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- THE KUNNETH FORMULA FOR HILBERT COMPLEXES
; -

~Corina GROSU and F.-H. VASILESCU

1. INTRODUCTION. Let x SHA ¥ be complex Hilbert spdces. We
-denote by C(X,Y) the set of all closed lineér operatdrs, defined
‘on linear submani%olds on X, with values in Y. Let B(X,Y) be the‘
subset of those operators from C(X,Y) which are everywhere
defined, hence continuous. We write simply C(X) fo; C(X,X) and

B(X) for B(X,X). If SEC(X,Y), let D(S), N(S) and R(S) be respec—

tively the domain of definition, the null-space and the range

of S. We need also the notion of reduced minimum modulus v (S)

"of S [5], which is given by the formula
y(S)=sup {y20, 11Sxl12yl1(1-By g )kL1, x€D(S)],

where PN(S).iS the orthogonal projection of X onto N(S), provided

that S#0. When S<0 then one defines y(S)=». It is easily seen

Ehati v (S)>0 if and only f R(S) is closed and in this. case y(S)—1

is the norm of the operator Sx - (1-P Jx Efreom R(S) dnmte X.

N (S)

Consider now a (cochain) complex of Hilbert spaces f12]

(X,q)=(Xp,ap)p€Z, where Z is the ring of integefs,xp is a Hilbert
space, ap§C(Xp,Xp+1) and R(apﬁ:N(ap+1) for all p€Z. Let us denote

by HY(X,0)}

pez the cohomology of the complex (X,a), i.e. .

nREs e DR ) sipeZs

and by dim Hp(X,a)-the algebraic dimension of the linear space -



HP(x,q) . v

P ) '
| : P€Z
~is said to be Fredholm f12)  if4ne {y(ap); p€Z} >0, dimeOQa)<w

We recall that a complex of Hilbert spaces (X,a)=(Xp,a

for each péZ and Hp(x,a)#o only for a finite number of indices.

In this case we may define the index of (X,a) by the formula

N ol Sgsae e 1P e Rk
pE€Z s

and the number ind (X,a), which is in fact the Euler characteris-

tic of the complex (X,q), is invariantrunder small or compact

perturbations (see [12] for details);

There is a more general concept of complex.of Hilbert spaces,

called semi - Fredholm, for which the index, éossibly infinite,

still makes sense (see [12] for a ﬁrecise definitidn). We shall
work in the last sectioﬁ with a particular semi-Fredholm complex
of Hilbert spaces which is not Fredholm.

" We note ﬁhat for a Fredholm complex (X,d) the quotient
space Hp(X,a) is isomorphic to the subspace N(dp) C)R(ap—l) for
vail p€Z, éo that Hp(X,a) will be given this meaniné in the sequel,
It is easily seen that there is no esseﬁtial loss of generality
in assuming that D(dp) is dense in XP for evefy p€Z so that we

having this

shall work only with com?lexes (X,a)=(Xp,ap)pez

property.

The aim of this work is to considef tensor broducts of
Fredholm complexes of Hilbert spacesbénd Lo prove a variant et
the Kﬁnneth formulaf[é] for. them. In order to state the main

result we need some more notations and definitions. For any pair




bf Hilbert spaces X and Y we denote by X @ Y the completion,
with respect to the canonical Hilbert norm, of the algebraic .
tensor product X @ Y. Take now two complexes of Hilbert spaces

(x,a)=(xp,ap)’pez and (v,8)=(¥9,s9) By analogy with the

g€z’

‘élgebraic case [6] we shall.define the tensorgproduct'(X1§‘Y,

o ® B) of the complexes (X,c) and (Y,B) as the complex of Hilbert

i r)

spaces (Z,)2)=(Z2,2A e where

z'= @ (P & 9
ptq=r

and A¥ is given, roughly speaking, by the formula

AT ID(®) @ p(8¥H)=(P @ 1q)+<—1)p(1p ® 89

(see the next section for a precise definition) for all Py g and

r in Z, ptg=r, where 1P and 1q are the identities on xP and YP,
respectively.

The main result ‘of the paper is the following:

THEOREM. Consider two Fredholm complexes of Hilbert spaces

(X,e) and (Y,B8). Then their tensor product (X ®@ Y, a ® B) is

Fredholm and has the properties:

 (1)  Hx ey oo~ O Pixe o1 x.ery,

ptg=r,

for all r€z (the tensor Kuinneth formula);
(2) ind (X ® Y, o @ 8)=ind (X,a). ind (¥,;B)..

The next section contains the auxiliary results needed for

the proof of Theorem as well as the proof itself.



The last section contains th applications. The ftirst one
is a consequencé of - our results applied to the teﬁsor products ()i
: fcommuting systems of ‘linear closed operators. The second applica-
tion is the sblutidn-of the 3-problem for vector - vélued squére
integrable exterior forms on strongly pseudoconvex domains, using‘

- some well-known results in the scalar case (4].

.2. PROOF OF THE MAIN RESULT. We obtéin our Theorem, stated
in the Introduction, as a consequence of some auxiliary results.
- The first result transforms some information connected with a
“complex of Hilbert.spaces into an equivalent property valid for
a certain operator (sce [11] for a similar but not identical

procedure) .

2.1. PROPOSITION. Let (X,a)=(Xp,ap)p

¢z be a complex of

Hilbert spaces. Then there exist a Hilbert space Ha and a densely

defined operator TGEC(HQ) such that R(TG)C:N(Ta), with the fol-

lowing properties:

1) ya:=inf {y(ap); pEZ}=y(Ta); in particular, y&>0 IEF

R(Ta) is closed;

(2) v, >0 aid BP (% ,a) =0 for &1l p LEE R(T T 3

(3) (X,6) is Fredholm iff Ta+T; is Fredholm.

Proof. We define the Hilbert space

i H =@ x
p€Z
‘and the operator T, on H by the relation




ot 55 6t o 4 A e 14

T C@x )= @)a
p€Z P peL

where

(2.1) C)x GH ek €D(apf, €2, 2 Ilmpx’112<°° 5
pGZ p pEZ p

’It is easily seen that Ta Isoa densély defined closed operator ’

whose domain of definition is given by (2.1). It is also clear

that

(252) N(T )= @ N(aP)
p€Z

and that R(T )&EN(T ) .
: : o a

Assume now e >0. In this case we have the equality .

2.3 mwk®Rm%

pEZ
Plainly, R(T ) is contained in ()Izhz) Conversely, take
p€z :
®y oy € ()iR(ap), therefore y apx , for all p. As we may
pE€Z P p€Z : P p :

take xpéN(ap) , we have le IISY(ap)— hence

1 :

L s b
D P v e 0
pez P péZ - pez P

o) ()}{ED(T ) and y(T )>y :
péz

Supposing R(Ta) closed and taking y ER(ap) we can find

ptl
x €D (aP) with v . .=oPx and 11x_I1<sy(T ) Y11y _..11; as p€zZ is
P oG gy pEF
arbitrary, we infer YaZY(Ta)' Note that if either Y, ©OF Y(Ta)
is null, the above argument shows that the other has to be null
too, consequently T —y(T ). :

- If Y, >0 and HP (X, a)=0 for all p, then, by (2.2) and (2:3)

wé obtain that R(Ta)=N(Ta). Conversely, if R(Ta)=N(Ta) then



vy(Taﬁ>0, which implies (2.3) by the.previous afgument, whendé
pr(x,a)=o for all p¢Z, concluding the proof of the second asser-—
-tion. ’ |

VThe,operator_Aa=Ta+T: is self-adjoint [10] and satisfies

St ¥
R(Aa)—R(Ta) @® R(T) .

Note that R(T,) isiclosed LEf R(A,) is closed; on the other hand

one can see.that . ¢ :

N(T +T*)=N(T )AN(T*)= @ N(P)AN (P 1) *) = @ m(P) OrREE™Y),
o o o (63
p€Z : p€Z

From these facts it is plain now that (X, a) is EFredhelmsift Aa

is Fredholm, which completes the proof.

2.2. COROLLARY. A complex of Hilbert spaces (X,a) is

Fredholm and exact iff (Ta+T:)—1£B(Ha), where Ha and Ta are given

by - Prepositien 2.1,

Proof. We have R(Tak:N(Ta). The equality holds iff

(Ta+T;)-1€B(Ha), as shown in [10, Lemma 3.1].

2.3. Remark. The construction from Proposition 2.1 does ¢

ptl

not yield a bounded operator T, €ven in case oPeB (xP,xPTY), for

every p€Z, unless sup llapll<é. It is therefore natural, from
our standpoint, to work only with closed operators.
Let X

Y Y., be Hilbert spaces, Sl€C(Xl,Yl) and

17 B Yy Yy

S2€C(X2,¥2) be densely defined operators. Then the operator
Sl ® 82 , defined on D(Sl) ® D(Sl) , 1s closable (as a consequence
af the fact that'SI(g S; is defined on the dense subspace

'D(SI)(@ D(SE), S§ being the adjoint of Sj , j=1,2); we denote




S, X 5, its canoniéal closure (see also [8]).

2.4. LEMMA. Consider two Hilbertspaces X, Y and take

S€C(X) densely defined, with R(S) closed. Then (S ® 1,) =53 Lo

R(S ® 1,)=R(S) ® Y,N(S® 1,)=N(S) ® Y and (S ® 1Y)=Y(S)_, where

lY is the idehtity on Y.

. Proof. The equallty (5@ L,)*=s*B 1, follows from'[8
Chapt. 9] (and lt is not connected with the assumptlon that R(S)
be closed).

‘The inclusion N(S) ® YeN(S & lY) is obvious. Conversely,
if £¢N(S ® lY) we can find a sequence &jkeD(S) QY such that

E i and (S ® lY)‘Ek - 0 as k - ». Moreover, .we may represent

E,. = X. ® Yo ¢ k€z v

k- jEI J

with {yj}jeI an orthonormal system, Ik being a finite family
k

of indices. Write then x =x’+x} with x!eN(s) and xSEN(S)J’,hence

llxgllsv(s)'lxngjll, for all JeI. Set

and note that
= - 5
epii?= = it iPsy )T 2 Hisg 1= s) TS @ 1)l
o j : 3
jéIk g jEIk :

thererore &8 » 0 as By showing that £€N(S) @ Y.

" Let us prove now that R(S ® 1Y) is clos'eci._ For, consider!:

=2 ij ® Y3 , with I finite and {yj}jéI an orthonormal system.
jéI - o i D



: Then, as abevey i f g— X, Q) y wisthe s (N( YL
jEI J J

we have

llEllsy(Sflllnl]. In particulaxr, RIS @»1Y) is closed and
vy (s ® 1Y)2y(S) < In fact, this is actually an equality. Indeed,

' if n¥Sx @y with [lyll=1 then £=x @ y€EN(S ) lY)'L when xEN(S)‘Land

HixlI=1ENSY (S B 1) T linll=y (S § e

e

vwhence vi(8) =vyS ® % )

Finally, from these arguments we infer that

: P~ —_ L =
R(S @ 1,)=N(S*® 1, =R(S) ® Y,

which concludes the proof of the lemma.
2.5. Remark. Lemma 2.4 proVides a different proof for
Theorem 2.7 of ﬁo], having a less specific charaCter.

2.6. LEMMA . Tet (X a)=(x",a") and (Y,8)=(Y%,3s9)

ptZ qg¢€?Z
be complexes of Hilbert spaces and denote bv {Ha,Ta}, {HB,TB} the

Hilbert spaces and the operators given by Proposition 2.1 for

(X,0) and'(Y,B)-resoectively. Define then raéB(Ha) by the relation

(2.4) o D
o p€Z P p€Z p
= . '*v"' P * : . % G oo .
If A vk (Ta+Ta) ® 1S+Ta @)(T8+TB) then Aa,B 1s self-adijjeint in

Hd ® H, and satisfies

2 % - 2
(2.5) !mmBUI—H(ﬂuﬂh)®l)EH-HI ®(T¥%HEH

for every g¢D(A ), where 1, is the identity on He
’ -
Proof. It is known that Aa=Ta+T; is self-adjoint [10,

Lemma 2.4] hence Ad éﬁle is self-adjoint, by Lemma 2.4. Similarly

S e A R S A ARG R B N A



S ; SRy e _ :
T, (%) AB is self-adjoint, where AB TB TB Le?t E,,a ancil EB' be the

spectral measures BT of Aa and AB , respectively. The_proof of

the lemma will be obtained in several steps.

1°. If ¢ is any bounded Borel set in R and gGHa ® HB- then

gg:(Ea(o) ® EB(o))géD(Aa,B) . Indeed, the operators AaEa.(o) ‘and

B B
(AaEa(c) @E8(0)+1aEa(c) @AB‘ES(O))g ;

‘A E (o) are bounded [3] and we infer that (A, ® Lt R Ag)E =

2°. If we fix geHa'ﬁ HB then for any e>0 there exists a

bounded Borel set s <R large enough sd:ch that H&—EUI |<e. Indeed,
G - Ea(a)'® 1g Sl L ® Es(o) are two commuting spectral -
measures in Ha 3 HB' therefore their product j_s a spectral mea-
sure on R X R [3] In particular, there exists a Borel set ¢ with
the required property. A

O =
e I f ceD (A Je and gk—gc

(1,8‘ k
[-x,k], k natural, then B > £ and B B

- where}_ck is the interval
Aa,sg as K> o rin=

deed, + £ by 2'0." ‘Then we have (Aa ® 18) (Ea(ck) ® 18)5 >

k
ol X 1,)E, since o » E, (o) R 1, is the spectral measure of
Aa (%) lB. Analogously, ‘(Ta ® AB) (la ® EB(ck))g > (ra_® AB)E ;

gp 1 ® EB(o) being the spectral measure of 1 ® By Noticing
;hat a, @ 16) (E,(0,) @ (Es(ck)—ls))§=

- =(E, (o) @ 1,) (1, @ (EB(Gk)-lB)) (A, ®1)¢E - and

('ra ® AB) ((Ea(ck?-la) ® EB (ok)).g= e

e ® ES'(Gk)-) ((E (0, )-1 ) & 1p) (1, ® Ag)E

we infer easily that Aa'“ng.—> Aa»,BE- as k > = .,

_40. Let us show now that (2.5) holds. Indeed, if gED(Aa )



and ¢cR is bounded, then we have : e ::

2 — 1 T = :
b gegt s B @I S EICE, @ Sl
G N g e e B e
i e o B g a g g
: — =" . == - = (o)
s1n¢e (ra ® AB)Eo € D(Aa ® 16) s (Aa e 18)50 ED(rq@ AB) from il
~and (Aara ® AB)gG+(raAa @AB)eEo:O by the property/Aara-kraAa:O.

The relation (2.5) is then obtained by applying e

5°. The operator Aa 8 is closed. Indeed, this is a simple
7

consequence of (2.5).

O

. We have only to show that a is self-adjoint. Indeed,

2

6
(a, ®1,)

a
-adjoint too. Moreover, the spectral measure of Ai:éils commutes

o,B

=A§ ® 1, is self-adjoint and (r @AB)2=1 ® AZ is self-
; =t 2 P =)
with the spectral measure of la ®Ag , therefore A & 18+la ®A8

B.RT o R

.n CD(A; 8) and c=A: dlsuch that the pair{n,z}be orthogonal on
5 7 7

is also self-adjoint [7]. Plainly we have A Taking

the graph of A ., we obtain that cED(A; B) and (1+A;2 =0
7 = 4

/B B

Notice that

2

vAu,Bgo

= =
=2y ® 108, + (1, B AE,

QRN

for every bounded ocR, therefore A SDAi ® 18+la ® A‘s . Notice

: 14

‘that (A* ) 2 (a?
a,B a,B

positive, hence n=0, implying Aa,B:A;,B'

g 2 —= = 2 2 = e
) C’Au ® lB+la ®AB and Aa ® 18+ lcx ®AB is

2.7. LEMMA. With the conditions of Lemma 2.6, i_f_'Ta S

s is

=T @ lB+ Ta® TB, is defined on D(Ta) ®D(TB) thent T

2

a




e R

closable in e @,-HB Feaiiie canonical closure T ® Bsatisfies

k:N(Ta —46) and one has the equality

R(Ta &

® 8

Proof. Since T; ® 1B £ ® T; is defined on the dense
* : * . 2 ° : . : :
- subspace D('Ta) D D(TB) , we derive tha# T, @ a1s closable. As

Ta1a+raTa=0, we infer that R(Ta & B)C:N (-Ta ® B) , from a similar
pro?erty_ of Ta ® 8"

| * . :
| Note that A 1 e on D(Aa) ® D(AB) ; Aa,s is

\ G a,Bza@B+Ta®B

self-adjoint by Lemmé 2.6 and T_ 5 8+T; S 8 is self-adjoint by
[10; Lema 2.4]. The operator Aa 8 is, in fact, essentially self-
5 7 .

o3 o y . ‘ T
adjoint on D(Aa) ® D(AB) ; whence Aa,B and T 8+Ta & ,Bmust be

(]

equal.

| ._. _ In order to define the tensor product of two complexes of

.'-Hilbert spaceé we shall'use a procedure suggested by Proposition
‘2.1 (the direct way is rather troublesome). An elementary but

~ important step in this respeét is the identif;cation of the -
space '. ' .

® © P&y

r€¢Z2 ptg=r

with the space' .

(@xP) & (@Y
p€Z - qei

forﬂany two families of Hilbe?t spaces {Xp}pez and {Yq}qﬁzjwhidh

can be made in a natural way.

9.8, befipition. Wikth the notations of Lemmas 2.6 and 2.7,




- the complex (Z,X)=(Zr,>\r')rez , where’

2= ® xP @ 9
p+q=r

ahd =t o IZ nD( ) (here z¥ is regarded as a subépacebof

o« © 8 o ® B
Ha é&HB), will be called the tensor product of the complexes

(X,0) and (Y,B). The éomplex (z,2) will be also denoted by

(XQ®Y, a@B)
It is clear that e maps i in.Zr+1{ Furthermoré, If Hk

~and TX correspond to (Z,\) in Proposition 2.1, then, with our

identifications, H,=H- ) H and =T 56 Indeed, the inclusion
CTCET = is obvious. Conversely, if &= ® x_¢D(T ) and
ATye &b : p€2

=@ quD(TB) then we can write, by the relations (2.1},
qt2

e © (apxp ® yq+‘(~1)p.+1x

r€z ptg=r Dl

: 1
= 2 z px + (-1 P
_ [ o . @>yq =11 3

® Bq_ly s
r€2 ptg=r :

ptl el

s(HTaglmnl|+||gm|TBn1|)2<w X

which shows that £ & néD(T ) . We have therefore D(Ta) ® D(TB)C
CD(TX); as T is closed we obtain actually T =T B 8

2.9. LEMMA. Let (X,a) and (Y,B) be two complexes of Hilbert

spaces, with (X,a) Fredholm and exact. Then the tensor product

(X® Y, oo ®B) is Fredholm and exact.

Proof,, We apply €Gorollary 2.2. Since Ta+T; has a continuous
inverse, then (Td+T;) é}ls has a continuous inverse, therefore

by (2.5) we deduce




IIAa,BEII_ZII((Ta+Ta) ® IB)EIIZCIIEII
: ' : : ; T 5
for every EeD(A_ B), where C>0 is a constant. By Lemma 2.6 the
p |

operator A, ic self-adjoint, hence A, 8 has a continuous
I

a,B

inverse. We conclude, by Lemma 2.7 and Deflnltlon 2.8 that

- (X® Y,o @ 8) is Fredholm and exact

Let us consider two complexes of Hilbert spaces (X ra )=
S B b e .
(Xo,ao)p€ and (Xl,a )=(X 1'“1)pez Then we may define their
direct sum (X @ Xir oy G5 e ) which is a complex (X,o)=

= (xP 70 Py pez given by Xp—X~ C)Xp and oP=q p @)ap for all peZ. _It

1
is easily seen that if.both (X 1oy ) and (Xl,al) are Fredholm then
(X,a) is Fredholm and ind (X,a)=ind (Xo,ao)+1nd (Xl,al). If
(Y'B)=(Yq15q)qez is another Fredholm complex'and both

(X, ® Y, o ® 8), (X, ® Y, oy ® 8) are Fredholm then we have

(2.6) ind (X, @ X)) @Y, (e, @) ®B)=

o

=ind (X, ® ¥, o, ® 8)+ind (X, B Y, a; @ 8),

by the identification of the complex (X, @ X,) o) 7, la o y) ®8)

with the complex ((Xo® Y) @ (X, @Y, ® B) @ (ay -® B)).

2.10. Proof of Theorem. If (x,a)z(x_,a-)pez fh o Predhotm
complex of Hilbert spaces, then we define xp=N(aP)<3 P,

p*‘0, X-l'Xp C)Xp and a?“ -lxan(ap), for all péZ. Then (XO, ao)=

i(Xp,ap) is a complex of finite dimensional Hilbert spaces of
o' p¢l

finite length with the property ind (X 0% V=2 Sl 1)Pdim Xp‘
P€Z

=ind (X,a) while (Xl,al) (Xl,ap) is a Frethlm complex which

is exact. :

A similar'decbﬁpositiOﬁ can be obtained for another Fred-



holm complex (Y,s)=(yq,gq)qéz, RS Ygzg(sq)ta T
s§=o, Y?=Yq(3 Yg and a§=sq|y§nm(sq), for all qgeZ. Then we have
‘the identification ' |
. L A'(X@Y,a@ﬂl)=
=((xo§Yo)'@ (X, ®Y)® (X, 8Y) @ (X, @Y, o
o ®8.)® (a ®e,) © (a; ®8) @ ( B s )), S

f:om which we derive the equality

ind (X@ Y, 5 ® 8)=ind (X ® Y rog ® E ) s

&

obtained from (2. 6) and Lemma 2.9. As o

=0, sgzo for all indices,
we have
ind (xoéyo,a ®8. )= (1) Tdim @ (XP®YCOI)=
r€?2 ptg=r

=T aht

(dim x®) (dim v9)=
ré€2 2 =

>
ptag=r
=( z (-1)Painm x®) ( = (-1)9im v Ty =(ind (X, a))(lnd 6, )
p¢Z 2 q¢Z ‘

The equality

T (x@Y, « ®e)= © (P (x,0) @ 8Y(Y,8)),  rez -
: p+q=r .
folléws from thg)same argument.

'We end this section with a result which is useful in some

applications.

2.11. PROPOSITION. Let (X,a) and (Y,B) be two complexes

of Hilbert spaces. Then (X ®Y), a ® B) is Fre-dholm and exact

iff either (X,a) or (¥,8) is Fredholm and exact.

Proof SHlf (X, o) or (Y,B) is exact then, by Lemma 2.9,




(XxX®Y, « ®B) is also exact.
ConVersely, we shall use a procedure inspired from [1]. 
Assume that both Aa=Ta+T; and AB=TB+T; are not invertible

(we preserve the notations from Lemmas 2.6 and 287) . Suppose

that there exist sequences {Sk}f:Ha and {nk}f:HB such that

l’l£k|I=llnk||=l,Aa£k + 0 and ABnk > O,Ias k f mf Then

llgk @lnkll=1 and Aa,B(gk @)nk) +~ 0 as k » «». Since Aa and A8

are self-adjoint and a self-adjoint operator has a continuous

inverse if and only if it is bounded below, we obtain that.Aa g
> 7

is not invertible, -which is a contradiction.

Note that (X ® Y, « ® B) is zero iff either (X,a) or (Y,8)

.. is zero, which completes the proof.-

3. SOME APPLICATIONS. In this section we give two applica-

 tions of the previous results.

1)5The first application:is.related to the spectral theory

of commuting systems of linear transformation. We recall some

definitions and notations from [11] (see also [9] for bounded

operators) .

' Let,c=(ol}...,cn) denote a system of n indeterminates and

A [o] the exterior algebra over C generated by GyreeerOpe For any

ihteger p,0<p<n, Ap[0] will be the space of all homogeneous

exterior forms of degree p in OprecerOy - For-an arbitrary Hilbert

space X, AEU;X] (Ap[c,X]) will denote the tensor product
X@ A0l (X ® Ap[o]) Bt x ond Y Aa‘re two Hilbert spaces, there is
a natural identification between A [o,X] ® Nz, Y] and

AEloon), X @1l where z= (gl,...,cm)' is another system of

ﬁ



indeterminates (see also [1]). We consider as well the operators

: Sj s kol +_A[o], SﬁE=0jAE, g€A {o] , which satisfy the anticommu-
-tation relations

SJSk+Sij'—0 J'k::l,---'n e

In the follow1ng defintions X w1ll be a flxed Hilbert space.

3.1. Definition [11]. We say that a=(al,.,.,an)CC(X) is a

D—cOmmuting system if there exists a dense subspace D of X in

I"\D(a o rwithtthe propertles
j=1 J ,
i) the restriction 6a=(a1 (%] Sl+' otay ®'S'ri) I{\ [c,D) is

closable;

ii) ‘it éais the canonical closure of ga.then R(éa)CN(éa).

3.2. befinition [11]. Suppose that a=(a1,;..,anV:C(X) is a

D-commuting system.Then a is called singular (nonsindular) ik

R(6_)#N(s5,) (R(5,)=N(5,)) .

Notice that to each D-commuting system we can associate a
complex of Hilbert spaces (Ap[c,X], 6p)n= , Where 6p=
*6 IAp[b,XLﬁD(é ), hence a—(al,...,a Y ‘is'“said to be Fredholm
hl] if the corresponding complex is Fredholm (see also r2] for
bounded operators) V

The joint spectrum 9y (a,X) of a D- commutlng system

a=(a ,anK:C(X) is the set of those points 2 € ¢® such that

l,---

z - a is singular [11].

If a=(a, ,a )=C (X) is Fredholm then one can define ks

l’ e e o
index [11] by the equality

A o pyn
1ndD'a—1nd = o X 5a)p—0

S




Let Y be another fixed Hilbert spabe.
3.3. LEMMA. Let a=(a1,...,an)CC(X) be a Da—commutinq

system and let'b=(b1, ...,bm)CC(Y) be a Db—-commuting system. Then

a®b:=(a; ® 1y,...,an @11 @ byseeerly ® bm)c:C(x@ Y)

is a Da (679) Db - commuting system and

o (a ® b; xBY)co_ (a,X) X.G
Da & Db Da Db

b2y

Proof.. If or_=(cl, = .,cn) is a system of indeterm.inatesr
associated with az'.(al,. : .,an) then the pair {hie . X, éa} is
associated with the.complex (AP[G'X]'ég);=o in the sense‘of
Proposition 2.1.. Simi_larly,‘ if c%(c_l, ik ,z;m). is another system
of indeterminat‘es associated with b= (bl’ . .,bm) then the pair
fle v, 5.} is connected with the complex (Aq[r,,Y],ég)I;:O in
the same way. Notice that there is a natural identification
. between A[c,Xj ® I lc, ¥ and A [la,z) % ® Y] and we have, with

this identification,

A

" . - Vel A
5a @ be—(asa [5%) l_A[CrY])-e-l-(T ® éb)e

for all efA[o,D.a.] ® Alz ,Db]=A fla e ) 151 ) Db],where t is given by
: : . : -
(2:4) for Ao, X] (see also [1]1). The operator & @ Ly Eoiy]

+t1 Q@ & defined on D(éa) ® D(6b) , is closable by Lemma 2.7%

b 7

A ; :
therefore 6 is closable. In fact, since_éa is the closure

a@b :
A 3 i A

of §_ on A[O",Da] and 6, is the closure Of 5, on A[C’D_b] , one can

easily check that the canonical closure <Sa & b of éa & b is

‘equal to the canonical closure of 5, ® 1, ( Y]+T ® & hence,
7 3 7 ;

= 'J\mb\ 4(&,‘\3({3



a8 b) N (6 5 b) i showin"g that a ® b is a Da® Db-

, -commutlng system, the set D_ @ DbCf\D(aj ® 1 )r\f\D(l ® b, )
I . j=1 k 3

being obviously dense in X @ Y.

by Lemma 2575, R(é

In order to prove the second statement, take

(z,w)fcﬁ)(a,X)x o (8o e
: Ta , b :
We may assume without any loss of generality that z=0, w=0. If

(yﬁoD (a,X), then by Proposition 2.1 and Lemma 2.9 we infer that
a i

a®bis nonsingular. The same thing happens when O%OD (B Y),
; b

therefore (0,0) é ch ® D, (a® b, X Q).

The next result will not be used in our further arguments.
It is, however, of the same type as the other assertions stated

in this context (see also [1] for bounded operators).

3 4. BEMMA . Let a=(a1,...,anM:C(X) be a Da—commutinq system

] A= D 2 (= & 2 =
and define a (a1 ® ly,...,ang lY) ClX"® YY) Then a:is a Da®Y

commuting system and, for Y#0, 3 is nonsingular iff a is non-

singular.

|

Proof. Let (AP[o,x], 6p be the complex associated with

a’'p=0
s : g . . oz
?—(al’f"'an) and let. (Y ,0)qZO be the complex with Y =Y and
y9=0 if qzl.iThe tensor produet of these complexes is

(A [UIX]®YI 6a® lY)p:O'
identified with APlo,x & Y], while 6° ® 1, becomes s& , therefore

Notice that Ap[o,X] ® Y may be

Sdsia Da ® Y - commuting system. Moreover, by Propositions2.11
and 2.1 we infer that 3@ is nonsingular iff a is nonsingular.
" The hypothesis Y#0 is used in order to obtain the nonsin-

| gularity of a from that of 4, noting that (Yq,O)'q>O is-not



A

exact when YO=Y#0.

The next statement extends the main result from [1].

3.5. PROPOSITION. Let.a=(al,...,an)C$(X) be a D, — commu-

~ ting system and let b=(b ,...,b )EC(¥Y) be a Dy - commuting system.

Then the fbliowing.assertions held true:

s R G ok sl Seia.2 Hb )
e B Dy,

2) If a and b are Fredholm then a ® b is Fredholm and

ind (a @ b)=ind' a - dndie b
Da @ Db . Da Db

Proof. For the first statement we have only to prove that

op (ET PO Oh (b,¥)co, ® D (a @b, X ® Y) the opposite inclusion
a b a b :
following from Lemma 3.3.

Indeed, if O%UD @ D (a ® b, X ® Y) , then by Proposition
2.11 we have eitherbof’o ta,X).oxr Oﬂb (b,Y) hence
e By
0}(0Da(a’X) X op (oyaps

b =)
The second assertion follows from our Theorem,'via the

identification descrlbed in the proof of Lemma Sis36

; 3. 6 PROPOSITION. Let Xl""’X be Hilbert spaces and let

a. €C(X Yoy j=1,...,n, be densely defined operators. . If

X= X ® ... 0 X and 'é'jEC (X) is the canonical closure of the

oEerator

1,01;®...01, ;@3;®1,;, ®... @1

then §=(§l,...,§n) is a.chommuting system, where

D=D (a,) ® ... ®Dlay), and



oD(a,X)=cD(al)(al,Xl)x...x 65(&;)(anfxn) -'

" Proof. Both statemehts ére obtained.by.moansfof an induotive
argumént. Indeed, for n=2‘this is a special céée of Proposition
345, .

Assume now that the sﬁétemeﬁts hold-frue for any n-1 ope-
rdators, n>3. THen 4f We denote by bj the canonical closure of

the opera’i:or l1 & v D aj (o2 R o 1 (j=1,...,n-1), we obtain

n-1
that a=(b- ®'ln, ""bn—l ® ln’ ln-—l (%) an) , where ln—l stands for
and X Nn =X & ...0X q-1 then we obtain by Proposition 3.5 and

by -the induction hypothesis_that

(b & a_,X)=0 (b,X__,) %0 . )(a K

‘D(b) @ D(a) D (b)

=oD(al)(al,Xl)x...x b (a

n_1)<an—1'xn-1)xqﬁ(an)(an'xn)

2) The second application is related to the behaviour of
the 3-operator in strongly pseudoconvex domains. Namely} we prove
a result concerning the coﬁomology of the Cauchy-Riemann complex
of H-valued square integrable exterior forms oﬁ such_a domain,

H being an arbitrary Hilbert spacé, possessing information about
the soalar—valued exterior forms.

'Let acc” be a strongly pseudoconvex domain. We denote by

Ap[Q] fhe Hilbert space of all (0,p) exterior forms on &, which

are‘square integrable. Let 3P be the restriction of the 3-operator

on AP[Q]. When @ is an arbitrary strongly pseudoconvex manifold,
it is known that

1) dim N(3P) /R 52 Ly o




As Qc:d: ¢ we
have actually R(a ) N(ap), p>1, via the Grauert theorem about

holomorphic convexity of strongly pseudoconvex manifolds and Theo—

rem B of Cartan (see [4] for some details). With our termlnology,'

the Cauchy - Riemann complex (AP [l ,3 % 5ois semi-Fredholm [11]
Take now an arbltrary Hilbert space H One can cons1der .

again the space AP[Q H] of all H-valued (0,p) exterior forms on

2, which are square lntegrable. In thlS context the 93— operator,.

denoted by BH ; can be constructed in an independent ‘way. Let

55 be the restrictieon of SH on AP[Q,H]. One can see that Ap[ﬂ,H]:

AP{a] ® B and 'a'g:'ép @ 1 where 1. is the identity on H (see [10]
for details concerning the d-operator in Hilbert spaces) . We shall
prove the following:

3.7. PROPOSTITION . If acc? is a strongly pseudoconvex

domain then (Ap[Q;H_,éP)n is a semi - Fredholm complex of
H p:O ;

'Hilbert spaces with the property
=p-1,_ .. /=P
rGEEN=N(R), 2l .

Proof. Let us define x%=1°[a] C)N(Eo), Xp=Ap[Q]'p21,
0= OIX and ap=§p, pzl«sThen (X,a)=(Xp,ap)n= is a complex
- of Hilbert spaces which is Fredholm and exact at each stage.

Cdnsider then the complex (H,O)=(H-, ) ; where H°=H and HP=0

p=0
_ for p20. By Lemma 2.9, the tensor product (X ® H, «a ® 0) must be
Fredholm and exact. It is easy to check the equality

(X ® H, a@O)-—_—(XpQgH, ap®1H)p___O ;

As N(5§)=N(§o) @ H by Lemma 2.4 (which applies since R(ﬁo) is



‘,olosed_by (3.1)), we conclude that (Apfn,q],Ep is semi- e

-Fredholm and‘R(ﬁp—l)=N(§p) for le.

Let us remark that Proposition 3.7 1mproves the statement

ot [10 Theorem 2.7]. i s et e _
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