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.BOUNDARY CONTROL PROBLLMS WITH NONLINEAR STATE
EQUATION
: by
| Viorel Barbu
Faculty of Mathematics
University of Iaéi
Jagi 6600, Roﬁénia

Abstract. Pirst order necessary conditions of optimality for'
boundary control problems governed by parabolic eduations with
nonlinear boundary value conditions are obtained.Some implica=-

tionsrin controllébility theory of these systems are derived;.
1 .INTRODUCTION

Ve areAconcerned here with first“ordgr necessary conditions
of optimality fox Qonvexicontrol problems governed by nonlinear

boundary;value problems of the form

yy + Ay = 0 | _inQ;_QX]o',T[.
(1) %4- fi(y) > Byu+ fi' in Zi = riX ]O,T[;;i = 1,2
y(x,0) =y (x) in (2 .

: Here.JQ. is a bounded and open subset cf'the Euclidean space RN,
'A is a second order elliptic and gymetric operator on (0 and jgi
- are maximal monotone graphs(ln general multivalued) in R)(R The
controls u, are taken from the.Hllbert spaces Ui and Bi are
linear continuous operators from Ui to'Lz(Z:i), 3= 1,2, The
functions y, and fi'are fixed in Lz(fl) and L2(2:i) sl 1,2)
respectlvely. e A : : : S

o

- The boundary B of {1l consists of two disjoint parts \ 7.
and. rz,i‘.e., -r= Tlu rzv:a'nd Fln.r?_ =¢‘

To make what follows more meaningfull,let me briefly describe



Rz 2 L
gsome physical problems from which this system briginate_.We refer

the readerxr to [_7] and [lO] for further examples. and complete

references.

l° Newton's colling law, In this case fi are continuous
and monotonically increasing functions.

. '2° The Stefan - Boltzman heat radiation lawe. The functions

fi s 1 =1,2 , are of the following form

: - = aj_(l'. = 0:>)4 ~if » @
(102) (I‘) = : ;
: fl L 0 it w6
where a; 2> @ 0= 1,2,

: o) 5
3 The natural convection

ar5/4 ifeas >0

(1.3) f.(r) = ' = o
- > 0 _ T e0 :

4° The enzyme diffusion '(‘.Dhe Michaelis-Menten law)

In this case | = r 1 and f \Fl is given by

- for ¥> 0
(1) f (r) =

(r m
3 foyr =90
L

for » 40

5° The termostat-control ([73 » Pe21 )« The process is
‘des'cribed, by (l.l) where (we shall take 'Fl. =[] ana 381 =

W) Llyenl o g B xaiD
- oAy(zr - 0,) it B, ér 2

hhere OL:L and OL are positive numbers.
6° The Signorini-problem ( [7] i The graph f( r = r
and fl = :F ) is given by




0 T e r> 0

(1.6) p@ = lago 03 - - AL
; gﬁ if‘ reo

'The contents of this paper are outlinéd bélow.In the Seétibn

2 we shall study existence and approximation of solutions for
the boundary'control system (l.l);In Section'3_are given‘the main

. results,Thedrems & ahd 2 which are concerned with‘necessafy cone
ditions for optimalify in'a control’problem with convex cost cri-
terion governed_by (1.1) in two typ ical caseé:_ :Fi locally
Lipschitéian functions and the Signorini problem (1-.6)f

The proofs are delivered in Se€ctions S;G;The ﬁaih lidessef
our approéch cbnsists to approximating the confrol problem by.a
family of smooth problems for which the optimality equations are
immediate and to tend to limit in the approximating equétionsaln
Section 4 is studied the convergence of this approximating con-
trol process.In Section 7 some abplicatioﬁs of the present theory
to controilabilitf of nonlinear éystems 6f the form (l.l) are
given. _

The results as well as the approach used hexe are similar to .
'thpse from the author works [l]', [2] ’ [3]..For comparison
with other literature on necessary conditions for boundary
éontrol problems the works [14] ,.fl6]' are mést closely related
to_présent paperGin paerticular Theorem L ihdludes‘and refines

those of [ 14] . '

A The following'notation will be used in the sequel.Given a
reél Banach spacé By and.[O,Tj a real interval we shall denote'
by LP(O,T;E) s L<¢pe oo the space 6f all p-integrable E~valued
functions on [O,T]. and by C( [0,T3 s E) thQ.Bgnach Spape of all

,continuoasAfunctions from [0,T) to E. By Cw( [0,7] ;E) we shall
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denote the space of all functions continuous from [O,T] to the
‘ gpace E _endowed with yieak topologye. '

Given a lower semicontinuocus convex function \f : E— R =

i '_]-oo,+oo] we shall denote by (a‘f(x) € E' (the dual space of

E) the set of all gubgradients of ¥ at x,i.e.,

(1) P @ = {xe B Y@ F@) + & x-y)

for all. y € E }] '
If ‘f is G8teaux differentiable at x-then 0% (x) consists of a
single element, namely the gradient V&f(x) of ¥ at x.The mapping
Q‘j’E —E! is called the gsubdifferential of P f is a

1ocaliy Lipschitzian function on real axis R , -the generalized

v gradien{; ,3\33 (in the sense of Clarke f6] ) of JB is defined by

rn—-> r

-(18) raf(r)=conv {yeR;y-l@ f_P(r)B,rC‘R

where V\f = :13' denotes the ordiﬁary derivgte off +For other
concepts and results in convex analysis relevant to this paper
we refer the reader to [4] , [51 , U8l , =l

let k,r,s be real numbers.We shall denote by Hk(_(l),Hk(F =
Hr’S(Q).and _Hr’s(f_) the usual Sobolev spaces on (2, [ , @ and
’ > ",resp‘ective;y (see . e.g.‘[ll]. 4 vp.l4).By Lz(ﬂ),Lz( I ),LZ(Q)
‘_and LZ(Z) we ghall denote the cérresponding spades of square
im’;egrable ftmctmnso}‘lnally we shall denote by W(Q) the space
of all functions y e g (0% B ({1)) such that '&t ¥ GL (05
(H (L)1) .Here (H ((L))'is the dual space of H (_Q.) and —%t
.denotes the derivative of y(t) in the sense of (H (L)) '=valued |
distributions on ]O,T[' «W(Q) is a Banach space with the natural

norm
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(1. 9) Ilyl\W(Q) = (\Y“ ' 1 “ %%“
L(0,1;H (_Q)) L IEomER )

and it is well known that w(Q)C ¢( [o,T] ;Lz(_(z,)),algebrically
“and topologically. -

2.,THE BOUNDARY CONTROL SYSTEM

: Let () be a bounded and open subset of RBI with a sufficiently

smo_oth”bouridary I we shall assume that r consists of two -
smooth and disjoint' parté \'1 and F 2‘whe_re meas Fl >, 0]
(excep‘c the case N = 1 and L =TJa,p[ when = \_1 = {ay
aie - fe =il l ), ‘ | L
Le’c ‘A be a second order differential operators on _Q of the

form

N -
AY = = ,j:l(aij(X)yxi)xj +.a(x)y

T 00 o= et
where &, € ¢ (_Q.) aaE he i a5 '-'_va;]i for all fl,j and
- for some > 0,

Zaij ;(i }j > ]\5\2 a.e; én_(L,' '}.6 e

(Here ¥ denotes the partial derivative of .y with respect to
i ¥ 2

8
- For yoé L (_Q) and vy € L (Zi) s 1= 1 2 consider the
system :
Y A = 0 . in Q .
(2 1) "3'1 fi(y) 2 v -V;‘in Z-:Li i}= 1,2
y(x,0) = y (x) x €

where yt gtands for partial derivative Qy//a t while
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? is the outward normal derivative associated with A.

Here Jgi’i = 1,2 are two maximal monotone graphs in R X R

which satisfy the conditions
(2.2) - fi(O) - £ 18

Let us now glve a precise meaning to system (2:1)
DLFINITION 1 , A function y € W(Q) is a solution to (2 2L o
there exist the functions W, €L (Zf ) I =13,2 such that

(2.3) wi(@,0€ figy(f,fc)) ave. (0,6)€ 2t

and _
; : . ,
(2.4) - S yYC. dxdt + _g a(y'YE)dt + 5:7 g (w -V )vﬁdﬁdt~
' Q e i=1 2 :

i

é y, (X)6(x,0)ax
for a3}l YU € W(Q) such that Y0(x,T) = O.

‘Here a:H-((1) XHE (1) —>R - is the bilinear functional

5 : : N . .
(2.5) “alysz) = T 'g(aijyx z. + 8yz)dx; ¥,z € HH ().
isJ:lﬁ i d

Qondition-(2°4) can be equivalently defined as
('2.6)' %? (y(t)l;\)/) + a(y(t),Y) + 223 5 (w, - Vi)\’/df =
A =t r e
ase. b€ 10,01
y(o) = -

 for all 'j’e H (Sl). = Sl e

' Here (o,.) is the usual 1nner product in L° Lfl) and will be also

used to denote the pairing between H (11) ‘and (H (12))'
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Let JD be a C, = function on R satisfying: \f tex> 0 for
o o e [ P(r) = 0 for |xl > 1 (r) = P(-x) for all
aaas e , e i _
r €& R and S \P(r)dr = l.We define for €20,

= QD

g o8 | = _
A2ty Fmy =, (760 ) POINE TN 1, wem
A o O o

- Where

(2.8) \JB:'LE Rl E e (o £ fi)'lr)' S e

y are monotonically increasing

It should be _récalled that f'.e
infinitely differentiable functions .Mo‘re‘over) fia is Li-pschitZian
with Lipschitz constant £ and in a certain ‘sense which will

- be cleared below it approximafes_ \Fi for & Q@.

For each €20 consider the approximating system

yt + Ay = O ' in Q
(2.9) ’5:‘)1 + \Fl(y) = vi in Zi; Geesiz 132
¥(+40) = ¥, e o %

Let jﬂ(a Hl(_Q_) -——>(Hl(_(2,)j)' be the operator defined by

: (2..10_) ( fﬁ}_ y},\l’) =Aa(y,“i’) + él [J_i fi(y)‘j’dG;y,\ré.Hl(_Q)
‘and let £ € 120,25 (EL(2))") be g:i..'ven- by | '

(2.11) (£(8),Y) = L vpag o YEE(D).

| e et ey

Then in the sense of Definition 1 (see (2.6)) equation (2.9) o

be written as

i

|
f



S gy =t ¢ e Lo,
y(o) =

Since‘ ﬁa is continuous monotone,coercive and sublinear.- from
H (Q) %o (H (,(L))' according to a standard existence result due
%o Ln.ons (see for instance L 4] p.64) equatlon (2,12) (and
‘thetefore (2.9)) has a unique golution ye € W(Q).

Let ji R—>R i =1,2 ‘be two convex and lower semiconti-
nuous functions such that (D;)i fi (J..t is well known that
such functions alwayis exist)

PROPOSITION 1 . Let vy, € 12(Q) and v, € LZ(Zi) be given

such that 3;(¥,) € 1}(Q), i = 1,2 .Then system (2.1) has 8

unique solution y € W(Q) .Furthermore, one has Tor &—=>0
(2.13) y, -—> y strongly in Cf Lo, ;Lz(ﬂ))ﬂLg(O,T;Hl.(_(l)

and weakly in W(Q) .

There exist.s ¢ > 0 independent ofna and vy such that

(2.14) A\\ Wy * Z | £ (y)\\ Zi)é c.(_ iZ%__“‘l\\vilng(Ei)+’1)
(If fi are‘multivalue‘d we mean by fi(y). whe single valued
section w; which occurs in (2. 3)) o] .

g?_x_'g_g_i_‘_. We ‘take the inner p;oduct of equation (2 12)(where
y=3 )Wy and integrate over [0,%] .By (2.10) and (2.11)
" it follows that

as £ c(hul?, =

-(2.15). Ny, )N
| o, AR lcm 12(z)

4
= S\\y,: .(S)\\

+ |l uz\\2 . 41) . te.To,1)



where C is independent of € .

Next we take the dnner product of (2, 12) with iFl(yé You Inasmuch

as a(y, fl(\]/)) » for all \f/e 50 ), wa. tad atter Some
calculations, '

- £2.16) fajwa L S ( fj(yé ),—vj)fi(ye )ad dt <

: j:l
0 iy
g |
et A < fji(y)dx,ror i=13,2
_(2- 5
where . = , :

& ; 2 | . :
E@e fi(s)ds SN T

= .

' Along with assumption (2.2),(2.16) yields

2 £ - :
e e e \ \\ a . 1

and by (2.12) and (2.15) we see that

2 2
(e » gl S Ay ) | &
ot wW(Q) g e f.l & ; L2(Z-)
where C is independent of £ .
Now using once again equation (2.12) for EsA > O ‘we get

e i)l 2 Ny -y 2
\\ya (t) = (+) 1200 St %\n 12(0,T;HF () 2

Z S (f(ye -‘.\Fi(y/\. Ny, =3 )aTat£o

Taking in account (2. 7) (2. 8) (2 17) and the monotoniclty of jg
the latter implles by a standard procedure, that

i et + lly, -2
(2.}8) n yé Al o [O T] L (jl)) ]3&1 )\, L (O TsH (fl)

A -C(ff))
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Hence y = lim yé exists in the s.t-rong topolbgy_ of LQ(O,T;

B () [\ ¢(C0,773L° (ML) +In particular, this implies that.

Y —> 7 strongly in L (O,T;H/2(~F)C L (Zj

and by (2.17) we may assume that

(2. 19) f (y )—-;wi wealfly in L (Z Yoo e
According to Definition 1 to prove that y is a solu‘tion to (2.1)
it suffices to show that
(2.20) w, € Jﬁi(y) a.e. om Z,id=1,2,
To this purpose-,we set
e
g = fif (yé-fe)
By (2.7) and (2.19) it follows that,on same subseguence 20"

we have

(2 21) e =at weally in % (Z X]-l HER] R 5
..1 =

On the other hand,since z&(: fi((l + € fi) e -£€6)) and by

(2.19) (L + Efi) :_L(y& -¢6 ) is strongly convergent to y
in Lz(zi x 1-1,1L ) we may infer that |

-z?(G,t,é )€ fi(y(ﬁ »%)) a.e. on Zi xl=aal

~ Along with (2.7) and (2.21) the latter imp.l-ies (2.20) as claimed.

The uniqueness of y is immediate from Definition 4.

To obtain estimates (2.13) and (2.14) we let A tend to zero

dm (2. 18) and €—> 0 in (2.17).

Let us denote by K: L (Z YT (Z )——>W(Q) the operator '
defined by 7= K(Vl’vz) where y is the so_lu’clonb to (2.1)
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By K, we shall denote the corresponding operat‘or associated with

equation (2.9). :
PROPOSITION 2 .Under conditions of Proposition 1 the operator

K is weakly continuous from L2( Zl)X L2( Zl) to W(Q) and compact

from 1°(Z ;) X L2(T;) to L2(Q).Turthermore,if for £->0 the

gequence {(vi ,vé)‘jis weakly convergent in L2( Zl) Xme( Zz) to

' (vl,vz) then on some subsequence,again denoted ¢& , one has :

(222 K (vl,v2 s K(vl,v ) Weakly in W(Q) and strongly in

- Q) ,
1F (v ,vﬁ) —_— (v ’V, ) strongly in L (Z )XL (Zz) then

(2 23) KE_(vl,v2 ieen K(vl,vz) strongly inZ 6t [o,al L2U2_))
| L (0,7 ;Ht (_Q))
Proof. Let - {(vl,vz)s a gsequence of L ('Z y o (Zl) weakly
cemvergent bo (vy,7,)eBy estimate (2.14) it follows that {yn = Ky,
' 2)3 is weakly compact in W(Q).

Hence on some subsequence again denoted ¥, ,\;ve have
(2,24) Yy —> ¥ weakly in W (Q) and strongly in L2(Q).

As a matter of fact,since {y l]is bounded in L2(O T-Hl(;Q_)‘) and

i g%—jin e (0,03 (H (_(L)) ) according to a well<known ccmpacity ‘

theorem, )lynl\is a precompac’c subset of some L (0,1; H(_Q)) where 1/Zufd,
Thus by the trace theorem we may conclude tha‘c {yngis pre-

‘ 'oompaét in Lz(i.) .Hence withou’c no loss of generality we may assume '_

(2:25) Ty —> 7 strongly 'i‘nv T oE

Seiecting furthér subsequence it follows by (2.‘1"4) that

'(2.?6)' fi(yn) e 'Wi' We'akly in I‘Q(Zi);i = 1,2



since f . are maximal monotone it fallows by (2.25) and (2.26)
that w,€ £;(y) a.e. on Z,i = 1,2.Along with (2.24) this im-
_vplies that vy = K(vl,vz) as claimed. '

‘Now let {(vi,vé)?} be such that for €é€—>0 -

(2.21)  v{ —» v, weakly in LS E e tilz.

Then in vir"c'ue of estimate (2.,17) we may agsume that

(2.28) &; = K¢ (v ,v ) —> 3z wemcly in W(Q) and =
strongly in 12(0,1; H‘r(_ﬂ,) ;Y2 <de
-'and..
' & s 7 vy 2 . .
(2.29) fi(yé ) e weakly in L°(2,);1 . 22

Since the sequence of traces of {Ka(vlﬁ,v%)} converées strongly
in LE(Z) to the trace of z,arguing as in the proof‘éf Proposition
1 we may infer by (2.29) that '&ié F£.(2) ace. on Z k= 1,2,
Hence z is a solution to (2.1) corresponding to Yl"‘r2 and
t_herefore Z = K(vl,vz)‘.

If (vg_,v‘é) =5 (vl,{rz) strongly in Lz(Zi')X '142(2_:.2) then
arguing as in the Proof of Proposition 1 we deduce (2.23).This
completes the proof of Proposition 2.

REMARK It must be emphasized that more g_enerél systems of

- the form
; r 0 -
(2.20) <L+ P (7) 3w in Zi;i =158
yo) a3 . e L)

: :
‘where F € L
e (Q). and V €5 (Zi) can be put into the form (Zely)

‘where Vi = v - -,-5- and z €H°21(Q) is the solution to
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‘ Z, + Az = F e g
ELE)EENE L Gl S S il

z(o) = 0 . in- O

Since T are smooth parts of | and -ra———E T (Z) it follows
that the restrictions of ,-;——- Jcor belong to L (Z ) and therefore
1€ L (Zi), i = 1,2.,Thus Propositions 1 and 2 are applicable

and therefore their conclusions rexha_xin true for general .systems

(2.29).

3. THE MAIN RESULDS

We shall study the following control problem:

Minimize

(2.3) !2" S“h(x,t) Vy(x,t) - yd(x,t)\ 2axat + Yl(ul) + '\1/2(112)+
Q = : =

" + Parm)

on the cléss of all e € Uy , 1 =1,2 and y € W(Q) subject to
state system (1.1) | . .

We shall assume that the followa.ng conditmns are satisfled.

19 Ui s 4= 1,2 are real Hilbert spaces with norms ”'Hi
and inner produgts denoted Cuve) i .

.2° The functions \]Vi: U, ~—>R = ]-oo,+oo]_ sl = 1,2',a;'e
convex,lowé'r gemicontinuous and $ +® o '

30 The function: \-f ;12 () —>R. is convex and continuous
on L (.Q-). =5

4° BEI®(Q) and yg € “(Q) are given; hyo -a.econ Qo

As regards the control system (l 1) we shall assume that

5° A is the elliptic sy_mmetric Qperator presented in

“Section 2 and fi b= .1,2 “are two maxj,mal monotone graph
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in R X R which satisfy condition (2.2)e

6° “Bi: U ——>L2('Zi) v les 1,2' are linear,continuou-s

.
opexators. _
e e PR 12(()) satisfiés the

assumptions of Proposition 1. R .

- The solution to (l.l) is meant in the sense of Definition 1

and a.ccord'in'g, 'to Proposition l,under our assumptions,for every

pair (ul,uz) € I;T:L)(—U2 the control system (l.1) has ,é..unique S0~

lution y 6 W(Q)e ) - _
We shall say that the state y € W(Q) and the controls_t:g;e U,

i= ‘1,2 are optimal in problem (3.1) if_the infimum of func_fcional

»*

(3.1) is attained for y = y* and u; = u; .

The first optimality resul’ggls given in the case 1n which 365.
are single valued and satisfy the following condition_

8% The functions fi,i = 1,2 are monotonically'increasing"
and locally Lipsd-hitzian on real axis R.Morepvgr,the;'e exists

C>. 0 such that

(3.2) Bimr £ e 1@l +2° + 1), acea vE Ry 4= 3.2,

THEOREM 1 Let y"¢ W(Q) and (u},u}) € U;X U, be_optimal in
problem (3.1).Assume that conditions 1°~ 8° are satisfied.Then
there exists p € CW(EO,TJ;Lz(.Q)) 4 LZ(O,T;HJ‘(_Q‘) Jwith %F e

which satisfies along with y and u‘i,u; the system
B3s3) P-b - Ap = h(y¥“ yd.) : in Q
(3.4) g;}’- + (0P, (3*)p >0 in 2Z5d = 1,2

(3:5) p (D FPGHEN 30 - a ITQ)

(346) (B} gl [T

$551 %2 dake

5

Here we have denoted by B; : 1,2(2?1) —> U:L the adjoir;t of the
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operator Bi and by pie 'L2(Zi) thga restriction of p to Zi.We

_ have also denoted by ’a\fi 'and(aj’ the subdifferentials‘ of '\f’i,

\f and by ’afi the gener_alize@ gradientq of fi(see (1:8) )
The boundary value problem (3+3)~ (3.5) must be interpreted

- in the following weak sense,

m e
(37) Jp%tdxdt + f a(p,¥6)dt + S MYedaat +
; . ; 4

ot S ["Wd‘rdt-"‘, S.h(y'-'yd)dxdt %
}22 2 = :
+ g‘g Yi(x,T)dx = O ;

for all YULEW(Q) satisfying: YL (x,0) = 0 , é.é.,_xeﬂ .Here the

functions '-t €_L2('Zi) , 7= 1,2 sand 3 éLZ(__Q) satiéfy the
-equation : .

(3.8) P (0,00€0 FGT0,1)  a.ed(T0)€ 251 - 1,2
(390 = BE) # PP EADIE) 30, Beee E D

It should be émphasized that Theorem 1 covers the main part of
the physical problems presented in Introduction.}i‘or instance in

the case rl el and £P1 =f given by (l.5) (the thermost_at—.

control problem) equation (3.4) becomes

i
." “l-lp : ~:¥‘f 'y v 61
. = [O’OL].] o 5 0 . y*':, ‘el
- QPp oy g% = oaiE saag SoAep £ BN Bl inidieny
S ‘ _ i : B
"{_\ o olzp : : i3 y? >62

Now we shall consider the partipular case of_problem (a)

here4r'=r and . = g ‘ . :
wh - 1 n -_ \,ﬁ_ .f.i.s glVén by (1..6)..'Fn-1;his

G e 5 N
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case (l.,1) reduces to the unilateral problem (see eoge [ﬂ)

¥+ Ay = O in Q
(3.10) ,y_?_l..Bu_f)_-.'_op'o %l-iau-f omZ
| , e e S i i, TR e

L ¥lo) =3, .

We shall assume that all conditions 1% 7° are satisfied (for
.4 ='1).and xio‘cice tbat in virtue of 7° we: agssume that yo(x);;
0,800 € o : |

Under these assumptions we shall prove the following opti-
mality theorem |

THEOREM 2 Let y' € W(Q) and ul e Ul be optimal in problem

- (3.1) with state gystem (3.10) ¢Then there ex.xsts peC([0,T]; ~

12¢a)) () 120, 7 EH QD) with -%lj-em(z ), which satisfies along

with y* and u* ‘the system

(5ay "o - ip = h(y" - y.d) in Q ,
(3:12) }(,%}—’)a =0 &, in {(C,t)ei;y’(f,t) > o} ‘
(3iy o p 106, 0)eT 53°(q ,1) = 0)N} T
. Byuy -%;Y-fl' > _O?).

CGas p (1) +OYET@) 20 0 1P(Q)
(3.15) 'ial( ey Y ) "

Here-(%b-ﬂ) e svok one- alloutely ‘continu;ous par-t of the
 measure 5—-9 € M(Z) and M(Z ) in the space of all bounded

‘Radon measures on Z «In (3.15) we have’ denoted by Y pE e (Z)
the trace of p at £ o : R : g

Pastponing the proofs of these theorems for Sections 5 and

6 we shall discuss now a particular case',of Theorem l.We shall



=
considef the follow&ing ‘spec.ial caée of prpblem (3d)
(3.16) h= 0; m (-\'l)>o | '
(3.17) U = La(o,'T; Zil) 5 Bis I(ide;;tity operator ) = l_,24._
(3.18) ‘*ri(ui) = S ,gi((,ui(o’.,-t)')‘)‘det i v.uieui', i z';.,z.

Zy |
where g, : [,X R—>R is defined by

(3,19) &, (6 ,4x) = 0 if I‘I‘\é\F
: : +00 otherwise
and 82: \—2)( R —>R is normal convex integrand on r2 X R(see-
ey, ' e ‘
In other words,we consider the following 'cdnt_rol prdblemz

Minimize

o/

(3:20) f ga(G,uz(f,t))dcat + *j’(y(m))
2'2 . . : :
on all y € W(Q) and (uy,u,) € L?(Zl)_x LZ(?:Z) su‘b;jeét to

(1.1) (where U, and Bi satisfy‘§3.l7)) and to control constraint

J.

-

(3.2)  lu (€, ¢ 9 ace. <¢-,t)¢Zl.

‘We shall assume that | and the coefficients of A are analytic and
’ : Tl : e - -
(3,22) 0 € o' (y™(m)),

. COROLAR 1. Let y* and u’i,u; be optimal in problem (3.20).

Then uf is a bang=-bang control on Zl,i.e,,

(3023) - \uI (Cot)\ = P . 8e€o0 (Got)e Zl .
" Proof. Since Theorem 1 is applicable in the present situa-
$ion it follows by (3.19) and equation (3.6) fom =1,

(3.24) ui(@,t) € P sen p(G ,%) - ge (G NG Zl
‘ ootk 468 '
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where sgn r = v/ | x| for ¥ #0 and sgn 0 = [-l,lj .

Let now

{(G t)€ Zi, (7, & - 07J

By (3.4) we see that (5—3 H.e. bn 2 ,+Then by a el
known argumept involving Dirichlet series we gee that m( 2 )
unless p 0 (m deno’ces the Lebesgue measure ). Since by 3 5) and
’(3 22) p # O we may infer that p # D0 a.e. on Zi +Then by (3. 24)
we ‘deduce (3.23) there by completing the proof.

4, THE APPROXIMATING CONTROL PROCESS

Let y*¢€ W(Q) and (u;,u‘é) € Lz(’Zl) X LQ(Zi) be optimal
‘elements in problem (3.1). . '
, For- “£>0 consider the following optimal control problem: Mi-

‘nimize

(4.1)

ol

g' hly-vy 12 axdt + 2% (\[’ (u )+ %‘l\uf : w 2+
Q d. i=1 l?— it i

+ fr(m)

over all y € W(Q) and uy ¢ Ui’i = 1,2 subject to state systém
l ' Yy Ay 0 in Q
(4.2) @l fl(y) ="Bu, + £, in 2oy 4 a0
Here ‘-}'ie : Uy >R ,14 = 1,2 and Kff,i L '(‘_Q)—->R are the convex
functions defined by (see e.g. [4] -p.107)'

(443 Yyfw) = in? ) M vl\?_ /2t \Yi(v) vE U S f g

(444) \f(dr) inf {\\y - Lg(ﬂ)/ 2&+ ‘f( ) s 2€ L (_Q)B
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Let now ._ = | e -

(4-5) r (ul’u2) = % g h \KE. (Biul + f1,32u2 + fz) -

. 2 |

2 , L, 2 o

= yd\ dxdt + El (\\/:La (ui) + 2.'\\111 - ui\\ ) .+

- ﬁ«f (K¢ (Byuy + f1,32 G B A

and . ‘
(496? F(ul,uz) = -12'- g h \K(Bl u + fl,B2 2 + f2) - Jq \2dxdt +

Q
Zl \ifia'(ui) + \f(K(Bldl'+ fl,Bzuz + :2)@)) '

where K. : L (Z AISLT) —5W(Q) and K: L (Zl)XL (Zo) ==
. W(Q) have been defined in Sec’clon 2

In terms of Fg problem (4.1) may be w-ritteﬁ as
(4:1)' nin V2, (upaupds wy € (T, wpe (T
while bY (3.1) we have | ' wea : .
AT F(ul,u ) = min {F(ul,uz) uy €L (’Z Vs u, € L (22)5 ‘

Since the functio)ns \Yiﬂ and ‘fa are weakly lower semi-
continuous and by Proposition 2 the operator K¢is weakly con — '
$inuous,we may infer that the functional F, is weakly lower
gemicontinuous on L2( Zl) X LZ(E.Z).Hence problem (4.,1) (equi=-

: valently (4.1)') has .at leas‘b-one-sqlu’cion (ye_ sy ¢ ,uée ) &
W(Q)XLz(Z' ) K Lz(zz) On the other hand,, since the functions

‘ \YJ.L Sz engiys are Fréchet differentiable on U, _and.‘,

. L (_Q) . respectively (seB. tebs L4 3oy cDed0T) <1t follows by a
standard device the ex:.stence of some function p&G W(Q) satis--
fying along with y.& -and_, u; | the following system (the Euler—,
~‘Lagrénge system associated wifh problem (4.1 ))



(P& g — 2B, = Wy ) \in'Q :
P, i .
(48) 3 %£+ (ff Yy ip e 0 ‘ in Zl;ig 1,2
| Pe () + 'a\f(yE (2)) = 0 =iy L '
: & - x

(4.9) By p e,1 .fa)vie (uL;.L£ ) + Ui ‘ u; in Zi’i w2

where p . ; is the reétriction of p. %o Lz(z.).'l‘he solution p

is meant in the sense of Definition 1l and the symbol. (pe) € L2(O T-'

(H (L)"') is used for the derivative of Pe in the sense of (H LQ))‘ '

~ valued distributions Gn Jo,r L o s ¥
LEMMA 1 For €—>0 one has

(4.10)‘ Uje — -u; © - ‘gtrongly in L2( Zi);i = .1',2

(4.11) y, —> : e weakly in W(Q) and strongly in

12,1 (NN o(fo,1] 5LEUD)

faas)  £r (y&)—efi-Bu zg——weaklymL(Z)i_lz

‘Proof We have

: s
1 : 2 '
Fo (e supp ) €3 f hlz - y,)° axdt + iz:l \riﬁ--(u;)+ ‘f(ze(’l‘))
Q | i st
¥
where Ze = Ke _(Blul + fl’ B2u2 + :’c‘z).

According to Proposition l,we have

(4.13) 2 —> ¥ strongly in C( To,7] ;.La(f_('z,)).

Since Y;; £ Y, and Ye € ¥ it follows that A
R i e
(4.14) %gﬁosup Fe (ugg sy ) & Fluys 4y ), |
In pérticular it follows that % i l)are bounded in L ('Z )i =" 1,2

Thus without any less of generality we may assume that

e o =
>‘u: - weakly in L (Zi);i=l,2 °
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Then according to Proposition 2,we have

i
i
!
|
5
£
‘
H
i
¢
£
i
13
¥
¢
}
¥
{

(4.28) 3 —> y'= K(B,UJ ¢ fl,Bzﬁa"f £,) weakly in W(Q)

and strongly in LZ(Q)

On the other hand,since the functions “fi and \f are weakly

Jower femicontinuous, and (see [4] ,p.107) |
e ) = el Yy @pNE seer Yy Y ey
5 : ; =1
Wl = ell g‘fe(y) I L2(_(’L)/28+‘ Kf(.(l +€9Y)™y)

it follows by (4.15) and (4.16) ,

11m inf (u, 2 “ur) i=1,2 - B b .
lim inf (y (T)) > PEFHT)) :
&€—>0 71 € i S? ® §

Along with (4.7) and (4.14) the latter imply (4.10),Next by .
Proposition 2 it follows (4.11) and (4412) thereby completing

the proof.
LEMMA 2 The. ex1sts g >0 1ndependent of £ sguch that

(4.17) (&) P, 2 oge o
. “p_e . “ 12(Q) * e | 18(0,1;H Lean B . ‘
| = , o ,

' 01 ) é_-.C .

(4:29) lo, g 2, T-H“1<11>> |

Proof. Wlthout no loss of generallty we may assume that p is
a.regular golution to (4.8), 1.e.,p S Hl 2(Q) Then multiplying
equation (4.8) by p and integrating on Q, = ellx I, ol it follows

by the Green formula ,

| . iy . -
2 2 - 1 g
(4,20? 3 \\pt (t)\\Lz(jL)+ S alp, P, )dSé=2 “pé ()l L2(11)+
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oo Qf h\yé - yq\lp, | axdt, e ot
i 5 |

Let E be a Cl approximation of the function g_g;_x.We multiply
¢ equatlon (4.8) by k(pa ) and integrate over Q. Using once again

the Green  formula and letting } tend to sgn we get

g\( fi)'(yt )pé\ 40 dat “_-'S‘ h \y£.~ - yd\dxd‘b_
‘Zi S ;

ngp (D) ax .

On thé other hand, since yé (Y- (1) in i (_Q_) and

n®ﬁw“§( me®f@ﬁ

it

(4021)'

¢ 'inf%(\ wil. o

50 L ()

4t follows by (4. 8) that %pé (‘J.‘)‘S is bounded in L (_Q)(Here
we have also ugsed the fact that rD‘f is 1ocally bounded on L (_Q.))-_
Then by (4.20) and (4.,21) we get (4.17) Next by (4.8) we get es-
‘ timate (4.19) there by completing the proof of Lemma . I
" It follows by (4. 17) and (4.18) that ;p is precompact in
LZ(O,T;HX(_,O,)) where LJ—Ll Hence there exists peL (o, T
Hl(_(l))-with Dy € L2(O,T;H (L)) such that for some sequence
€—> 0., one has . i3 |
(4422) P, —>p weakly in LZ(O,T;H]‘(_Q.))
‘ | strongly in Lz(Q,T~HAF(_Q)) v
and Weak star in 1® (0,13 T (_Q_))
(4.23)(p ) >y ; weakly in 12(0,T;H 1(119)

.Here ptnienotes the de:rivatlve of p(t) in the sense of H’l(_(l)
valued dlstributlons on ]O T[ .Then it :ﬁ‘ollcws ’chat pit)):la

ahsolutely continuous from [0, 'I.‘] to. H“l(ﬂ) and by (4.22) we
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see that p(t) is weakvly continuous from Lo,2] %o Lz(ﬁ),i.e., '
.2 = - .
p €0 (Do2] s 1T (00

In particular,we may infexr that

"(4.24). P (t) —> plH) - weakly in Lz(jl) ‘fox" every _t‘E L—O,-Tj-(

Since &rb*fe(y&(‘]?))g is bounded in Lz(ﬂ) ahd y. (1)-.9 () |

‘.strongly_ in L2(__(L) , it follows by (4.5_3) that &,
ooy dferaye o - in ().

Next by (4.22) agd th‘é 4race theorem it follows that

| (4»25). Pg —————>"p strongly in 1;12(2'..)

.which along with (4._9). and (4.10) implies - L 2. 3%

(4.26)  Bjp; € OYy(ui) , 4i=1,2

where 1 is the resgtriction of p to Z i’i = Ly,
‘Pinally,it follows by (4.18) that there exist: iwo bounded Radon
peasures yl E M2 ) on Zi' i = 1,2 such that

P % : -

& . .
ety LB Jn—s V% weak star in M(Z,); 1=1,2,

Thus letting & tend to zero in (4.8) we see that p is a solution

to ’ :
pt - Ap = h(y® - yd) in Q

(4.28) ' ,-?5 + }A; 2. 0 ' . - in Zi;'i = 1,2
P(D) + 0Y(y* (1) 3 0 0

Equation (4.28) must be interpreted of course in the following

. sense (see (3.7))

T ;
75 42
(4.29) | py dxdt + { a(pyye)at + 2 Juk AP,
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£ g n(y - yd)?tdxdt + S\S'W(X,T)dx =0k

for all ‘Yﬁécl(@) such that Y6 (X,0) =0 ;= TEMS Herek is

an element of L’z(_ﬂ) satisfying equation (3.9) .
: Summarising we have proved the following intermédiate result.

PROPOSITION 3 Let gy ,u{,uz” be optimal in problem .1,

’I.‘hen u,ncier assumnts_ons l ~ 7 there ex:x.s’cs a funct:Lon

T - c (Lo T); L (_(l))f]L (OTH G0y

with p, € 12(0,1;H 1(_(L)) ,which satisfies system (4.28) and

equations (4. 26).Morpover_Lp is the limit in the sense of (4 22)°

(4.23), (4.24),(4.25) and (4.27) of the sequence {p b of
solutions to (4¢8)e |

5 PROOF OF THEOREM 1

We begin with a technical result concerhing the generalized
gradlents.Let 39 be a locally Lipschitzian :ﬁunctlon on real axis

and let :F be the function defined by formula (2 T), i@,

(5.1) f(r)= f f(r-ee )J’(&)de reR,_.£>o

where \P& = 5"1(1 - (l+6§ )'—l)o

By ’b\rf we shall denote the generalized gradient of f (see (1.8))e

LEMMA 3. Iet E be 8 looally compact space "and let VY a posi-

tive measure on E such that CVA(B) L oo.leb %yESCL (B) be &

sequence such that for €-—> 0,

(5.2) ' T =y gtrongly in Ll(E) and
(543) (£, ) —> & wealdy in e

"Then
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w95

(5ad) g(x)é ’5\3@ (y(x)) . _ ‘v-a.e; _xe E .

Proof. By Ll(E) we have denoted the space of all real-valued

VY -measurable functions y(x) defined V-a.e. on E such that
Lyl ds -integrable over E.

- Selecting a subsequence of {yes we may assume that
(5¢5)- e (x) —> yix) V-a.e. x € E,.

Next by (5¢3) and the Mazur theorem it follows that

#

lim &, strongly in Ll(R)
M. =

(5.6) -
i '
where % gms C L7 (BE) are of the form

: : . - a. . :
(57) &y = j{—; A ( § 3)'(3’&3 e

Here I is a finite subset of natural numbers in the 1n1;erval

[m, o[ and o’\gl/ : Zc‘(a 'o
: JEI

According to (5.6) we may dlso assume without any loss of genera-
lity that ' _
(5.8) gz} > g(x) V-a.e. x€ E.

We fix x € E such that (5.5) and (5.8). hold, and consider g

gequence % ]) of real numbers such that 33 (z ) exist and

Z, —5y(x) for n—>oo.We set ya y aj(x) and notice that by

(5.1) we have

- m : i 5
. s - ‘ =
(5:9) . (£ = & ..i' Fe, vy - &025 0 8.
On the othei' hénd,we have

OB'(?j) z‘3@((’1 + ij )—‘l(.Yj 5 Eij‘e’.))‘{ . F'-(Zj)—(zj =

AR




e
- 6353 Ly - 880 v w50z -
- @ ejje,)“l'(y'j - -eje )
where wj(__e.) —> 0 for 5‘;] L (1 + 8353)-1(yj - 1&59 i
Along with (5.9) .the'lattex‘ yields .

. »_ 5 : E . ; = ' ' - ' = (]
(5.10) ¢ &Ny = plzy) -prizy fe 7y €40) P02
2 - £ =

! -1 2 ; : = : :
B T RV R R O

=00 .

Sinceif is locally Lipschitzian,it follows ¥y (5.5) that jgéj(yj-
- é_ o) ——-;f(y(x)) uniformly-in O on By oad .
On the otner hand, 23 can be chosen sufficiently close to yJ in a
such a way, :
|yj = zjl./gj N0~ for j—-—>.oo .
Thus cfj-—> 0 ‘for j— 00 and (5.10) yields
& ; : =
J- )yt = 3 ;
\(39 2 1N g) -éf'(zj)l——> 0 for j-— oo .

Along with (5.7) and definition of f)f , the iétter yiclds pix) €
\:F (y(x)) as claimed. - A
Now we continue uhe proof of Theo:cem 1 by obse:mrlng that by
condition (3.2) it follows after gsome calcula‘clons involving (5.1),
the estimate » .

(75.11): (fi)'(y)y é'd( ,|:f3§(y)\ + 5 + 1)L =12 Sye R

where ¢ >0 is independent of € .

For each £>O -and natural number n, we get

g€ - {(G,t)e‘i; |y, (G’,t)‘ 2

n
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where yE -are defined as in Section 4.

Let Z be an arbltrary measurable subset of Z where i = 1

or 2. By (5.11)ve have

(5.22) _ f \pé\ \(33“;.~_)_'(3>re Y\ dd dat ¢ S |pé||(f§‘)-
Z, | | By Aty

(y, )\ doat + g | p \\(fl) (yc)\dﬁdt
5 cz«fn‘):
i

% s 1 p ad at + co™t Stp \lj3 (v, )Idcd-t+
o ehE nZ

+ G g Ip. 11 v\ a6at + ca™t
_ Se-¢ &
0. _ i :
: ¢ e ' *§or b ]
‘where OE = N E, . Inasmuch as by Lemmas 1,2, iaei(y )3 is

bounded in 1°(T;) andfy} , ip,

g (‘23), it follows by (5.12) that for each wz> 0 there exists
()'(vz) such that ‘

Y are strongly convergent in

v P v g
25 ‘-Pé (fi)'§yé-)l a¢ dt ¢

0

for m(Z) cd(y)

(m denotes the Lebesgue measure on A Juln other words, the famlly

{ Zf P, (fl ) (y€ Jag at; L Czi.S is equicontinuous.
0

Hence by the Dunford-Pettis criterion,the family {-p i (ﬁl)'(_y£~ )3

is weakly compact in L (Z: ) « Then by (4 273 4% follows that
i d |
r\p € Lt ( ) an

;i =ly2s

)

(5.13)' (Jei)_'(ye ) P —> f&% . weakly in '.L_:%( B

On the other hand it follows. by (4 11) that -{-yg} is convergent
'inL(Oan/z(r))o ' ‘

Thus selecting a subsequence if necessary we have
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(5014) Yé (X,t) e y*(x,t) 'aoeo (X,t)e zi;i = 1,2

- and by Egorov's theorem , for each Yz > 0 there exists a

meagurable subset EJ:,I Czi such that m( 2\ E:,Lz ) £ Wz ' T is bo-

T A AR A

. unde_d on E%,z and

(i t) —=S F(Xst) uniformly on E,{‘ e A

_(5.15)' Ve

Next,since 2(( fi ) (v )B are uniformly bounded on EJ;Z we may o

agsume (extracting further subsequence ) that
S AR e

; " i ; =
(5.16). | (385.) _(_:)T& ) >gi weakly in L ,(L’()‘

A_'(actually weak-star in L (E?,L )) «Then by Lemma 3 it follows
that _ e | 5 7 _ |
g, 1) € VP67 1) ace. (€ By L= L2

Now by (4.22) and the Egorov theorem we may assume that e p
unlformly on E,,( . Along with (5.15) and (5 16) the latter implies
: i

that tkp 85 P on E,l . Hence

P ) € B t)%@ (F(x,8))  meee (xt) € n%z

Since m( Z \ Ejf,L ) can be made arbitrarily small we may conclude

‘bhat ‘ * A : .
ps <x,jc> ¢ p(x,t) fafiw*(x,t)) ace. (x8))€Z
| 1 =3,2,

Thus the conclusions of Theorem 1 follow _by Proposition 3.

PROOF'OF THEOREM 2

If j3 is the graph de fined by (1.6) fheg ‘éi(f):; = 5'1r i
forreR,and ool

S0 - £ e e DB iR
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g
respectively (we set fa = (-(f‘zé)')

.E : e} ;
@ ) (p )ao
foe S5 oo

E=lp
Hence . ‘ ’ o :
(6.1) \y& Lfe(yE )2, - B J@e(yé )= |p,. k- JO(&)del &
i e a-ly '
€.

On the other hand, arguing as in [17),[2] we find that
; - € 4 > € e | o1 |
(620w, ot I cre B es ke o)+ & pidon

Q.e, -(.DD Z

where ey i .if: lye b 55 -k
§.(0,1) - | |
- 1 i“flyé.((,t)lAeE
il o if (6» B
¥ s b - &
ﬁ(f}t) &= { 3 £ : _
: 1 if ¥, (oot el

Inasmuch as by (4.12) , {f*e (¥, )AS is bounded in Lz(Z)v‘and
by Lemma 2, {Jﬁe(ya )paj is bounded in L'(T ) we see by (6.2) that

on some subsequence & —> 0 we have

{630 <P, \fﬁ(y‘E ) o Oy cBese o0 Zoo

. ; ) - { ." »
.0n the other hand,we lmow that £ (y, ) —»u’~ £ - ,%Y- wealkiz: -
in L2(Z) and P —> P gtrongly in L?'(Z )._This implies that the
. gequence {pé \Fa(ye )5 is weékly convergent in Ll(_Z) to

Ap(Bluf - %g'" fl) and by (6.3) it “Pollows ’tl’aa’c
it ﬂ__l’.__ . - | s
(6e4) p(B uy e _.fl)‘ = 0 a.es on Z

and therefore



0~
P 6(-57 ) —> 0 stronglyl iﬁ Ll(Z )
Then by (6.1) we see that
_ (6.5) ¥ JG (yé —> 0 °trongly in L (Z ).

Hext by the Egorov theorem,for each ‘vz> 0, 4 E,Z ~ a measurable
gubset of 2 such that mn(Z\ E,L ) Vg —> y* uniformly on

E'Z_ and y is continuous on E.,Z Along with (6.5) the latter
yields | | | e

. # QF 8] i 4

(6.6) lim y‘ \33 (s/% )pe = 0 strongly in L (E\Z Y

>0
. Denote by E{Yﬂy the foJ.lowing subset of 2_

By d = ‘{(G,t)é -E ,\y(f t)l ﬂ

Next,by Proposition 3 it foll—ows_ that there exists a measure

P e M(Z) ‘guch that (see (4.27))

(6.7) pf_ Oéf(y& ) — f" weak-star in _M(Z)-_

Let l* = (t,*)a + (]"_’)S be the Lebesgue decompos::_tlon ofrl into
 its absolutely continhous part (]'*) and. the singular part (}* )s‘
By k6 6) and (6.7) we.see that '* =0 on E’Z J By definition -
of singular part we deduce that the ‘supposrt of ([ ) is con~.
centrated in E"I [){(0’ t)eZ ; y* (6, 5)> OB ,Since m(ZT\ E,Z)

—3 O for '»z —» 0 we may conclude that

(I‘) on {(« )3 ¥ (0> o},

Along with equations (4. 26) (4 28) and (6.4) the latter

completes the proof of Theoxem 2,.

_REMA.RK,_ " Let us con51der problem (3 1) with state system

Sy o
(6.8) -YVgl JB(y)-B L - ) =0 7500 555
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: 4‘Ji(Y) f Blul“fl‘aio in zz e
y(o) = ' ’

o

where ule Ul and A ,B.: Ul———-> L2(.'Z) . fl’yo satisfy conditions

il
LN 7° .Here f is a differentiable,-mono’conicaliy increaging and
[ . ; ' .

: Lipsbhitzian function on R.

System (6.8) van be written in the form (l.1) where l‘l.: 3 and ;
. e o it e % |
(6.9) jzl(l') = . j"QO,O] ) if - I‘ =0 1

¢ . | iR TR 0
The prototype of'this problem is the enZyme diff’usian problem (1.4,
In order to obtain necessary condltlons fox optlmallty in thn.s :

case,is more conveﬁlent to replace the approxlma“‘clng system (4 2)

by

yt+Ay=O in Q

(6.10) ,yL,. f(y)ar f(y)_Bu +fl | ine 7 %
R |

Obviously,Lemas.l,e as well as Proposition 3 remain valid and v

/

P is in this case the solution to

aiisilne hussidpyc =higheic @gk ) A2 A
(6011) | . -y
| R R e R e 2

p, (D) + Qjae(ya ()ae 2D

- Then passing to limit it follows from preceeding proof that p is
the solution to | | . '

.Pt"AP=h(y&"‘Yd) | in Q ' -_
n ' |
(6.12) By & £ilg*p =0 e.in % 9! 5 > 0]

po=0-71n % —O}JﬂiBl{ rb f(y’)p«-fl> O}
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gtill keeping equations (3.14) and(3.}§).
7. SOME APPLICATIONS IN CONTROLLABiLIT¥
Consider the control system
. vyt Ay =0 in Q = _ijou:[ |
("7.1)" Qb% & 'fl(y),;.Blu | in Zl = \— x Jo, T[
%ff)r L@ ve mizz—-—rzx]_o,m["
y(x,0) = yo(#)f' gie 1) s ' . L E

where A is a Jinear second order,simmetric and elliptic diffeQ
rential operator on (L and }Si,i = 1,2 are two maximal monotone
graphs in RX R satisfying condition (22 .

- Here Bl is a linear continuous operator from the Hilbert space

—

Ulvto Lz(ff e G-L (Q) and .F = Ifll) rz_ where ri and | 5
are two dlSjOlnt and smooth parts of r-;Fﬁrther we shall assume
that the boundary \ as well as the coeffic;ents of A are analytic,

‘As seen in Seotion 2,under these assumptlons for_every u e'Ul,
(7.1) has a unique solution y € W(Q).
THEOREM 3 Let system (7.1) satisfy the above conditions.ln

addition,assume that rl is open in F and the range of Bl ig dense

in 13(Z).Then system (7.1) is weakly shritrelable Si.0., for aach

¥y € Lg(jl) fhere exists a sequence 3un3c;Ul such that

(re3y “oiy ¥y weakly in Lz(jlj and strongly in EJCIL)-

Hemwe y., is the solution té (7.1) where u = u, .

- Proof. Let y, be arbitrary but fixed in‘Lz(ll) .Consider

4he following optimal control problem.Minimize

(1.8 3 (v - i3

. (ﬂ)+ ,\nuug)k
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on all of ue€eU, and y€ W(Q) subject 4’co.(7'.1)' This is a special
case of problem (3.1) Yinsnn = 0, _' A |
= 2 ‘ 1 2
Yaw ~/\hu\\1_/2 and ‘f(y) > 5\\:{—:{1!\ B
Clearly (7. L,) has at least one solutlon (u./\ ,y)‘ o
By Proposition 3 it follows that there exists P, € I (O s
H (g,))(}c ([o,77 ;22()) with (p))g ik (0,251 (ﬂ)) such’ that

: (9, )y =45, =0 ingQ
Gl : .
A et SR
W + ; VA = O in 5 i, i = 1,2
(7e4) ‘B, (@) +5 (@) =33 =0 in 12()
(1.6) D; o T o Lz(?:l-)

wherer‘ GM(Z) i=1,2.

In d;her words,we have

(7)) Cg p-,\yctdxdt o

O w3

a(p Y028t + J06) + JE00)) 4

& gp(x,fr)%-(x;m)dt =0
for all Y6 € Cl(C-Q) such that Y6 (x,0) = 0, x € (). JHexre ’j\i(‘\'t)

denotes the value of rk; at the trace of Y6 on 81'

Next by (7.3) it follows that
0 - ' 2
by sy s + Ml u e
L bt A
~and therefore
(7.8) Xe 0 atvongly - in 'Lz(Z')
° )y A . &Ly £y
On the other hand,p)\ ig the limit in the sense of (4227,

(4.25),(4.27) of a sequence {p)\’éb C_W(Q)' satisfying
: : (o) ‘ =
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(4.8) and (4.9) where h = 0 and ‘fl,\f ‘are defined as above.
Then it follows by estimates (4.20),(4.21) that '
(7.9) lp, ()1 ¥ "
by O 20y * 1B 200, mt )

- e, )¢l cc 4 v¢lon)

12(0,T;E (1))
'and:by (4.27)

(7.10) |\ p,\i nM(Zj) ¢o 1=1,25 A>o.

Hence %p,.\s is strongly compact in LZ(O,T;E (.Q_))ﬂ CElo, 7
H"l(_ﬂ_')) § OE J ¢ 1.Thus thare exists a function‘p guch that

(1.11) p, —> » strongly in 12(0,1;5(2)) N o [o,T sE7 D))
' Thguy ity T
. and weakly in L°(0,T;H™({1))
(7T.12) r}‘i = r‘i weak star in M( Zi); i= Ly 2

By (7.9) and (7.11) it follows that

Crvl3) P)\ (t) —> p(t) weakly in L2(__Q.) for every t € Co,)

Letting N—>0 in (7.3) we see that p is the solution to

(7ald) 4 g~ Ap = 0 "in Q
,§—EV+'A = 0 in Zi"lfl'z
3

] 1 ) :
where p;. € L2(O,'T;H/2( rl)) is the restriction of p to Zl'
Since the range of B; is dense in Lo Zy) we may infer by

(7015) that pl:‘ O ' iie.,



Sedinhat
(7016) P-= 0 8.0 Qn Zlo
Next it follows by (7.11),(7.12) and (7.16) that
PHOve) = o
for all Y0 E Cl(@) such that Y0 (X,0) = W@(X,T) = 0 for xe ()
and oG, ) =0 for (G, L) e ‘21-2 .Hence 'Vl il ol
e ol '

We have therefdre proved that

By oo Ap. = 0 in Q

7 R oM

Q;S =0 in ‘l-x“ Jo,z L
p::o in r1X]OsT E‘. N

Since m(l_l) > 0 it follows .by a result due to Mizohata already
quoted fhat'p = 0.Thus the conclusions of Theorem 3 follow: by
(725)5(T2L) amd (Toh3Ye *
REMARK . The sbove problem has been studied by afifse st methads
by Henry [97] who has shown in particular that if CFé =0 and.‘
CFl is continuous then (7.1) is stréngly controlable in Lzéfl).

It is tempting to hope that the same might be true under present

assumptions,
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