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1l. Introduction o The problem of the generatlon of nonlinear semlgroups

by a dissipative (possible multivalued) operator,ls one of the most in-
teresting problems of nonlinear analyalsoThe#paln motivation of thia
agsertion is that nonlinear semi-groups are a convenient apbroach for
the treatment of m&ny partial differential equations .arising in physios.
The mathematlcal contribution of thls work is.the proof of Martin's
theorem via Kobayashi's theorem (section 2),.This proof is meortan% »
because is very simple and contrlbutes to the unification of tne theory
of the generation of nonlinear semlugroupsoworeover using this proof tha
presentation of this.. theory becomes smmpler and shorter with at least
ten pagesoThls gince the original proof of Martin (whlch takes about
15 pages) is very natural and concise,so that there is no any hope to
be simplified and reduced in lenghto '
420_Lef X be a Banach space with norm (re(f and A,B ¢ X x X.As usual
we define |
Ax={yéx' fx,y]cA} D(A) = &xéX*Ax#fP} o
San b e ot = {[y.= s [x,y]eA} .

xeD(4)
"&Dﬁs\yj LX.yTéA} P A€R
A+ 3B %Lx,y + 2] ; [x5]) €4, [x z]eB}
One identifies the mappings with the;r graphsoA subset B C X X X is
gaid to be dissipatn.ve if for each /\ >0 and in,yl] €A, i = 1,2 we
have
' hx, = x 0 t-n(xl‘- /\yﬁ- (x5 = A ¥
The subset B is said to be co~- dlSSlpatlve if A - w1 is dlBSl~ T
" pative (where I is the ldentltv and u)éfﬂo’
A semi-group on a subset D C X is a "function S .on [b co )which

satisfies



. 1e

S(t) maps D into D , # t3%0 fiaeay
5(t +t) = S(t) S(¥) , t,¥ 30 L (242)
1im S(t)x = S(o)x =x, #Xe D - (203)
t40 ‘ ; B . . ‘

If in addition | |
A 8(t)x - S(t)yl £ e“? u4x - Vi » V" X,y € D;,t %0 (2.4)
then S is said to be a semi~group of type <’ on D; ‘ | |
If z e X , denote by d[z,D] the distance from the point & to the
subset Do | B o
The semigroup S is .said to be differéntiable af. to € (0,00) if the
derivative of the function t - S(t)x at to exists (f@lﬁ each x € D)of

Por an arbitrary T >0 ,denote by 2 { the parti’cioﬁ RV e
Vi i o

£45 wes W48 &by %of the interval - [0,T] satisfying the-con-
= ‘n;‘. IN ) n ) 3

-1

dition | _ -
: n n ' ‘
A ) = max (= 5 4)>0 as n>® (245)
1£iﬁNn - ~ i
Let us assume that there are {x?}cD(A) - and {pi‘} such that
n_ 4o : ' o :
o S . ’
i i=l n n - : '
n = tn - pi G A Xi ) i = 1,2,0.0,Nn 9 n>/l (206>
i i=1 ‘ ' ‘ ~ '
.
xo-a X as n < s X €X

N
L
Pt iofu (8F - +1_1) =0 as noe

The step function u [0,7] X defined by

"..uﬁ(t) _ {

is said 4o be a DS- approximate solution of the Cauchy problem
©(/at)ult) e Au(s) , b € (0,1) , u(o) = xg (2.8)

,'b=0
(247)

b (t?_l 22 1N0,7] 45 = 1,000,

Wl o

We now are prepared to state the following‘

Kobayashi's theorem . If A CX x X ig w -dissipative and satisfies
umia[xRI-m]=0,zed@ (2.9
hto A : : "o .



=3 =

then A penerates a semigroup S(t) of type «won D.Precisely,for eacﬁ

T >0 there is & DS - approximate solution u, defined by (2.7) such that

S(t)x = ldm un(t) gl e EO T] .,xem)' (2010)
n=>00

Any_other DS - approximate solution u, satlsfies also (2 10)

The semigroup S associated wifh A via above theorem is said to ‘be
generated by AoThe function t-a»S(t)x (x e D(4)) .is the integral so=
lutlon of (2.8)(sece e.g, [2:]) In some partlcular cases, if the semlu
group S(t) is @c€e differentiable on (0, +a>) then u(t) sit)x ia
just the strong solution of (2.8) ( [l] [3] ) . .

Recall also that in the partlcular case

BLT —AA)LD D(A) s for all sufficiently small posxtive A

S(t) is given by the exponential formula of Grandall gnd nggatt[l}

S(t)x=1im (1 --—A) X 4 X eD(A) , 20
n->00 -

In the continuous case,esentially the basic result 'is given by

‘Martin's theorem t3:) Let be a closed subset of Lo If A+ D> X is é'conm

'tlnuous and d1s31pative operatoxr satisfying (2. ll) theﬁ the semlgroup

- 8 generated by A is everywhere differentiable on Lp o0 )

Actually,in [3] Martin has obtained & result somewhat more general
There,the nonautonomous case 1is treated Finally,in [3] the condltlon

(299) appears under the equivalent form

1imznf%a(x+nAx D]zO, .x.eD (2411).

hvo |
A proof of the equivalence of (2.9) and (2.11) even in more general;
conditions,may be found in [5] ” | |

~ Ve now proceed'to'show how Eartin's resuit can be easily derived

from that of Kobayashi.

Proof of Martin's theorem vié Kobavashits theorem .

Jet x € D,.Sinc& A ig continuous at x there are M50 and Ry 0 such

that

fAufl £ M, Yu e TS R (2.018)



.
where B(R) is the ball of radious R about zero;
Let T> 0 with the property ¢
T(M + 1) < R c . (2.13)
Fix an ai'bitrary nétuial number n and set tg = 0, xg = x;Féllowing

Martin [3] ,inductively define t?_ﬂ and. xf{' _!_l'as fclléwsa

If ’ci T met 7 (=T and if 0<ts < T , define Jn as the largest
» number (O, J sa'tlsfymg

e = il (2.14)
i Aa - Ax‘;gg.ﬁ , #ued , iu=xjii € a + 1)_J‘; (2415)
i n o P N et : :
. £

In view of (2.11) ,J?)O.smce there is' no 'danger of confusion we

| : e B cm o
drop the index n,writting ti"’ g xXg =X and "(i = JioDe,.J.ne

P b +0’i R : (2017)
According to (2.16),there is an element x; ., €D such that

_ | 3
o L Jax; - = 43

(2.18)

As in Pavel-Ursescu [5] (see also [4] ) the following notation is
‘us'efu'l ' | :
pl (Xl+l Xi Lo oG.AXi)/ Ji $ i = O,l,oot (2019)

Thus we have

3
X; 9= XyF (J:;M_1 % )(AX fpl) WP UL (2.20)

i+l

0
It is easfrvx;emuy thatt x,; € B(R) > hence (2 20) and (2 15) give
lhx;,, - bxjlle s - s (2.21)

Tt is also known that lim ty =T (see Tl
5 .’L‘?G)

: Let 1‘1 T, and t € (0 T1] There ia an integer i-= J.(n,‘c) .such :
that t € (tigti+l] end another ome i ’}";’Nn such that tin 1__175_ +l.
Define yn Fo,n 1J"X by
y (t) = xi + 4t = %, )(Axi + pi) ‘ti..’u ti+1,i =0, 1..,.151 (2.22)

S Ttois J.mmedlate that :



oy 5 s
g (t) = y ()il & (U + L)it-si , ty8 €fo,m] <
The crucial point is now to prove the sequence (of polygonél lines) Y

is convergent.This is the difficult (and long) part of Martin'as proof.
To avoid it,let us observe that (2.20) yields “

o & = Ax i =0 ﬁ. N ) n (2 23)
jl: o » i+l 4 ‘- 9 ,00¢,-n ] o

. 3 n T — . . & . T % ‘
6y By e Pl ey . \Bth

By (2.17) and (2;18) we have ﬂﬁiﬁﬁé ,therefore

(0'6] g
n n T
£ = iZ,ﬂ g ('le - %) eg (2,25)
ansequently,thé function u,i [O,Tlﬂéeb given by

. _ xs% =0 ' ‘ PR .

un('b) = : . . : (2026)

o e &4 i=0,1 N L

o v B SR e hon Daldaaasilly

is A DS - approximate éolu’tion°
By Kobayashi's theorem,lim u, (t) u(t).= S(t)x €Do.On the other

new
hand,it is easy to check that

iy, St u (t)w-—z—g-ril——'*-?-i'l i eEo gl (2027)

Indeed,if t = O then the left hand side of (2.27) is zerooIf t,; <t :
At l,tmnwemwe . : ‘ ' '
yn(t)mun(t) = Xy By f (tuti)(AxifPi) - (ti+1 =% )+ (4= t )(M+l)

el s ; Epat s |
- This 1mpl;es (2927) since t - tié’ti+l - t.é.ﬁ_
From (2.27) it follows that

lim yn(t) lim ., (t) 2 S(t)x (2.28)
e Cnsoo D e

unlformly-on [o,7] « |
Finally,the fact that & -yu(t) = S(t)x is differentiable on [0,

T1] it follows from the 1ntegral equatibn
: oy , | =l ,
e +$ Neledin 5 hedpm Do aadl)
. o) ' : S :



R
and from the continuity of 4 and of t-pu(t),The equation (2 29) is ob=-
tained in Martin [3] .However, fo:r the sake of simplicity we shall ine-

 dicate here a proof of it,as in fSJ on [ 4]

Define the step function

: tos t.8b <%
an(s)z{i : i'_*'l

| It is easy to .check that y can be written under the form
' , % : : 7, _
Yl im ot 5 Ay, (a,(8))ds *gplh) (2.307
, 5 £ A o

where dan

gn(t) 'Z (b5, = typ5 + (8 - t)pgsty 2t st
hence ) g, (E)n= —1—1-—- wlb € [O,le 5 | ke
Since yn(an(s))—bu(s). as n-»® , uniformly on EO,le ,(2,30)yields
(2.29). L ' e |

- By standard é‘rguments,one prove‘ that the local solution u of (2929
can be extended to the whole [0,+c0) and therefore (2.29) holds for
all $2 0. This implies the differéntiability of t-»8(t)x everywhere
on [0,+00)s | |
. Remaxk{ . Sm:.larly to (the "tangent condimon on the right")
(2 11) let us consider the followmg“tangent condition on the left®

limmi‘E d[x-&-hAxD’j:O,zéD ' (2031)
- Jhto :

where ht 0 means h-»0 with h <0,For the existence of the solution

w: (~00,0]-—>D ~to the Cauchy problem

u'(t) Au(t) ,u(o) -x,x D, t40. . t2.32)
the condition (2.31) is necessary.lf As - D > X L& Lipschitz conti-
nuous on D,then (2.31) is salso sufflclen't (hence necessary .and suf=
ficient) for the existence of the solution u(t) of (2.32).

Necessgity Since u(h) = u(h,:;)t":D. - h<0 > ‘we have



=i

T dfx + haA x 'D] HHK + hAx - u(h)ﬁ ‘ u(h) = X - Ax||=0 as ht 0

jwhz.ch :i.mplles (2.31) with "lJ.m" instead of “1im inf"
hto :
e Sufficlent:g Set Alx = «~Ax, X ¢ D and consider the problem

‘(s) = A (y(8)) , 870 y(0) = x, x €D . = A2s 33)

. In view of (2.31),it follows that Al satiafles (2 11) ‘and sonsequently

the solution of (2.33) is just y(s8) = S(s)x, 8 % Oolow, the function u=

= y(-%) = 8(~t)x 4 $£0 is the solution %o (2032)01t follows that if

(2,11) holds and (2.31) is not true for X, € D,'ih«jzn S(’c)xo » t=0 cannol

‘be extended to the left of zei'o (such that ‘S(t)x eD for t<0).More-

over, ;Lf A: D—»X is Lipschitz continuous on D, end both (2.11) ancl

(2,31) are satisfied, then the sams,g‘roup S generated by A is defwed on

R = (-00,+® )(:L.ee is a group)e

A gimple example in thi& direction is the following onee ’i‘ake X = R,

D = [0,1JCR and Ax = =x + 1 oIt is easy to see that (2,11) holds

while (2.31) is not satisfied for x = d°Consequent1y,by the above

3 theory S(t)o does not belong to Fo,1] fow tLO'oIndeed',in this case

.S(t)o =1 =@ é[O 1] for all £ 20 (but not fox $.40)a

Remark 4 has been added after some conwersations with D,Motreanu and

GoMoroganue S -
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