TR S BN 4?,‘:\ FRRES SRV OLN S TR SFan 3«.“%@.
3) is trivial en K inm partlcular the residue’ field
~ FP is an extension of K.)

asf

2) The residue field F.P. is formaliy'p—adid{

: If u, u' and x are arbitrary subsets of F we denote
by S u,(F) the subset of S(F) containlng all places P satis-
fying the conditionss$ : :

1) The elements of Mys-an and X are holomorphic in P,
i.e. uvu'v xC Qpe

2) The vesidve feld P is formé“ﬂ p- aolcc over (u P, w. P)

The (absolute) holomorphy ring H(F) of F is.defined as
the holomorphyj ring of the set S(P), i.c. the intersection of
ell valuation rings Qp of F.for P€S(F).

If u, u' and x are arbitrary subsets of P, the holow
morphy ring Hﬁ u,(F) of P over (u, u', x) is defined as the

holomorphy riﬁg of the set S* '

% 0 (B)y ee. the intersection of
all valuation rings Qp of F where P ranges over the set
Sh,ur (B

We assume in the rest of this paper that the folloﬂlng
model theoretic condition is satlsfiedz

(c ) The theory W 1s companionable, ieee there exists
a theory W in the language L such that the followmng conditions .
are satisfieds : : <

1)nw extends W.
A ~
2) W is model-complete, o
3) Bach model of i can be‘embedded in some model of .

; The thcory W, supposed to ex1st, is wniquely determlned
by the conditions 1) - 3) ({E]TII Theorem 18), and .is called
the model—companion of W. :

It follows -that the modelq of W are algeoaically compleu’
te, i.e. without proper algebralc immediate exten31on8,,and hen-

H

- Cey %hey‘are Hemselian valued f3e1gg°



A model (K,'v, p) of W is called p-adically closed if
(K, v) is a model of We

Now we mention the prmcipal resultf* from [2] which are
i He il dn S 8ctions 4, 5 and’ T

A first result giyesa. description of _'h'he Kochen ring
in terms of 1ntegral definite functions. In u, u' and x are
arbitrary subsets of F we denote by S u'(F) the subset of

Sx u'(F) con-ta,inlng the places P of F/K satlsfylng the condi-
ta.onsz FP =K, uvw'V xC {p wP C O a.nd uw'P Cm. An element
z¢P is called integral definite on ARYy“df z?EQ for -

(B} if.

u ne
each PC Su u\,(F),and strlct'gv iﬂtegral definite on S

ugut
zP €. e for each P& S ,(I‘) Denote by I us(}3') the ring of

1ntegral definite functlons on S u'(F)’ and by i u,(F) the\

1deal of strictly 1ntegral definite functions on SX (F) The‘n

u,u’
we ‘have the i’ollown.ng re&sulte

Theorem 3.l. Assume that’ (04) is satlsfled and letb
(K, v, p) be p-adlcally closed. Let P be a finitely generated
field extension of X and uam{u be fi"nczfe subsets of F.
Then R (F) i jur (F) and T u,(r)awa (F) fateachfiite subset x

of Pe

For proof see [2] Theorem T.,l. For forfally . p-adiec
fields in Kochen—-Roque'tte sense see [11] Theorem 2 and[‘lo] Theo-
rem 7020

& second reqult is a Nullstellensatz for Kochen rings;
With the same data as in Theorem 3.1 1et us consider the repre-
sentation M of the factor ring A(P) = "2 u'(I) into
the ring J of functions on S ut (.z:) with vaﬁwes in the res:Ldue
field K3 if 2€R Q-‘) then zP € Q_ for each Pe 3 u,u,(F), and
5 ~ )
2 determines a function from SX ,(F) 1;0 va; ‘By Theorem 3,19

’ the function induced by z is 'i;he zero map iff- zér u,(F), g0
we have a canonical xepresenbatlon/& 3 A(F)—> J. Now, gt
is an ideal in A(F), let s denote the subset of s*‘ ,(F)
containing the plares P subaec*i, top (z)(‘f)zo for each Z& a,
and j denote the ideal in- J contai:m.ng "che functions vanioning
on Séa, ﬁhen wie nave,

Theorem 3.2. Assume that the hypotheses &f Thecreom 3,1

Ay 1.;-_«‘1-" -‘4.‘#,__ 202 4“‘-’7“& ~- ek vei‘ S
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are satisfied, and in additidn, the following condition i&\wm¥kd;

(c ) There exists a non~-constant monic polynominal
gé{kv [X] such that T (\fx)g(x) % 0, 1,es g has no root in

;.b WD g A e'(,mf EEh il SRS o T DL e Sy -:s;.*t@g'w*‘ AR S T qu«\‘m« I«A«-_,y_éu4 ,..vm,;\«‘y.z W!\‘L\‘-"'”M me.\

any model of T.

Let a be a finltely generated ideal in A(F) Then the :
inverse 1mage/u (j ) of the ideal j equals the radlcal\[‘
of a., . a5

Fof proof see [2] Theorem'7 3.
. Another result we need is the follow1ng one giving a

descrlptlon of the holomorphy ringsle -

Theorem 3 3. Let (K, vy, p) be a p~adioally closed field
and P be a flnltely genevated fleld extension of K. Assume that
(02) is satisfied and F/K satisfied Zariski's local uniformi-
zation theorem. Tet u, u' and X be finite subsets of F. Qhen

Hy gt (F) = Ru at (F)E[ x] = Hf: qt (F)s vhere

o ‘ et <3 . o '
Hu u,(F‘) ={z€LF1 ZP # o0 for each PE€ Si’u,(F)} is the ring of
holomorphic functions on S ug(f@)

For proof sece [2] Theorem T.5. For formally p-adic
fields in Kochen—Roquette sense See [lo] Theorem 2.1.

The following regultls a Nullstellensatz for holomorphy
rings. For the formally p-adic fields in Kochen—Roquette sense
~.see [11] Theorem 3 and [1o] Theorem 2.2,

Theorem 3040 Assume the same data and hypotheses as in
Theorem 3.3, Let a be a finitely generated ideal in H; .,(F);
Thcn the radlcal Mﬁ; of a coincides with the set of Lhe ele~ .
ments h@FX (E‘; vanishing at all cammon Zeros P€ SX u'(F) of

the‘laeal e
For proof see {2] Theorem 7.6

4, Gontraction propertles for Kochen rings

.Let W and W be some theoriesvas considered in Section 3o
Consider a mathematic structure M ponbalnlug a non-empﬁy
f&wdﬁg & ( Ko vi>} ie I of models of W, the polynomial

rings X, [fxl, sl Xn] for i€ I and arbltrary nefv the finitely
| :
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generated ficld extensions of K; for i€ I, the set [ of natural
menbers, e.t.co, and take au enlargement M of M.

mw@gﬁa@pﬁywprincip@ka5ofapermanencaﬁ£19]nthere.exiat;internalma%;

valued fields in the enlargement %y whicli are models 6f W.

Let (K, v) be such a field and let p denote the corresponding
place on K. In other words Ky bv, p) s an 1nterna1 p-adically
cloged field.

Let ¥ be an arbmtrary finitely generated field exten—
sion of K and et ESF be the internal field extension of Katlached

to F as in Section 1. We show in this section that Problems XI

and III from Introduction as. well as other related Questlons

admit an affirmative answiexrc for the extension ﬁ/F over the
unrn11 p-adically closed field (Ey vy Do

Let u = (Ugy %eoy u,) and We = (ulg'a;o’ um,) baA rb%L

trary finite families of elements in F. Denote by Ru ut (F)s

respeetmvely Ru ,(F), the Kochen ring of FVK,quﬁcL%igdﬂ£1kowu
,u), .

Let T u‘(F)’ respectively r u,(F), denote the Kochen 1deal in
Ru u'(F)’ resnectively in Ru u'(F) By definition we have the
inclusions$ Ru u,(F)(Z Ru u,(F)f\F and u'(F)‘: ru u.(F)/\A,
We shall shcw that the opposite 1nolusmons hold $00%

pis :
Let Ru, ﬁ(F), respectively r ,(P), denote the internal
Kochen ring of ?/K over (u,u?), respectlvely the 1nternal mﬁeal

in Ru’ug(F), u,u,(E) is an internal subrlng of F and coincides

~with the intersection of all internal valuation rings Q where w

ranoes over the internal set of internal valuations of F guch
that (F, w) is a model of W extendlnﬁ (Kg )y u{:Q@/and u' C m.
The internal ideal r ,(F) in P i ,(F) equals the intcrsection

of the max1mal 1deals Rl of Lhe corresponding 1ntbrnal v%Juatlon

rings Q afore ment¢onud, Thus have the 1nclus1onso ﬁ; i(I‘)C:
A
Ru u!(F) and Tu u!(F)C us(r)

Theorem 4o)s The followang equallties hold?

R, (F)= K, . (F )n F=R (f)'n 3
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and

N

o u.(F) u.(F)f\F u,.(F)r\ F,

crvoww oot Proof. It suffices’ to. prove vhat Ru ue(F)(‘NF Ve R, (F) 3
A

and T u.(F)/\FC u.(JE*‘)

Let us show ﬁhat the first inclusion holds Let h be an
arbltrary element in Ru u,(F)/’\ F. We have to snow that h belongs

)to Ru u‘(F)
By Thiorem 3.l., the Kochen ring Ru . (F) of F/K over

(vyu*) equels the ring I ,(P), deflnod in Se ction 3, where x is
dp arbitrary finite famlly of elements in F. - 5 ’

WefchobSee in a convenisnt way a finite family x as follows,.
First let y = (¥y, ceey ¥y) be a family of generotors of F/K

such that h and the elemerfs of the fémilieS*u and u' appear
among the elementsof y. After suitable renumbering of the ¥y we
mey assume that uy=yy for i = 1, coey My W =y,  for

=01 sy m', h = and k>m + m' + 1. Let V denote the

ym+m'+l
affine variety over K wnose generic point is y. Thus KITJ318
the coordln“te ring of V over X and T = K(y) is the field of
rational functions en V over K. We envisage V as belng defined
by a.system of polynomuaﬁl equations over K3

(401) (Y 9 oeeo Yk) =0 for j = 19 ooo, 8,
\

The point y is simple on V since y is generic on V over K. The
condition for the point y to be simple on V can be expressed by
saylng thax at 1easu one of the minors of order k-dim %) of %he

-

Jacoblan matrix (—-——m-*--‘j-)1 iS%; does aot vanish at y. Lot [Ce Kj:YJ

i 16;}64 ;
be some proPer minor of the Jacoblaa maur1A such that r'( r) #A Os

Let x —(xl, oy X ) be a finite Ffemily of elements in F such

that I (y)™% and the elements of the family y appear among the
elempnts of x. Thus we may assuume that xi = for 4 = 1, ..., k,

Xperl =l-(y) 1 ana Y k+l, We havn to show that hPe @, for each pla
ce P belonylng to the set S (F) defined in Spotion 3. :

Let P be an arbltrary membexr of S‘ ua(F) Ay Bty
' yP&EKk and r-(yP) ~!“(y1P #£ 0, we conclude bhat yP is a simple
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point on V, rational over K. B,," Coroilary to Theorem 2o 1., there
exist® an internal place Q of F/K such that F.Q = K and Q coincié
des with P on K[ y] « Since uuu'u { hicy, it follows that
----- sy Qo g Peo «LOXad = Ly edoyg My uiQm- uiP e‘«mv Lows :Lml,uqm} 4

and hQ = hP # 20, Thus Q belongs to the internal set S )y lF)

containing the internel places | of FlK subject zfe cona’tbons .
FT o uTC'OQ and w Tc:mQ

According %o enlargemer"t prlnﬁlple [19] and. to Theorem.

3¢1., the interhal Kochen ring Ru D (ﬁ of F/K over: ay ur)

comxcndca with the internal ring ?u u,(ﬁ of :mtegre;'l. f‘unctions
of ¥ on the internal set of places ‘3 (F) afore defined,

Sinc e, by hﬁfl{sothems, hGRu ,(F) a:ad, by conmmct:.on, Q€ .
f‘u u’(ﬁ we conclude that he P = h.Q € O o« Thus we proved uha't
-5 u'(F)’ iee.h €
(]?) We conclude, by Theorem 3.X, «that+h belongs to

hJ? is ﬂonta,ined in 0 for every place P€ S
u u.’
ﬁu,u?(m as contended. . }
The inclusion r .(F)n FcC r u'(F) follows in a
similar way., QeEo Do _
. Taking u C O and urc M,y W obtain’i
Corollaxry to Theorem 4,l. The follow:.ng equalltles hold'
R(’E) R(F)f'\ P = R(F)/\ Fy

and

~ 24 X
T(F) = B(F)NF = ’r‘(F)/\ P

- Thusg we prov@d thet Problem I1I from In‘croductlon admitsa
positive answer for the extension I‘/F The answer to Problem IXI
from Introduc ion for the extension %‘/F is a.n 1mmedia‘te
consequence of Theorem 4.1, -

- Theorem 4.2. F ts fo»*mallg p- aclcc overCu;u.’) iff ft.f forma[[y
p«-adlc over (u, u') ife ? 1s? Teormally p-adic over (u,u' Pe

Proff. The mpllcations <— are tmv:.al . Assume that T
is formally p-adic over (u,u Yo ‘J.‘nen R, .(F) #'F, and, by

A A
~ Theoren 4.1, Pﬁ,u"‘F) 7 F, fhe€e F is gfi’ormally p-adic over (u,ut)
QeE.D. '

o2
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Corollary to Theorem 4.2. F is formally paadiciiff B is
formally p-adic iff F ig 2"{formally p—adice

Noe let us investigate the relation between the radical
T R R v X L o B0 o I o y » ) ~-’~u=‘£':'\/ﬂ.:-~"',‘-w N (5 1 TR VO ASIRUL RS ANG JOe Sy S
i trsen e d deal -gtructure of the:s factor rings -A{B)- Ruuu,(¥)/¥ ,quyqﬁmmAy

u'(f,f‘) and A(F) = R (F)/ Gye The

o (P
u u
. inclusions Ru u.(F)Cf Ru (P)(I Ru u‘(F) and r u.(F)cr u,(F)

: <;;; u.(F) induce the ring morphlsms from the commutatlve dlagram.
?

. | ' A ’f Ay B
e A(F’)""‘“"?A(F)
By Theorem 4.1, the morphisms 1 end j are 1nject1ve9: 
Thus we can identify A(F) with a common subrlng in A(F) end

A(F). Let a be an arbitrary 1deal in A(F). Then we have the
inclusions?

Va ¢ Vaa(F) N A(F) C\/aA(F) 7 A(F)

We\ﬂdnt to know ié the epp081te 1nclusions hold too. Since the
rings A(F), A(F) and A(F) have not nilpotent elements, the
affore considered inclusions become equalities in the particu~
lar case a = Oe '

'Now let us assume thatb the‘theory W satisfies condition'.
(c ) from Section 3, and let a be a finltely genevated ideal
in A(F) Then we haves? '

1]

Theorem 4.3 With the data and hy’po‘cheses as abom, the
following eoualltlas are satbisfieds’

‘ & - g Sl
Va=Vor®n am = Vald A am = V@ A aw),

A A
_ Remark. Since A(F) is an internal ring snd a is finitely
generated, the 1nternal ddeal 'genermted by a in K(ﬁ) cdincides.
with the ideal a A(F) generated by a, and |
A AN
f (T*M = éA(F)l :{ cia A(F) for aome &€ fﬁ/}
Proof. It suffices to show that VaA(F) Y A(P) C\/a. ‘o

Let h be an arbitrary element in V aA(F) N A(F). We have to
: 4 ¢ Je 0 ¢




= ' &g
- show that & 9\/-‘ e
By thepren 3.2., Va = p” Ly ) {, ¢ A(F)Iﬁ, (z)(®) = o

,,,iar eaeh. E?C.S }, wnexsa K iza .ex; arbitrarvy.- Ll mte Lanily..of. elerents. ..

in F. Let ht ¢ ?u HaHE) Be such that h® mod T ’u,(F) = h. We have

to show that h*PEm, for each P€ s“‘

. We choose in a convenigwt way a finite family x as follows
Let y = (yl, cesy ¥y ) be a family of generators of F/K such that
L', the elements of the families v and v', and some representatim
ves tyy eeey b, in Ru 0t (F) for the generators of the ideal a
appear aamong ‘the elements of yo Let V denote the affine variety
over ¥ whose generic point . is y. We proc,eed as in the proof of
Theorem 4.1l Since y is generic, y is simple on V. Let [ € K[Yj
be some proper minoyy, of the Jacobiaa meatirix such that F(v) # oo
Let x be a finite family of elements in F such. that f_(y) and
the elements of the family %ap"oear amcmg the elements of %o We
have tc show that h'Pem_ for each PE

Tet"P e an arbz.trary member of ‘? 6° It follows that yP
is a gimple point on V and gence,. by Corolla,ry t0 Theorem 2.l.,
there is an internal place Q of W/K such that F.Q. = ¥ and Q
coincides thh Pon K [y] o It follows that Q belongs to the
internal set Sa,b(l?) contammg,the internal places T of F/K

sub;;ect to the cond:.“i,:z.onss Fe = K, uTCO and* zive m, i’o.c* each
zQRu 9(1/;) such that z mod x* e((‘“)é aA(T"‘). , e

By enlargement prwolple and by Theorem 3.2., the inter-
nal ideal ?aA(I‘) coincides with the set of those elements
zéA(fE\?) which sw:i.sfy tha conditions z'T € m_ for each represen-
tativé z' of z m P t,\P) and for-each 'J_ G S *ve Since, by

an aA(b s
hypo»hesis, h GV aA(i‘ s and, by construction, Q& Saﬁ(%)’ we
conclude that WP =hiQ @mv, S0 we proved.that h‘PémV for each
Pe%f, and hence, by Theorem 3.2, h_(-jva as’ cohter_ldecl Q.E. D>

5 Contraction vnroporties for holomorphy rings

~ Left us consider the framework from Section 4, ahd let ‘
| (Ky, v, p) be an internal p-»o,dicall,, clcmc*d field, F-be a finitely
generated field extension of K, and ’*‘D“ ‘be the internal field
“extension of K attached to I' ag in Section 1, The at». of this
gection is 6 show that Problem IV from :{n‘trmiuction'i and another
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: ‘ A
related question can be solved for the case of an extension F/F

as ahove,
Let u --(ul’ ooo, um), (ul, uoo’ Um') a.nd X =
* *‘m -;-},_*.".‘."«l;:-;si,. i?‘-‘q';\* gw,m»w 22 SO Kozt gt LAl Wl d e ] TR E ety erdie W LGRS Fggrys "J;r £ o e F .»gv ety

(xl, e oy xn) "be arbltrary finlte families o elements in F. .

/
Denote by Hﬁ B, respectlvely by Hf ,(F), the holomorphy rlng
of P/K, respecﬁlvely of F/K over (u,u ,x) By definition,

Hﬁ uo(F) ¢ H ug. (F) N\ Fo We show that the opposite inclusion
holds to0 1f certaln additiondl conditions are satlsfiedv

P
. Tet H& n (F) denote the internal holomorphy ring of E/K
a?e?(u, u', x)@ Hﬁ_ ,(F) c01ncides with the 1n%ersection OB
9

the valuaﬁion rings O of internal places P of E/K subject to.

wun' U C 0 ani,F.P is formally p—adlc cver (uP u'P). Thﬂs we -
have the 1ncluelonv FX ,(F)<: Hx (F)o

Theorem_5 s Assume that (02) ig satlsfled, and F/K
satisfies Zariskit®s 1ocal wniformization theoremo Then

& It = Igl u.(F)nF fg’;“u.(F)n P

Proof. It suffices to prove that hu u.(F)f\ P Hu u,(F).

/‘\
Let h be an arbltrary element :Ln-Hu u,(F){‘\ F. We have to show
that h(SHﬁ u.(F) .By Theorem 3e3s; the holomorphy ring Hu u,(F)
of F/K over (u, u', x) equals the ring Hﬁ u.(F) of holomorphic
functions on the set Su u'( )0 Let P be an arbitrary member &f

(«/
Su ot (F)e We have to show that hP #oo . Assume the contrary, o€

hP =0, Then h#oandh 1P = 0o By Corollary to Theorem 252,
there is an internal place Q of P/K vhlch is rational over

X, i.e. F.Q = K, and c01n01des ‘with P on K[:u, ut, x, ] Thus
. Q belongs to the internal set S e (F) con+a1n1n@ the 1nterna1
places T of F/K subject to oondltionse f.0 = ¥, Ut OT,

- urCo, anduTCm.Inadditlonwehaveh g =nte = o,

By enlargemenf prlnciple end by Theorem 3e3ey the internal holom
. morphy ring Hu ,(P) ofi F/K over (uyu',x) c01neides w1th the
ringtof holomorphlx functions on the internal set S (F). Since,

A 1 Ax
by hypothesis, h € du,u'(E) and, by,conotruction, Q € 'u,u'gp)’

it follows that h.Q #eo, and hence nto # o which gives a con-
: - : 3
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tradiction Q,oLoDG .
Taking ucov, u c:'f’zv and XCK, we obtaing

Govollary to Theorom 5.l. Suppose that (c ) is sa=
tisfied, and ¥/K satisfies aarlsxlfs local uanormlaation
theorem. Then ~ H(F) = HIONF = AF)NE. ;

Thus we proved that the Problem IV from Introductlon -
is afflrmatlvely solved in the case of the extension F/Fo

Now  let us sbudy the relation between the radioal ldeal
structure of the ringo u@(r), Hh u‘(F) and Hx (F) If a

is an ideal in H u_,(F) theﬁ we have the inclusxonés

F'S

ez atiarirte

N . ‘
yfﬁr-»/ah a,(F)/\ F Hﬂ u,(F)/\L s We are kntereobﬁci

to know'*f the ﬁpposxte anlucions hold tooa

Theoren 5.2, Assume that (02) is uatlofied, and F/K v

- -

sat=sfles AaﬂL%&l “locsl uniformlzuLLon theorema Then -

Va = /aﬁyu,(f‘)/\}i‘m{\,faﬂ u,(F)/‘\F \[ziﬁxu,(r)r\:@,

milel

where g is an arbltrary generated ideal ln H F)a

. Proof It suffices to prove that\/ (F)[\Ecﬂ/
#
_Let h be an arbitrary element in \/a.Hu’a,(F)ﬂ E. We nave

‘bo il bhat Lelarw - | sl %

First let us observe that h € Hu u,(F) by Theoren
S5ele Then, by Theorem 4°4q we have to ghow that h vanighes
at all common zeros PE b ,(F) of the ideal a&e Let

P e_s ,(P) be such that zP o for each 2z € .ae We havs to
show thot P = 0 Since h & Hj{ 41 (F)s 16 follows that hP #o&., |

By Cowollarv £0o Theozem 2 2s ﬁbeLe exists an internal place
Q of b/h such that P@Q K and Q coincides with P on

K[u,,us,x,t h],whm 6= (6 .M,t)isafamuyof

-~

generatorg of a% Thus @ b lonbs to tne internal set S uﬁ(b)

5 M of E/V satisfying the °~ |
cendi.t'iopbs Pl =K, uuu"’x(%, :zJCZO and u"l‘f‘nlvm As :

L

containing the internal place
A

'tQ = t.,P : & fior i = l, eoog s, we conclude that Q is a zexro -
oP the idaal éﬁigu, QI‘)9 Le@e zQ = 0 for each aé&a Hu u'(ﬁ)c

- P
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" By en&argement principle and by Theorem 5 4., the ideal

A
aHX u,(r) coincides with the set of the elements in Hx u'(F)

Vdﬂluhlﬁg at all common Zeros Te’Su u,(F) of uhe idegal ) 7

o 8 . u,(ﬁ Since, by hypoﬁhe sis, he\/aH u’( #), and Q€S¥ u,(F)
1s a”zero of the ideal a, H u,(F), we cofolude that bP = hQ =0,

Y A

as contendedo QeEoDa 5

v

6 Boundq over arbltrarv base fields

- e

' As ARobinson asserts in [18] "there are in ideal
theovy and algebruacoeometry many cases where bounds are khownﬂ
to exist, or are believed to exist, and where the existence of
such bounds .a;'corresponds to the extraction of a finite from
an infinite dééjunctionaeo' Many such old results. vere proved
by J.Kbonig [12] and, GoHerrmann [9] in a construstive manner
using 1deas of Kronacﬁer, M.Noether and Hentzelt. Among recent
works in thls coms tructive style we mention [16] o [¢5] and[iﬁ].

A Robinson showed that the existance of such bounds can
be established by "a method which =mr@lies only on the elements
of ideal thsory, céapled_with an argumént from non-standard
analysis", more generally from model thedry, "Ihis may be
contrasted with some lenghty computations ism@olved in the 2
methods of Kbnig and Herrmann" [18] o A systematic model i
theoretic approach of the exiBtence of bounds in the theory of
polynomianl ideals is achieved by L. van den Drie@ibh[6] [7])s

In this section we dermve the existence of some bounds
from the non-standard theorétic results proved in Section 1 and.
2. We begin with a conoequence of Propooltion Lele

_ Proposition 64515 Clven natural numbers n, m and d,
there is « =ot(n, m, d)C/ such that for every field K, for
every prime ideal a in K [X] = K[X s0vy . ] of degree £ d,

for every ideal b in k| x, 'r] & K[}:l, voes % A TIRTTYE: Sy

of degree < d, 1f a gilwwlifi] then there is a golynomLal

B (br\K[X])&a of deg,rce R ‘

Remarke. By the degroo deg (a) of an ideal a in a polyn
nomial ring K [Kl, veos ]wm understand the Smallest naturaIAWF

ba‘ffor whlch there exists a fdmllJ rg-(rls-,@,, e ) of generators

|
;i . ; |
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, = . | :
,of a, such that 2 deg(ri) m'fg where deg (ri) is the
» el T .

total'degrae of Tye i PHE T :

i ’\M“M i ;Proofe Suppose niamg d g‘_}ygg a%l(?: oi{d?ex“ :‘uggﬁg:‘u_‘utzwz;
s Bo for e'{ﬂh fc/;y' thore O\J st a ilbld KE s & prime ideal ey
in K[ X of degree ¢ dj an ideal b, in K[ X,Y ] of degree
< 4 5 such that a{é b, N Kp f}] and sach polynomial
Pc (b f\K fﬂ. )\3 is of debree;;wg Cowsider a structure
conﬁamin{, all fields Kp , polynomial rings K-E[X’ ‘I] /,eid 5 ;
.. 8ebecs and thke an enlargement of this strw ture. By enlar- F
" gément principle there exist an 1n‘£,ernal siekd Esin~thils =
‘enlargement, an internal prime ideal a! in K*IX] of degree.
& 4y an internal ideal b! in X [3;, Y] of degree  d, and
an infinite natural number & such that a' ¢ b' /N K¥[X] and ¢
Veauh internal polyncmial Pe Lo {‘u). [XD\Q is of degree>w,

- Since the internal ideals a! and bliare 0% finite degres
we conclude that a' = aKer}s., and b’ SEPLK [x \_] where a is
an ideal in K[X] andibaig#an ldeu.l i.n K[X5 Y-] Koy by =
[7] 2y ot [X] is a faitbhfully flat I’LJC] ~ module , it
~ follows that a = a'n K[ X and b b’f\ [X, Y] In parti-

c¢nlar & is prime and ac be Thus we obt ain a morphism

ey k[ x]isa s rfxy 1) sv00t K-algebras, Let Ty K [x]/ar —

WI_X,, )’]/b* denote the J.nterna,l Kmalgebras morphlsm wduced :
by £. Since, by hypothesis, a! g B! N K "Ix ] it follows that |
T is not injective, and k;ence, by m::'oposz.i,l.on Ladey £ 48
not :ndectne, et adc Ax|x]s Tet PC(b/\K{X})\a : g
C(bﬁf\l ]\\a'a Thus Wge obtalned a standard polynomial iy
I?€ (b’(\K ({ /m* s Which gives a contradiction QsE.D» '

g, ppyes

i ot

Remark. A standard proof of the previods result

. .in. the paxtmcular case a = 0 is glvon by D@POP@OCQ [741
Gosollavy 45

In the sams way we can pjrova the"fOlloWj,ng son-"
sequoncg of Proposition Lok, - oy s ‘

Propositlion 6.2, Given natural numbers n, 'mande! ’
ﬁmre 18 [’3 .«.{%(Lﬁ i B Iy subject tos for ‘every field KX, for . 4
every fileld e:xt:ens:.on gk Ki:for every family x..(x””e,x )
of elements in I such t;nat ¥ = K(x) and the kprnel of the
CB.HOD_.J.Cc«l‘ Ke—norphism V[ ]-M Xh>x is of degrees £ d..9 Fox

o

{ <
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: J
every famlly ¥ = (yl, veey yk) in By such that yi = -%- where
vy
yi, y‘J{ € K [X] of degree N d fom L = 1, veey k for each

o dnil S rfan 1y z* (z:L, .:.,*2‘ Yo oLt Hesplys dependent glement et by IR

Z‘
F over L = K(} ) such thaé z; = -% where z!

g e K [xJ of
Zi” 3

e i

" degree £ d for L = 1, soeyly there exists a fama.ly u_(ul,e.a'

-‘*‘;‘o,u ) of elements in L, not all zero, such that
Z u =0 and u, = w—, where uf, uaf ¢ Klx]of degree ¢
J...lii' _ i,ui 3'(- [] ‘ [3
for L ? 19 ooe, mo : : . > SO
The follow:.ng results are consequences of Theorem 1.5¢

" Proposition 6.3s Given S numbers n and 4, there o
J.ST Y (n;d)e (i withe the propertys for each field K, fox ) |
each field extension ¥ of K, for each family x = (xl, veoy Xy)

. such that P = K(x) and. the kernel of the canonical K-morphilsm
‘K [X}?’Fa X}“)X is of aebree \<,‘d_’ if ég oee;_adg Z axre arbl."j

" grary elements in ¥ such that 2% + 842 + so0 + By = O and. e
8y = '/a" where ai, a"G K[x] of degree <d for 1= l,.e'”d‘;'.‘._.

.»—r\. q

then z = z’/z” with 2], z"é K[x} of degree <X’“ '

Propo ition 6, 4@ Gcn.ven natural numbers n; m,e and. d, :

thove is 0 = 0 (n, m,f e iy subject tos for each field K |

i of positive characteristic §<f€ for each fileld extension F of
Ky for each family x .«(Xl, s aaaat ) such that F=K(x), and the ‘
kernel of the canonical K—-»morphlsm K[‘(}:’P Xpx is of degree

&d, AL Ty ooy Jp 8TO arbitrary elements in F such 't;ha‘b ;

¥y = i /y" whene yi, y '€ K[x] of deg,ree ¢d and

md" .a P .,,d g
9 e..‘, y € Fp Sg16 lmearly dependen’c over ,ﬁ, then“'chm

f - : : : : , L

e e s

.y:j?‘

. d |

. exist uyy-ee0y Uy ¢ F, not all zeros such thai Z B yi=0 -

. 1L ? l--l e g :
and u; = i/L'j: inwhere u} 13 u." € K[ ]of degree <5 for i..l,.n,ma_ |

We end thi. sectlon Wifuh sSome :x;*emax'k.s concerning
Zariski's local uniform:x.zatn.on théorome
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Definithon. Let n, d and m-be natural numbers. We say
that a field K satisfies Zariski's locel uniformization theorem

with respect to the ordered triple (n, 4, m) if for each finite-
%s;x;,;ge‘p@x»gt,e,@»,;,f@?em;;;a,xw:qsiem:-Efeiq:ﬁs«'K-g:'-:‘ffs:for.-;z'éachﬂ..placa«'P‘isafw-l?ﬁé,%i-iiﬁ
> = (xl, os s :5,.‘) is a family of generators of F/K such that
K [x] ig contained in the valuation ring Op of P and the kernel
‘of the cahonical K.morphism K [ X]+F: Xt x is of ‘degree < .d,
then there exists a family'§.= (ylg ‘ecey y€ } of generstors of
¥/ Zsuch that XS m, K[}&]C_K[y]co}?, vy = ¥§/y} where yi, yj ¢
G-K[jx] of degree S m for i = l,.,Qe,'g y and yP is a simple
-@oinﬁ on the model of F/K whose generic point is ye :

Definition. Let n and 4 e naturgl numbers. We say that

.a field X gatisfies Zariski®s uniformization theorem with res-

pect to the ordered pair (u, @) 1if Tor each v fimibely generated
field extension F of K, for each place P of F/K, if

X = (xlg' fols o xn) is a fanily oi.’- generators of F/K such“that

K [xj is contained in the valuation ring Op and the kernel of
the canonical K - morphism X [X}ﬂ’? X—>x is of degree £ d, then
there is & family y = (yl, cosy ¥y ). of gen’eratofs of F/X such
that K [x] c K [?]C Op and y P is a simple point on the model of

Flke vihsse generic point is y. : 3 : : i

If K is of characteristic zero then K satisfies Zariskits
local uniformizations theorem with respect to every ordered -~
pair (n, d). Moreover we have the following stringer result.

Theoren 6.5, Given natural numbers n and d, there is
€ =& (n, d)e ] such that every field of characteristic p > €
(the case of characteristic zero in included) satisfies Zariski's
local uvwniformization Tiihéorem with 'respec%;i to0 the triple (n,d,E)

- , Pro;of. Suppose n and 4 -given and . does not exist. By
enlargement principle, there exist the fdllowing obje,cts in a
suitable enlargement$ " el :
~ en infinite natural .numbera);‘. |

an interngl field K of internal characteristic P s
in particuler the external characteristic of K is zevo;
an internal field extension N of X;

an intermal place Q of N/K;



..ﬁg._
ceatef amdy KXo (xl, cesy Xp ) of *generators of N/K,i’e%
N =K (x), such that the following conditions are satisfieds

NS Tondnc. Siv. musas |
the kernel a' of the canonical intornal K-morphism
K [X]%N:'Xbéx is of degree ( d; in particulai‘

al = aKx[X] for some idegl s in-Kl:X] y and .

for each internsl family 2z = (z1 6, zn) of genem
ators of N/X, where m e , if K&[xjc K*[z]c() and .

Z; = zi/z with zi?z"GEKfo] of degree <w for i s e
= l, eeey M, then zQ is not szmple on the internal

model of N/K whose ®generic point is Zo
, Since K'[X] is & faithfully flat K [%] - module and
a' = aKR[Xj it follows that a = a'*Nn K [X] and hence we cen

identify N with the internal field extension F of K atifached
by Theorem 1 3. to the field extenolon P = F(x) of K.

‘Tiet P denote the restriction of the 1nternal place Q
on P. This P 'is a pl@ce of F/K which is rational over the in-
ternal field extension FQ of X, and K [ x]is contained in the
valuation ring OP of P, Since K is of . charaoterlstlc Zero we
conclude by Zariskit®s local uniformization theorem [28] that
there is s finite family y = (yl, eeey ¥y) of generaters of
F/K, such that K [x]CK [y]cOp and yP is simple on the affine
model V of F/K whise generic point is ye ‘

A

As F is™generated by F = K(y) it- follows that F is
generated over K by the finite famlly ¥, dle€s P = K&(y) Let V’
denote the internal affine model of F/K vihose ®generic point
is y. 4s we have showa in the proof of Theorem 2.,1. we can
envisage the internal affine variety V as being defined by. the
same system of polynomial equations over K aaz the extern&l
variety V. since yQ = yP is an internal point on V whmch 31mple
on'V it follows, by the same argument as in the proof. of -
Theorem 2. o1+, that yQ is sample on Q Thus we obba:ned a fini-
te fanily vy = (vqe cocs Yo ) of ’*generaﬁors of F/K such thatb :

#E{]C K &?] & OQ and yQ is i simple‘on V, which contradicts
_ the statement (6.1) Q.E.D. |
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" Qorollary to Theorem 6.5, Let n and d be natural num--

bers. Then the set A(n, a) ofpf?mes p, for which there exists

& field of characteristic p which does not satlsfy Zariski's

local uniformization theorem with respect té the pair (n, d),
is finite.

It is Jmown [22] that the sets A(n, d) are empty for
3 and arbitrary d. .

7o Bounds over p—adically closed flelﬂs

It is knowm [13], [17] that there exist bounds in
the %heory of formally real fields. The situation is similar
for the theory of formally p-adic fields as we shall show in
this section, where we shall derive the existence of some .
bounda from the non~standard theoretic results préved in

VSection 4 and 50.

Let W be & theory as considered in Section 3 and let
(ﬁﬁr)be a fixed ordered pair satisfying (cl). Leti (Kyfv; D)
denote a model of W and let P be a field extension of K, and
u and u' be arbitrary subsets of PF.. The XKochen ring ﬁ; ug(F)

- of T/X over (u, u') can be described as the integral - closure

of a certain ring of fractions, as follows. Denote by B the

~ subring of F generated over the valuation ring 0, by the Untanof
u,u' ‘and f(F) for each f‘é/\LJr s and by b the 1deal in B ge-
nerated by ihe maximal ideal m_ and the union of the sets -

' and £(F) for each f¢l . Let N be the multiplicative submo-
noid (1 + b)\{o} in B, and Rugu'(F) be the ring of fraction of

B with respect to the monoid N. If F ig formally p-adic over

(u,u*) then, by [2] , Theorem 2.2., ?{1’ . (F) coincides with

- the integral cloqure of R u,(F) s Gl o

Deflnlua.ono Assume that F/K is finitely generated and

let x.= (xl, eeey X,) be a family of generators of F/K. Let

u w(ul, coey W) and u' = (ul, sisti%y um,) be finite familiess of

_elements B 15 L8 Suppose that F 16 formqliy p- adlc over @t ),

. Let zERu  (F).

The complexity of z with réspect-to the fomilyr of
ol B
generatOf x is the emallest natural number_g for which there

existe

I) some polynomigls Hief%f[U;'U'; s T'] of degree £ ,

Y .oy " (710 v e
Where U *‘*»(Ulg 0009 l]ﬂl)? U .—.(T’T:L; :3@; Ulzlﬁ}i T = (Tl;' '066’ “’?’ )’
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S(Ti, ;oe, T‘é )’ iﬂ ly oo&gev ; :
= 1I) some polynomials Gioemv[U; Ut; D; T'] of degree
\<.€’ fori=1, ooo,‘g; _‘ : 3
111I) some polynomials Gij'eov[U-; Uts T T”:l of degree
\<€, fori=19 o.og'g J’:l’ coey m"

i¥) some polynomials G i € O [U U T3 T’] of degree
,g{,f()ri-l, ooo"e» H J“l’ ...,»m" ‘

¥) a family £ of rational functions £, (X1 oeey Xp A
for.d =1, ,..,f » such that the numerators and the denominator:
are of de'free <4 ; : s

VI ) a family g of ra‘tlonal funetions g; (Xl’ ik v X% )
for i =1, cee, £ | such that the numerators and the
denominators are of degree$l, and ' '

VII) a family a = (al,' soey-8p ) of elements in P,
. with = '/ai, wh_ere a.;_, a{éK[xj of degree .s—{ 8 fgr‘ g
i= 1, coey ? s such that z satisfies the equation rze +~Alz%'1+

+ oo + A’L = 0y where -
e H, (wsu’;£{a) ;g(a)) ;
pners _ - -

1+Glo€u'u';f(a),g(a)) Zlu oGy (u?u’5f(?)5é(a)) e
: = . '

s SR A SR

-

=

i %’;;1 gk(a)ﬂik(UBUQ;f(a);g(a7)

g for i = 1, soey { o By [2] Theorem 2.2, such ~€ always e*cisté.

- The f2llowing result i‘ollows by en.l.c,rgement pm.nc:w]
and by Theorem 4els

Theorem T.l. Given .natura,l nunbers n, m, m' and d, there
18/(/ /(— (ny my m*, a)c. subjeect "coo Rert (%5 vy P) be an

arbitrary p-—aalcally‘ closed flela, F be a fn.nl'i,e]y genersted
- £iekd extens1on of K, x =(x, cony x,)y = - (ugs ooy um),w~

(hl, cees 0y} be arbitrary families of elementg in P such '
that the following conditions are sati.gfled,
a) P = K(x);

b) the kernel of the canonical E-morpsaiom K[P:fw*z?:



Xk>x is of degree £ d;

¢) u; = g;/g] vhere g;, g} € K [x] of degres \< &
fforizl, ecoyg M3 . _‘ . ’.

d) uf = h;/h! where Bys hie K[ xJof degree  d for
i-ml.’ eo.e’ m'; . ‘

e) F ig formally p-adic over (u, u )i’

ﬁgtzzegique(F) be such that z = z'/z", where.z',ﬁ"e
é K[:x]of degree & do Then the complexity of z with respoct
to the family x is S o : '

- Remarks; I) The previocds theorem is an ahélcgue in

- this general p-adic context of some results from the theory
of formally real fields [17] Theorem 8.5.22, [3] Theorem 2.6,

II) It would be interestéing to try to give a construc-
' tive proof of the previomns theorem for concrete theories L
and W, for instance in the case of the theory of formally
P-adic fields . in Kochen—Roquetﬁe’sense, and obtain more precise
informations about the functim1/¢» whoge existence was proved

by a non-standard method. &

III) With deep arguments, Pfister [13] proved the
following beautiful theorems "Let K be a real closed field and
let £€F = K(X, voey X)) be positive definite, Then £ is a
sum of 27 'squares in F", Observe that the bound ow the number
of squares does not depend on the degrees of the numerator and
the denominator of f. It would be interesting to know if a simi-~
lar result holds at least in some particular cases of the gene-~
ral theory considered here. : ' |

The followingvresult ig a stronger form of Theorem 3.2
(Nullstellensatz.for Kochen rings). : '

Iiteorem 7.2, Assume that the theory W satisfies (04) and
(ca)aGiven natural numbers n, m, m', 8 and d, there is

Y =%(n, my m', 8, d) € [}{ subject to: "Let (K, v, ) be an ar- -
bitrary pmadiqally cloged field; F be a finitely generated field -
: ; SRy ' ~ ) ol POT 48
extenaion-of K, x = (%4 cvsing X,) U u(ql, veey U Jy U ~(ui, so

sl 0y u&,) be arbitrary families of elements in F such that the
conditions a) ~ e) from Theorem 7.1 are satisfied. Let Tysees,Ty

and z be elements 4in ﬁ; {F? el o e
: st/ which admit representaiions r=.

= rsi/l—.é!? 7o z:/zei with -ré_? I”{; Z’; Z"E{—K b{_‘JﬂOf'ﬂegree ‘< 0



s

Then the following assertions are eqi;ivalent':

I) zZP¢ m, for every place: PE,S\;,u.('F) 'sucli that
riPEmv fop d4= 1, coey Bj

II) there exist €Y , %, ERuu,(F) fomed: il faiseni 8,
and t, ¢ r u,(P) with compléxities with respect to x bounded by

.'9 such that : '
i ' 8 7

_e )
Z = to + Z rety
i=1 .

The proof is 1mmediate by enlargemen“c Principle and by
Theorem 4. 3.

The follow:.ng results is a consequence of Theorem 5.1,

Theorem 7.3, Assume that W satisfies (c ) and (c ), and 7
the prime model (lk, Vy P, ) of W digvoi characteriutlc ze“o. Given
natural mimbers n, m, m', s and d, there ig £ =p(n, m, ntye,d)
e[;’# subject to: "Let (K,v,p) be an arbitrary p-—adlcally closed

: fleld, Ebe & fa.nltely generated field extension of K, X =
= (Xlg sooyg &n), v o= (uly ccaoy %), ol ({L-;- es'ey .uﬂi')’

y = (yl, ceey ¥g) be arbitrary :f‘am111es of elements in F such

that the conditions a) - e) from Theorem Tel. are satisfied and,
in addition, =

l:f) ¥y = y:.:_/y'.' where 'y:'L, vy € K [x]of‘ degree(d for & = 1, wivy 00

Let zEHu ,(F') Ru u,(F) K[y] be such that z = zt/z" whex*
gl ol e [x] of degree < de. Then ’chere exmsts a polynomlal
HGK[Y, T] of degree { f where. ”(Yl’ o YS.), -(Tlgsaam.}g

and’ a family a z(aq, seer Bp ) of elemen"tg in ?ﬂl ¢ (P) whose
: ?
complexity with respect to x is L P , such that z = H(y, a)",

We end the paper Wlt,h a consequence of Theorem 59 2,
a stronger form of Theorem 3.4, (Nullste]lensatsf for holomorphy
rings) £6r the case of charagteris tic zexoo



= 3{..
Theorem 7 4. Assump the same hypotheses as in Theorem
Telde Given natural numbers‘m, 1, B 3,9. and d, there is

z‘Q(n, L s,g)d)éibJ subgect-to; "Let (K; v, p) be an

arbitrery p-adically closed field, F be a finitely generated
field extension of K, x = (xl, veeey X )y u = ugy ey um),

u' = (ufy eooy uleds ¥ = (yl, cees ¥5) be arbitrary femilies
- of elements in F such that the conditions a) - f) from Theorem
_7{3. are satisfied. Let Tis eocey pe and z be elements in

Hg u?(F) which admit representations ry = r!/rf, z = PAYLAL
§

with ri; r], z', z"¢€K [x] of degree & d. Then the necessary

and uuf11c1ent condition for z to vanish at all common zeros
i K3 Sy ',(P) of Ty ...,‘;é s is that some power gk, where

}c<4z, ‘admits a repreoentatzon of the form z z= 2: ri ik
: ‘ g : i=l - ;
where t = H., (yy a) for some polynpmials HiE,KZ[Y, T] of

degree <7 with Y = (Yl’ o'l Y Yol (Tl, cees ﬂ? ) and

a= (aly~eoo’ ) ig a family of elements in Ru (F).whbse
- complexity with respect to x. is £7 =, i &

oo -
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