INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250-3638

ON PERIODIC DISTRIBUTION GROUPS

by

Ioana CIORANESCU

PREPRINT SERIES IN MATHEMATICS
No.58/1980

hea 17002

BUCURESTI

PROTECTIVE NATIONAL PROTECTION OF THE STREET OF THE STREET

JUTUTITRAD BO AOITAMBTAN

SEAS-BESO BEST

ON PERIODIC DISTRIBUTION GROUPS by

Ioana CIORANESCU*)

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bdul Pacii 220,79622 Bucharest, Romania

ON PENIODIC DISTRIBUTION GROUP:

by

Ioana CIORANESCU*)

^{**} Department of Mathematics, The Nathonal Institute for Scientific and Technical Chention, Edul Pacif 220,79622 Buchanest, Romania

ON PERIODIC DISTRIBUTION GROUPS

Ioana Ciorănescu

We give a spectral characterization of the infinitesimal generator of a periodic distribution group generalizing some results of Hram Bart [1] on periodic groups of class (C_0).

1. INTRODUCTION

Let X be a Banach space and A a closed and densely defined operator on X; then A is said to be well-posed for the abstract Cauchy problem in the sense of distributions if there exists $E \in L(\mathcal{D}; L(X))$ satisfying the following conditions:

- (i) supp € [0,+);
- (ii) $E'-AE=\delta \otimes I_{x}$; $E'-EA=\delta \otimes I_{D(A)}$

where $\mathcal D$ is the test functions space of L. Schwartz, E' is the derivative of E, I and ID(A) are the identities on X and on the domain D(A) of A, respectively.

Following J.L. Lions we shall call E in the above definition a distribution semi-group and A its infinitesimal generator [8].

An L(X)-valued distribution E is called a distribution group if

- (a) $E(\phi * \psi) = E(\phi) E(\psi)$, for every $\phi, \psi \in \mathcal{D}$;
- (b) $E=E_++E_-$ where E_+ and \check{E}_- are distribution semigroups (where \check{E} is defined by $\check{E}(\varphi)=E(\check{\varphi})$, $\varphi \in \mathcal{D}$ and $\check{\varphi}(t)=\varphi(-t)$).

A distribution group E is called tempered if E_+ , $E \in L(S; L(X))$, S being the space of rapidly decreasing test functions.

By a result of Lions [8] the generator A of a tempered distribution group has purely imaginary spectrum; a complete characterization of the generator of a tempered distribution group

was given in [4], namely we have:

THEOREM 1.1. A densely defined and closed operator A with purely imaginary spectrum is the generator of a tempered distribution group if and only if there are $n_0, m_0 \in \mathbb{N}$ such that $n_0 = m_0$ for $Re\lambda \neq 0$.

Moreover we have

(1.2)
$$R(\lambda;A) = \begin{cases} E_{+}(e^{-\lambda t}) & \text{for } Re\lambda > 0 \\ -E_{-}(e^{-\lambda t}) & \text{for } Re\lambda < 0 \end{cases}$$

. and

(1.3)
$$E(\varphi) = \frac{1}{2\pi} \lim_{\varepsilon \to 0_{+}} \int_{-\infty}^{+\infty} [R(\varepsilon + it; A) - R(-\varepsilon + it; A)] \widehat{\varphi}(t) dt, \qquad \varphi \in \mathcal{D} \quad (where \ \widehat{\varphi}(t) = \int_{-\infty}^{+\infty} e^{ist} \varphi(s) ds).$$

Let E be a tempered distribution group and consider $\sigma = \{E(\varphi); \varphi \in \mathcal{D}\}$ and $R = \{R(\lambda; A); Re\lambda \neq 0\}$.

Denoting by $B^{\mathbb{C}}$ the commutant of a set $B\subset L(X)$ we can easily get from (1.2) and (1.3) that

(1.4)
$$\sigma^{C} = R^{C}$$
 and $\sigma^{CC} = R^{CC}$.

Let us put $B = \sigma^{CC} = R^{CC}$; then B is a strongly closed subalgebra of L(X) containing the identity, $B \supset \sigma \cup R$ and the spectrum of each $B \in B$ with respect to B coincides with $\sigma(B)$.

Let $M=\{m\}$ be the set of maximal ideals of B and $B\to B(m)$ the Gelfand representation of B in the space C(M) of continuous functions on M; then for $B \in B$, $\sigma(B) = B(M) = \{B(m); m \in M\}$.

As $B \subset R$, by a well-known result [7], there are M_1 , $M_2 \subset M$, such that

 $M=M_1UM_2$, $M_1\Omega M_2=\emptyset$ and a function $\alpha \in C(M)$ such that

(1.5)
$$R(\lambda;A)(m) = \begin{cases} (\lambda - \alpha(m))^{-1}, & m \in M_1 \\ 0, & m \in M_2 \end{cases}$$
 Re $\lambda \neq 0$ and $\sigma(\lambda) = \alpha(M_1)$.

Let us put $A_n = nAR(n;A)$, $n \in \mathbb{N}$; there $A_n \in L(X)$, $\lim_{n \to \infty} R(\lambda;A_n) = n + \infty$

 $R(\lambda;A)$ and by a result of H.Fattorini [5]:

(1.6)
$$E(\varphi) = \lim_{n \to +\infty} \int_{-\infty}^{+\infty} e^{tA} p(t) dt, \qquad \varphi \in \mathcal{D}.$$

Then putting $\alpha_n(m) = A_n(m)$, $m \in M$, it is clear by (1.5) that $\alpha_n(m) \to \alpha(m)$ ($n \to \infty$) uniformly on M_1 and using (1.6) we finally get

(1.7)
$$E(\varphi)(m) = \int_{-\infty}^{+\infty} e^{t\alpha(m)} \varphi(t) dt, \qquad \varphi \in \mathcal{D}, \quad m \in M_1.$$

Let us remark that the relation (1.7) is valid for arbitrary distribution semi-groups (see [2]).

2. THE SPECTRAL CHARACTERIZATION OF PERIODIC DISTRIBUTION GROUPS

Let X be a Banach space and E an L(X)-valued distribution; we say that E is:

- (a) periodic if $E(\phi)=E(\tau_{T}\phi)$, for some T>0 and every $\phi \in \mathcal{D}$, where $\tau_{T}\phi$ (t)= ϕ (t-T);
- (B) strongly periodic if for every xeX, the X-valued distribution $E_{\mathbf{x}}$ defined by $E_{\mathbf{x}}(\varphi) = E(\varphi)\mathbf{x}$, $\varphi \in \mathcal{D}$, is periodic;
- (γ) weakly periodic if for every $x^* \in X^*$ and $x \in X$, the scalar distribution $x^* E x$ defined by $x^* E x(\varphi) = x^* E(\varphi) x$, $\varphi \in \mathcal{D}$, is periodic.

Let us denote by $P_{\rm T}$ the space of infinitely differentiable functions of period T>0+and let us call a T-unitary function a function $\xi \in \mathcal{D}$ such that $\Sigma \xi$ (t-nT)=1, teR. Then each periodic distribution E can be extended to the space $P_{\rm T}$ by the formula E(0)==E($\xi \theta$), $\theta \in P_{\rm T}$, independently of the unitary function ξ (see [9]).

We have the following essential result which can be proved exactly as in the scalar case [9]:

 $E \in L(D; L(X))$ is periodic of period T>0 if and only if

(2.1)
$$E = \sum_{-\infty}^{+\infty} A_n e^{in\omega t}, \quad \omega = \frac{2\pi}{T}$$

where the convergence holds in L(S;L(X)) and

(2.2)
$$A_n = \frac{1}{T} E(e^{-in\omega t}), \quad n \in \mathbb{Z}$$

are in L(X) such that the sequence $\{||A_n||\}_{n\in\mathbb{Z}}$ is of slow growth

(that is $||A_n|| \le \text{const.} |n|^k$, for a given $k \in \mathbb{N}$).

The series (2.1) is called the Fourier series of E and the operators A_n given by (2.2) are called the Fourier coefficients of E.

It is clear that each periodic vector-valued distribution is tempered.

In the case of L(X)-valued functions the above three notions of periodicity are equivalent, as was proved in [1], Theorem 2.1. Using the Fourier expansion (2.1) and a similar argument as in [1], we obtain the following result:

PROPOSITION 2.1. Let $E_{\epsilon}L(D;L(X))$; then the following three statements are equivalent:

- (a) E is periodic;
- (B) E is strongly periodic;
 - (Y) E is weakly periodic.

Further we restrict ourselves for simplicity to the case when E has period 2π . Our main result is:

THEOREM 2.2. A closed and densely defined operator A is the generator of a periodic distribution group of period 2π if and only if

a) $\sigma(A) \subset iZ$ and consists of poles of order $\leq m_0$ of the resolvent which satisfy $||R(\lambda;A)|| \leq const. (1+|\lambda|)^0 , \qquad Re\lambda > \epsilon_0$

for some $n_0, m_0 \in \mathbb{N}, \epsilon > 0$.

b) the set of eigenvectors of A spans a dense subspace in X.

PROOF. Necessity. Let A be the generator of the periodic distribution group E, of period 2π . Then using (1.7) and the periodicity of E, we have:

(2.3) $\int_{-\infty}^{+\infty} e^{t\alpha (m)} \varphi(t) dt = \int_{-\infty}^{+\infty} e^{(t+2\pi)\alpha (m)} \varphi(t) dt, \qquad \varphi \in \mathcal{D} \quad , \quad m \in M_1$

For each $m \in M$ there is $\phi_m \in \mathcal{D}$ with $\int_{-\infty}^{\infty} e^{t\alpha(m)} \phi(t) dt \neq 0$ such that (2.3) gives $e^{2\pi\alpha(m)} = 1$, $\forall m \in M_1$, that is $\alpha(m) = ki$, $k \in \mathbb{Z}$, $m \in M_1$. As $\sigma(A) = \alpha(M_1)$, the first part from (a) results. The

second part is a consequence of Theorem 1.1.

In order to prove the necessity of (b), let us recall the following result of D.Fujiwara [6]:

If A is the generator of a tempered distribution group E then denoting by $D_{\infty} = \bigcap_{n=0}^{\infty} D(A^n)$, endowed with the Fréchet topology

given by the norms $\{||\mathbf{A}^n\mathbf{x}||\}_{n\in\mathbb{N}}$, the restriction AID_∞ generates an equi-continuous group $\{T_t\}_{t\in R}$ in $L(D_\infty)$; moreover, we have

$$E(\varphi) = \int_{\infty}^{\infty} \varphi(t) T_{t} x dt, \qquad \varphi \in \mathcal{D}, \quad x \in D_{\infty}.$$

Then for $\lambda \in C$ and $x \in D_{\infty}$ we put (as in [1]):

$$B_{\lambda,t}x=e^{\lambda t}\int_{0}^{t}e^{-\lambda s}T_{s}xds.$$

A simple computation gives

$$(\lambda - A) B_{\lambda,t} x = e^{\lambda t} x - T_t x$$

that is

$$(\lambda - A) B_{\lambda, 2\pi} x = (e^{2\pi \lambda} - 1) x, \qquad x \in D_{\infty}$$

Hence for $x \in D_{\infty}$ and λ outside $i \not \ \ \$, we have

(2.5)
$$R(\lambda; A) x=B_{\lambda, 2\pi}/e^{2\pi\lambda}-1$$
.

The above relation shows that on D_{∞} the resolvent has simple poles at each $\lambda=mi$, $m\epsilon Z$. For $m\epsilon Z$, let P_m be the residue of $R(\lambda;A)$ at mi; it is well known that P_m is a non-zero projection called the spectral projection associated with mi and A.

From (2.5) we immediately get

$$P_{m} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-mit} T_{t} x dt, \qquad x \in D_{\infty}$$

Let
$$\xi$$
 be a 2π -unitary function; then:
$$P_{m}x = \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{-\infty}^{+\infty} (t-2n\pi) e^{-mit} T_{t}xdt = \frac{1}{2\pi} \sum_{-\infty}^{+\infty} \int_{n}^{n+1} \xi(s) e^{-mis} T_{s}xds = \frac{1}{2\pi} \sum_{-\infty}^{+\infty} \int_{n}^{+\infty} \xi(s) e^{-mis} T_{s}xds = \frac{1}{2\pi} \sum_{-\infty}^{+\infty} \xi(s) e^{-mis} T_{s}xds = \frac{1}{2\pi} \sum_{-\infty}^{+$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \xi(s) e^{-mis} T_{s} x ds, \qquad x \epsilon D_{\infty},$$

$$P_m x = E(e^{-mit}) x$$
, $x \in D_{\infty}$.

But D is dense in X, hence

(2.6)
$$P_m = E(e^{-imt})$$
.

Moreover, for each xED ...

$$T_t \underset{m}{\overset{x=\sum e^{imt}P_m x,}{\text{teR}}}$$

Taking $t=2\pi$, we get:

(2.7)
$$x=\sum P_{m} x$$
, $x \in D_{\infty}$

Let us further denote by R(B), respectively N(B) the image, respectively the null space of the operator B. Then it is clear that $R(P_m|D_\infty)=R(P_m)$ and $N(mi-A)\subset D_\infty$, \forall meZ. Thus a simple argument shows that $R(P_m)=N(mi-A)$ and so part (b) of the necessity follows from (2.7).

Sufficiency. By (a) it is clear that A generates a tempered distribution group E. Take $x \in N(mi-A)$, $m \in \mathbb{Z}$; then $x \in D_{\infty}$ and clearly $T_+ x = e^{mit} x$. By (2.4), we have:

$$E(\varphi) = \int_{-\infty}^{\infty} e^{imt} \varphi(t) \times dt$$
, $\varphi \in \mathcal{D}$, $\chi \in \mathbb{N} (mi-A)$.

This means that Ex is 2π -periodic for $x \in \bigcup_{m \in 7} N(mi-A)$ and condition

(b) implies the desired conclusion.

(i) P_{m} is a projection and coincide with the residue of $R(\lambda;A)$ at the point mi ;

(ii)
$$\sum_{m=-\infty}^{\infty} P_m x = x$$
, $\forall x \in D_{\infty}$.

REMARK. The above theorem and corollary generalize Theorem 3.1 from [1]: in the case of periodic groups of class (C_0) , $\sigma(A)$ consists of simple poles of $R(\lambda;A)$ at $\lambda=mi$, $m\epsilon$ and $\sum_{m=-\infty}^{\infty} P_m x=x$

for all $x \in D(A)$, P_m being the residue of $R(\lambda;A)$ at mi.

3. AN EXEMPLE OF A PERIODIC DISTRIBUTION GROUP

Let $\sigma(t) = \frac{3\pi - t}{2}$ for $0 \le t < 2\pi$ and extended with period 2π on all R; then

- 1) $\sigma(t)>0$, $\forall t \in \mathbb{R}$
- 2) σ is continuous on each interval $(2n\pi, 2(n+1)\pi)$
- 3) σεL[∞](R)
- 4) the function $1/\sigma$ is periodic and has the same above three properties.

Let $\mathcal{C}_{2\pi}$ be the Banach space of all bounded functions on \mathbb{R} , which are periodic with period 2π and continuous on each interval of the form $(2n\pi$, $2(n+1)\pi$), $n\epsilon \mathbb{Z}$, endowed with the usual supremum norm. We have

PROPOSITION 3.1. The map defined by

(3.1)
$$E(\varphi) f = \frac{\varphi * \sigma f}{\sigma}$$
, $\varphi \in \mathcal{D}$, $f \in \mathcal{C}_{2\pi}$

is a periodic distribution group in $L(C_{2\pi})$ with generator

(3.2)
$$\begin{cases} Af = -\frac{d}{dt}(\sigma f)/\sigma \\ D(A) = \{f \in C_{2\pi}, d/dt(\sigma f) \in C_{2\pi}\}. \end{cases}$$

PROOF. One can easily verify that $E \in L(\mathcal{D}; L(\mathcal{C}_{2\pi}))$ and that E is periodic; moreover $E(\phi * \psi) = E(\phi) E(\psi)$, ϕ , $\psi \in \mathcal{D}$. For $\phi \in \mathcal{D}$, let us denote by

$$\varphi_{+}(t) = \begin{cases} \varphi(t) & t > 0 \\ 0 & t < 0 \end{cases} \quad \text{and} \quad \varphi_{-}(t) = \begin{cases} 0 & t > 0 \\ \varphi(t) & t < 0 \end{cases}.$$

Then putting $E_{+}(\varphi) f = (\varphi_{+} * \sigma f) / \sigma$ and

$$E_{\phi} = (\phi) = (\phi - *\sigma f) / \sigma$$
 for $\phi \in \mathcal{D}$, $f \in C_{2\pi}$, $E = E_{\phi} + E_{\phi}$.

a simple computation shows that E_+ and \check{E}_- are distribution semi-groups with generator A, respectively -A, defined by (3.2) (let us remark that A is closed and D(A) is dense in $C_{2\pi}$).

Let us put:

(3.3)
$$(R(\lambda;A)f)(s) = \frac{1}{\sigma(s)} \int_0^{+\infty} e^{-\lambda t} \sigma(s-t) f(s-t) dt, \quad Re\lambda > 0,$$

and let us estimate the right hand side of (3.3).

We recall that for $0 < t < 2\pi$ holds

(3.4)
$$\sigma(\pi) = \pi + \sin t + \frac{\sin 2t}{2} + \frac{\sin 3t}{3} + \cdots,$$

and that the equality (3.4) is valid a.e. on \mathbb{R} and the convergence holds in \mathbb{D}' .

A simple computation gives

$$\int_{0}^{+\infty} e^{-\lambda t} \sin n(s-t) dt = \frac{\lambda \sin ns - n\cos ns}{\lambda^{2} + n^{2}}$$

and taking into account the positivity of σ and the relation (3.4), we obtain, for Re $\lambda > 0$

$$||R(\lambda;A)f|| \le \text{const.} \frac{|\lambda|+1}{\text{Re}\lambda^2} ||f||.$$

(We used the formula
$$\sum_{n=1}^{\infty} \frac{\cos ns_{-\pi}}{\alpha^{2}+n^{2}} \frac{\cosh \alpha(\pi-s)}{\sinh \alpha\pi} - \frac{1}{2\alpha^{2}}, \ 0 < s < 2\pi).$$

A similar estimation holds for Re $\lambda<0$ and this implies that the distribution group E is not usual, that is it does not coincide with a group of continuous operators in $L(\mathcal{C}_{2\pi})$. This follows also from the fact that the group $\{T_t\}_{t\in\mathbb{R}}$ generated by A on D_{∞} is given by:

(3.5)
$$(T_tf)(s) = \frac{\sigma(s-t)f(s-t)}{\sigma(s)}, \quad f \in C_{2\pi}$$

and it is clear that $D(T_t) \neq C_{2\pi}$.

Let us finally remark that choosing the function σ in a convenient way, many other periodic distribution groups can be constructed as above; by (3.5), it is clear that they are generalizing the group of translations. In a similar way general tempered distribution semi-groups in $L(L^2)$ were constructed in [3].

REFERENCES

- 1. Bart, H.: Periodic strongly continuous semigroups, Ann. Mat. Pura Appl., 115 (1977), 311-318.
- 2. Ciorănescu, I.: Teoreme de reprezentare a unor clase de distribuții vectoriale, Stud. Cerc. Mat. 24 (1972), 687-728.
- 3. Ciorănescu, I.: Un exemplu de semigrup distribuție, Stud. Cerc. Mat. 26 (1974), 357-365.
- 4. Ciorănescu, I.: Analytic generator and spectral subspaces

- for tempered distribution groups, An. Univ. Craiova 5 (1977), 11-26.
- 5. Fattorini, H.: A representation theorem for distribution semi-groups, J. Differential Equations 5 (1969), 72-105.
- 6. Fujiwara, D.: A characterization of exponential distribution semi-groups, J. Math. Soc. Japan 18 (1966), 267-275.
- 7. Hille, E.; Phillips, R.: Functional analysis and semi-group, Amer. Math. Soc. Coll. Publ. XXXI, 1957.
- 8. Lions, J.L.: Les semi-groupes distributions, Portugal Math. 19 (1960), 141-164.
- 9. Zemanian, A.H.: Distribution theory and transform analysis, Mc.Grow-Hill Book Comp., 1965.

Ioana Ciorănescu
Department of Mathematics,
INCREST,
Bdul Păcii 220, 79622 Bucharest,
Romania.

- for tempered distribution groups, An. Univ. Craiova 5 (1977), 11-26,
 - 5. Fattorini, H.: A representation theorem for distribution semi-groups, J. Fiffetential Equations S (1969), 72-105.
- Fujiwara, D.: A characterization of exponencial distribution semi-groups, J. Math. Sec. Japan 18 (1966), 267-275.
- 7. Hille, E.; Phillips, P.; Funckinnal analysis and semi-group Amer. Math. Soc. Coll. Publ. XXXI, 1957.
- 8. Lions, J.L.: Les semi-groupes distributions, Pontugal Math. 19 (1960), 141-164.
- 9. Zomanian, A.H.: Distribution theory and transform analysis, Mc. Grow-Hill Book Comp., 1965.

Toana Cioranescu Department of Mathematics, INCREST, BdUl Paoll 220, 78622 Bucharest