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CPARACTERIZATIONQ OF RIESZ SPACES USING

EXTENDED RIESZ PSEUDONORMS

by

Dan VUZA

The theory of normed Kothe spaces is usually exposed
w1th1n the framéwork of the space M ( ZZﬁ) of equivalence classes
of measurable functlons over the measure space (X E'P) (65 see.

A.C. Zaanen, [4], ch.lS)..however, most -of the definitions and
constructions make sense in a general Riesz space (for. instance,
the Fatou and Riesz-Fischer properties, the.Lorentz pseudonorm) .
Tt is the purpose of this paper to give characterizations of

Riesz spaces involving universalCf—completeness, the Egoroff pro=
perpyiand weak c’—distribufivity by using concepts taken from nor-
med Kothe spaces theory. '

1. Extended Riesz pseudonorms

All the vector lattices ve shall cénsider will be real
(all the results are also holding in thg complex case).
| If E is a vector lattice we shall use the notations
= Sae b ﬂt?zO}
L NG oy L il 2 )N
s mdlne)

£ x Xoel (77 éﬂ\/) we shall write X, A x (1 J 1) i

S 1ncrea51ng (docreaglnv) and .= ﬂuf X, (1~/nflln,) Yhen
- N neav

there is no doubt on the 1ndey we are regprlno to, we shall wrlte

W )
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Defn.nlt:on 15 1 Let E be a vector 1att1ce An extended

Riesz pseudonorm on E is a map € E— 52 U {w} .such that

i) 5(0) I
i g(,ﬂﬁy §(1)+g(3) I \aeE

w1 4,0 € omd 121 1] then 3(1)<§(‘3)

The extended Riesz pseudonorn () is said to be an :extended.
‘R_':Le.SZ seminorm if 8(6&‘-‘-)* lo.lg(i) for at IR léE
The extended Rllesz. pseudonornm g’ ig said to'be an ex_tended
Rieéz vquasinorm i SD(‘JL) =90 : implies x=0. |
- The extended Riesz rseudonorm g’ is said -tq he an extendéd
_Riesz nofm it R is an extended Riesz seminormland quasinorm.
The set of all ex{:endedAR_iesz pséudonorms on-Eois partially

' ordered by

S e

: 1f g is-an extended Riesz pséudonorr on E we shall denote
> by Eg the order ideal of elements I(-E such that f(*) <00 |

. I1f F is an order ideal in the Riesz. space E we shall
denote by IF the extended Riesz seminorm oﬁ E given by

i el
fFV‘ () =ee ‘.;“f, 7€ BRF

1£ x¢E we shall denote by bk, ehe extended Riesz

seminorm on E given by

gl = e {2 |ae[§+ ))3\;9\,\@}




llere we understand that inf¢ = 60

Definition 1.2, Let L be a vector lattnoe. An eytended

- Riesz pseudonormg on B has the Riesz- Flscher propertj if for

every 1 A, € E (Y'CW) such that ? CL' 7\ x
i=4
f< = E gl i e

we have

Befinition 1.3, Let ® be a vector lattice. An extended

Riesz pseudonorm on FE Has the wnak Fatou prorertj if there is a.

% é 92 such that for every ks X CE (”EJN/ with z. /

we have e(x)< &JZ,,M Q(-Iv\) . The extended Riesz pseudonorm'

h-ébo
has the Fatou property if k=1

Let Q be an ektended Riesz O‘UZJ.SJnOI‘I“ enE

E.: Then th'e mnap
(1;3) ""”S’(l""“aﬂ) defines a metric on E (thf‘ev» tbpology 4sso~

ciated with this metric is not linear in the general case). ve

have the following result:

Theorem 1,1, E‘? is comple.te as a metric space-if an&
only -if:
S has.. the Riesz-TFischer proper"i:y;
% iy A€ X ¢E+ (71 QN) is a secﬁence suech that

g(k ><oothen the set ? oy \ ”QNB

has a least upper bound 1n E.

Proof. Suppose 1) and ii) are satisfyied. We first prove

thag, 145 1 ¢ E+ (V\LH\T) and Z f(":n><~00 then the series

n=y) ; e
Zah is convergent. Indeed, from ii) it follows that
N=)

e

the set {Z_Jw )hﬁ’NS has a least upper bound x: from i) w

have that z ¢ ES :

Then ; : n
23} e
Z- ‘1L+m Tr\ 2 u%xb

=1 . i

S0 1) dmplics



: _ m
o Q(x-g-i‘c ) i S) u“*‘")

whigh shows that ‘pww‘ g('l ) 0

m—>00

Consider now a Q -Cauchy sequence
(&

gent, and so is the sequence k-'i“) S
= nEN

%, €€ (nelN).

‘T 1S sufficient to show that Kiﬁ)h o : has a convergent sub-—
: S : o
sequence, SO we can assume tnat y (:xn_M--D[y, = ‘Z'Y" . Pyt
U"y) = (ih-\% e x*n)-]—
’\Y’V\ :. Lih-\—/( ".:xy)),_ S .
Thén &
S el e
n=1{
GO ;
ol
Z g(*‘fm) < ,
={
: oo
. it ) & ;
so by the previous argur ent the series - 55 Uy and = (\)'n
: : : oo  N=| e =
are convercgent. Eut then the series Sw: (Xn-\-«;i“) is conver-
=2 | ’ g

Conversely, suppose E i complete as a metric space: We

prove first that i e G(E 3 (\’Yéﬂ\’>

is an increasing

sequence converging o X € ES then Xy Ta’ . TIndeed, we

have
LM :l “":“V‘

b-—)OO

Z[“"i'y\

From

@(\u\..._lvi) < (m;_,g_'\) )

£l

U, vk

. A : : 2 .@{C 3
it follows that (ES)_&_ is closed, so XA 6 0t

Let 3 cE e suc.h thaﬁ X /:\é > YIEN. Then CI.h

Z i/\%')"n_{—N)‘

P
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. as (ES) s dig closedl, this implies thaﬁ -I’.S_ I/\j SO x-gy =
Thus 05' 1\3(, :

Now we prove 1) Let X, X, € Ef (hCN) be such that
Zl 1\ X . W.e have to show that :

ge < Z p)-

= ? T

% i
T Sﬁ g(lc) = O then () is satisfyied. So suppose

iy o - = :
> o) Sl o § e
Z§(1°)<Oé : Then < K and.the sequence (ain)glven b_/__

n , : ; :
g = Zx{, s éonvergent to 2x¢E . Put then 3, /b Z so x=z. Ve
e ' . ik n e

gL € S("“"’””‘)ﬁ pea

‘,Q,:m«'g(x 9() 0 we have 15

N &0
If Ay € E;Q(“e[N) Cisa sequence: such that 2 SCI )CQO
then the series ,Z_.'i'g- is convercent to a :(éES as a}:ove,
V= :

R :
§ o @ /I\ X so ii) is satisfyied.
L3 L ‘h

= &

Let 3 be an extended Riesz pseudonorm on T ). Ve asso-—

ciate with g the maps \? ,gL CE— R%_\)%m}defined as follows.,

For IQE let .3 (x) Le the set of sequences (&”)néﬁ\/ such that
::(n GE - and i(x fi! f(x) the set of sequenceg

(}x”)né.ﬂ\f‘ such that X,, € E—}— and -~ 7\n |z| . Then define

1) e e . : '
) For E= M(n,)'_',r\) wltnfL 0" -finite, fL was - introduced by GG,

Lc.lentz (see A.C. Zaanen, E/l-l ; §'66) . . Inn the same case, ST

was introduced and thm. 1.2 was proved in D.Tomescu’s paprer,

B Iﬁ this paper, ST is dénoted by S>M s
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_§T (i)' ”'7[ { 4._.5(’%) / -)n(-ﬁ\f 6‘7@’)}.

£ G- inf { o gt | (tn)yerr € £
e nelN

EN

Theorer 1.2. ~f is the greatedley+enaed RlGQ7 pseudonorm
w1th tne Riesz- Flfcher property dominated by y If 0. issan:
- extended Riesz seminorm then er_ is an extended ?1es seminorm.
Procfo Hirst we DEOVE that is ‘an extended Riesz pseudo-
le - . ‘ Jouc : - £ . f . : .
norm. . Let 1)365 be’sum that Ii[\_ /3) IL‘ (J")néN 67[5/)
then let = :
-

- (Ew)a- Z”’\”

Then (Ixn)ngN @Wiﬂ and . X, ;
S

- FlE)= Z i
As (fu)nen
is arbltrary in 7(‘]) we have that f‘f (1) XT(;{)

5(;n),

Now let X, 2 €E and let (x”)ncﬂ\f @J(x)

Then (:f,,+3)€r§7'(11’+/;/) g e ,
. (’7—(1+3> g-r i<l ('1’“3 Z Pl +in) €
5(1 ")+ __.30/3) ‘ |

(67”.))0 EN 6775)

¥ 3 l‘ \~.,
- which shows that (x +g) = Pr-(x) +j’r/?) ‘
Now we prove that fT has the Rleqz Flscher property Ve

hate to sbow that if X & E+ and (J ) C 9-@) then




M : .
f,r ()< Zf——[xn) : We can assume 5 fT (2' )400 Let . & >O
"% For every n there is a 'sequence (.J( s € J (I-,,) such

nm)m € IN

that
""‘ f(i”"’/ JOT (1 / 2” '
é > ("l (/3) ”’7(/\,)) be a }13ectlon of[N'onv“o N‘AN . Then

the: séquence - Q} ) given by
k/peN

belongs to 7(_5{)

5 (i\'éZ )= 2 f(x_’“‘.“\&.?%n%— f?,,(?")

=
>

k=1 14m,n<0

As & 1is arbitrary we have the result.
If f is an extended Riesé- pseudc»nc;rm with the Riesz-
Pigeher property such that f4 ﬁ,f and. if (Jh)neﬁ\f & (>
then
S0
’ . oA Z f(ﬂ'()
Ed (x) < %ff( ) £

..-
.,

\()’ (J() f (x) by the definition of jT ;

The last statu«\,nt of the thoorcnl is okvious.

Theorem 1.3.
1) FL. is anﬁ' extended Riesz pseudonorm dominated by f.
e} T F 91 is an extended Riesz pseudonorm with the Fatou
property dominated by §3 then 34 < gL .
1% ?L has the Riesz-Fischer property. In particular

~ gL. Sf-,— :

i) EE Q is an extended Riesz seminorr: then S)L is an

~



extended Riesz seminorm.

Proof. :
i) Let d,yGE be such that Jal< /3[ L [yn)heN

é O{(y) then the sequence (1,1)” N given by X, 'J’Ajn
belongs to 0{(1) Thus '

o ) £ w200

ne& : neﬂv

, As‘ {J")H(W is arbitrary in c%(j) we have that fl_(—z)‘ ﬁ@)
Now let J,y(g and let (:x') N ée{() [J )"EW

=y (totde)nepy €2 e
‘PL(z,+g).§§L(/I+3/)é§£ (/z‘l%/a/) 4 ):J:}fr f(z{,,+<7;,),
< AU ) + 4 {w)
wé?b\f ) n'e‘;]\b} fidn

which shows that JOL [X-l—y) < fL (I)#’fL/j).
ii) Let 57 be an extended Riesz pseudonorm \.1th the Fatou.
1
property dominated by ‘f and let (dh) ne N G j(x)

en 'Xo'[x) Au/g. J), () € A;.{/g y[xn/)
neN

50 f, [x) fL(I) by the definition of J)L i

iii) Let .?CGEP ana (A )néN é?(x) : Ve have to
show that ‘ﬁL [x) ZZfL(I ) . We can assume Z f [Jn)éw

; Let 2)0 For every. n there is a seguence (x ) é’;\’r’ e & )

such that




anp  p(Tnm) € J () 55
me N ' .

RPut : J = Z Q.MM 0

: > 2 v 5

Ther; (XM)MGN 605(1) and . E |
£< 49 gln) ¢ 2 2 f) &

-

mepN "1

£ pup Z (fL("W)*"‘) = E_H"" L,

As & 1is arbitrary we have the result.
By thm. T.2. it follows that. fl_ < j‘T ;

: iv) .Obvious.

2. Universally ©°-complete Riesz sraces
21

Definition 2.1, A Riesz space E is'called universally
O’ -complete if every sequence (huuZnéJV’ of mutually disjoiht
elements in E, has a least upper hound.

S ) [l] the notion of an universal compléte Riesz space is
introduced: . : | |

A A'RiesAz space E is ca..l‘le\d"unviversially coﬁpleté if every

sistem (Cf,t/)re-r of mutually disjoint e'lenwents. in E, has a least
upper bound. : ;

e observu that the two notlonc do not coincide. Forwn-r
instance the space of"all ur*ct:oan L?”’AQ '%uch that %ﬂ 76(”‘)7{:0}.
is :at: most countable is super Dedeklnd corplete, universally

O -cormplete but not universally complete.
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| M cTemma 2.1. Let E be a Dedekind 0 -complete Riesz spa-ce.
Then E is universally @ - comnlete if and only 1f for every =

creasing unbounded sequence (l")néﬂ in E+ there lS an

w € E+\§O} such that I, Amdu /(‘“W\LL for cvery *MGN‘,

>P1;o_of.' Suppose E is univer_saliy a -corplete.. wé firat
pro&ethe stz'iterient 'inA the case when all 1“— are conf.éined in the
pand generated by an element L € E+ . .

For evgry e E,_‘_‘ let Py ke 'the rrOJectlon on the band

o

generated by g oot g

(%)" A“"i’ i'/\'n“a ) 5.‘6.€+
- welN 5

| Px_ﬁ: for m,m €N
’ @

Cvrn (Mi-—-i’iy;),\.

i :
Cvi = l'\'\f € van '
By Cor. 31.2 of W.A.J. Luxemburg, A.C. zaanen, [11,

N (mx =2y )y

From

P ((w\x--'-a[“)_) =4

('W\ X~ iy\)+

it follows that

An ) € Me\mh: : :
?ew\\r\'( ) : ) : 1)

. For every m,n€N we have

: (_::z~em“) ANE€ym =0

A AT

i AR o T N

PRI

oo 4



So,sas (‘\'V\'UC = 3(m)+ belongs to the‘bahd generated by €

wn g
it folldws that
(= —'ew,“)/\ (w\ac-—:ln)_‘j.ﬁ 0.
Thus
P ((wma- 3{,‘)+) O
(x - em)
g0 ;
p (2.) > m(x-em;)
(2~ eWM) | (2}

Because @M/\(:x,—em): O - 5--Ehe ele-me_nts fm given by’
<f4.= e.'i z fm = em_em—-i (‘m > 4)" are mutually disjoint; so
there is .f—eE*_ . such that wm %mé fw , mEeIN . From‘ (1)' app;.Lyinqd

Pe.

- it foll@ws that ?em(1")£ me,

Thus, applying ? in the ineauality from above
_ S * S

R () monp PO s spihi€p

14Lem 14 L £ m
Lekt. @ = A\A‘fp‘em rRreme (3) We have that
wmeIN
= 'Pe (i“") 4“7" P (1“) ﬁ
méIN h
Since P::C (-x'n> = iv) /we cannot h-avg e=x. S_ovif u=x-e wé habve

u#0; we shall prove that .'JL“ Awm U T“_mu « Indeed, from (2) it

follows that

(1_“>>/ w (- ew;,n}-

S50



Awp ™ (q-ém>/\ Ay 7 ANP M [(x-em)/\(x—ewﬂ = Vﬁ(I m),

weg\') » ,"““_GIN‘ = = =

This implies ‘
A“*, mu Ay ® ™mU

wenN :

for every méﬁ\(

Consider" now an unbounded increasix_dcj sequence (ih )héN
t5 P . If £here iS-a n such that the sequence CP - (1»4)),” éﬂ\f
+ - : Q'V!o
is unbounded then we are in the case considered akove. So suppose
that there ‘is no such ng s et
e =
: W\Gﬂ\r
Then ?V (Vw&wt)’- ’O—’n so the elements A (‘n.é[(\o given by
- n
Wiz Vs ) W, = V= Vg (n>4) 5. ubuanly disjolnt, TF vois an
ﬁpper bound for i‘w’“ ‘ n GNB then v is an upper bkound for
. {'\)’—v\ \-n eN} so _
= el AT
: Ly e 'P:I (ij) < I\Y‘h =
5 R4l

which is a contradiction.

: Conversely, suppose that L satisfyies the ’condition in
the-statément of the lemma. Let (‘i“)héwv be a sequence of
'-mutUally disjoi»nt elements in E_. &£ {:1,“ \h & ﬂ\r} _ would not‘
be or'de.r bounded, there would exist an w € E.\—\&O} such ‘tha{:

muw /\'Swta s TW‘ mu for every MGN . Then

A& Lén : = . :t
mW /\Awf)‘i‘:./\mxk-l)\n m\L/\Y\'f\ k.’

Qq s

But W\.ik;/\') X éik " so m(uA1K>§1k for every mé—ﬂ\r. -

ALién

As E is Archimedian it follows that ul\ig&:o  for every

I A

TR R A A S S VA
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AGW . Then W = AWF (\L/\A“fl ) O . vhich is a

: : eN 1 & een
‘contradiction. -n

Theorem 2.1. Let E be a Dedekind ¢ -complete Riesz sﬁacé’;.'
The .following assertions are equivalent: ‘ : '
| 1) “E dis universally @ =complete.
1) IF 5) dsnan’ extenocd Riesz .norm on Ij'havi.ng 'the‘Rie_sz-“
Figcher property on ES) and Lo GE_\_ (“ €N> ~are such that,
Z- 5(’1.71)<00 then the set SLZDL' )'n GNS is order.
bﬁ)l;nded. : e S ‘
iii) The same as ii)- but withg having the Fatou property
oh- B : . | |
‘iv)' If? ié an extended Rieéz norm on L -having the weak
Fatow propexrty on ES and (1“) E’ﬁ\r is an -increasing seguence
of elements in E+ such ﬁmf AWF ga(:f“)aw then the set {&nlnéﬂ\f}
neN

is’ order bounded.

v) The same as iv) but with S having the Fatou property

on E.
Proof.
: ; = : - :
i) =2 ii) Suppose that the set §Z. Ly \“ GH\.} e
: L=t .
Wwpbounded. Then th@re is W€ £‘+\£O} ~ such that :

M\LI\Z‘I. 7\ mu. for every n.é[N It follows thatithere
i=4 :
is a.ng for which WA :x,h :7-4 0 i rQDlaClnC‘ u by w A 3(.,,,

we can therefore assume that W € ES Put
: = Nz .
jma = mu A Xy

= . 5 |
' Loaanl winmenl,
j-mnzmul\gi‘_i‘— o . :



1

Q

3

o))

a
ol
.

-$

2

&

Then 0 < ’jm“ &

It foliows that

so S(\L) =0 and u=0, which is a contradiction.
i) -’A?; 1v) Suppose that the set g(.l,\ lnéN} is unkoun-

.ded. Then there is W € Ey \%o} such that mu R 'f\ ™mw

for every I“éu as above we may assume we E\_? . Then
Cmu.) < kl)w]b S(Ww\. /\:x-n> < k/sutg Q(?&)
' v\éIN | | heﬂ\f_

It follows that g (u)=0 so u=0, which 'is a contradiction.

ii) = 1ii), iv) =>Vv). Obvious.

iii) =i). Let (;1“)“ N te a sequence of mutually
disjoint elements in E+ and let E be the band generated by -

: %:,__“ \hel[\}'} . Define tlhe ex tended Riesz norm f on E by

. Tie WP, ColIW
9(1) A&’(IU % \ )

The norr'g has the Fatou property ‘and 2: S(iﬂ) <& | 7Thus the

n=y
set %ﬁm MGN} is order bounded. 1

V) >1) Let (3(,,) EN be a sequence of mutually dis-

joint -elements in By and let B be the band generated by %Im)ﬂ E‘N},

Define the extended Riesz norm? on E ky

(1) = AW _'[(x AW \\P “(I)Hdn>-

The noz_mg has the Fatou property’ and /.)»;tr S(Av\{a ><d) Thus

/-YL
the set ix ’Y) eﬂ\T} is order bounded , el

AT A5 S A S s S A

o T R




Theorem 2.2. Let E be a Dedeking ¢ -complete Riesz ‘space.
The follow'ing assertions are equivalent: ‘
. i) E is universally @ -complete;
ii) For every extended Riesz normg_ on: E the space ES
is co;.uplete as a metric space if and o:f;ly 355 g has the Riesz~Fischer

property.

Proof. Follows from thm. 1.1. and thm. 2.1.

3. The Egoroff property

e

- The element f in the Riészspace E has the Egoroff pro‘pher—_
ty if for every double sequence (w“k)h cIN : in E_\, such tna}t
k€N

)m eIN

in-E. which veri-

‘U,»“h']\ lfl there exists a sequence (

fyles. . _ :

o % DR

ii) for every m,n€N tAhere is a k(m,n)(—(N such that
Vo Yk

The Riesz opace E has the Lgoroff property if every f € E
has the Egoroff property (W.A.J. Luxemburg, A.C.. Zaanen, [_'1],

def. 67 . 2)..

' Theorem 3.1. Let E be a Riesz space with the Egoroff pro-
perty. Then for every extended Riesz ‘gquasinormn S’ on E the exten—

ded Riesz - pseudonorms SL and. \?T are quaslnorm

BEroof, Tet & & E+. Suppose th,.at S’L(:():O . Then for every
n €N there is a sequence Cac“k)kéﬂ\]’ in E such that él'nk 'Z\kx

- AM'O g(ac“k) ¢ — . The Egoroff property implies the exis-
REN »

tence of a sequence (’\yw)méN Go{(1> such that for every mel :

there is a k(m)e N with ’\)’ M)k(.m) e Then



1 e NS gt 2
e e .

Because g is a guasinorm, WV, O s =0

' pefty;

Riesz

prove:

t>0.

From thm. 1. 5= \?L(g-r e 3 is also a’‘gquasinorm.

g Thcorem 3.2. Let E be a Riesz space with the Egoroff pro-
Then for every extended Riesz nseudonorm S the extended

pseudonorm S)L ‘has the Fatou property.

Proof. Let J&E+ and let (i > Wéof(z) 17e have to

that \?L(x") TSL(1> . We can assume A%/;\If(zh) c - Let
‘ - hE e 5

For every néN there is a qeqpence( 'IL)AGN € af[In)

such that 4dup f(inh) j’L(in)hf The Bforoff property implies the

‘hen

existence of a sequence (’l}’ ) GN 64{(2&) such that for every meN
there is ,Q(m) - wigh € aln}k(m) : Then \f(’v’m)ff(.lm)k(&))_,
Dlag tes . 22 |

9, () gaw/}v o(v,) ¢ £+ Lup g, (%)
mé

meN

A5 § is arbitrary the result follows.

For E‘»‘ M (}() )/L) with /L&(f flnlte, theorems 3%l

Shd 3.2 £an be found in A.C.Zaanen’s book, 4] Ehre 2

and thm. 4).

»converse.of k- 3.2 in the case of a Dedekind d-‘complete Riesz ~7°

' srace.

The rest of this section is devoted to the proof of the

Lot E be a Riesz space. Ve shall'_call an element f&€ L

regular if every order convergent sequence in the order ideal

SRS SIS S A

T e R AR TR T T R

e A R TR :




generated by -f is relative luniformly convérgent. This is équivélenf
to the following: for every sequence w‘")nGN 'such that
04 WS IH and \1_,,, \L O and -every ¢ -0 there ds o Y)EQN

'such that mz N, implies W, £ € LF)

Lemma 3.1. Let E .be an Archimedian Riesz space. If f£€E

is regular then f has the Egoroff property.

'Proof. Let E(f) be the ordér ideal geperated by £. Thep -
relative uniform convergence on E(f) is defined by the norm || "{?

so £ has the I_«.‘g'or'offvpropert\ s

Lemma 3.2, Let E be a Dedekind O'r-cor:j.lalete Riesz space,
i féﬁ+-j.s not régular there is a sequence (7! ) €N . guch that
'8} E
[8) §_£ 'T,? and (f-? ——?“)_\_#'0 for every € 30 ard né[N.
m .

: Proof vlnre is a sequence (3 )h ew and an Q € (O} l)
such that 04 3“ T.¥ and (qg ﬁ ) %O for “(-[N ‘he sequence

(,g“) e N given bv

~af )
‘has the required properties.

. Lemma 3.3. Let E ke a Riesz space. Curr\bfse that “nk u
and (ﬁl QLQN) are such that
1..) umk is increasing. in n, decreasing in k and '_u"\i'i,:” “"n
for n,k €N. | |
1-35) U is d_ecreasing and for every n€lN v..ve have ('u,,- ’bk),;‘_,?é@.
1y G,
iv)' for every melN there is & wm in the convex hull og
{“’hk,"‘ ;’{CN} such that c\,,myl %YM i
Then for every wa heﬂ\f ~cand %20 trhere fier
&(M n e)eﬁ\r such that |
Md A0S ¥



= .18 =
Cire)va > W,k (mym, i) :

Proof. Ve Sqall use a slight refinement of the method 1n
the proof 0f T.Chow's theorem (W.RA.J. Luxembur l\ € Zaaner‘,, 1._\
thrﬂ. 67 .7) °
BOE
e w
WM = Z_- xnk nk
", k, :
)\'M L :
where vk, 7 O) \xr@ different from 0 for finitely many n and -

& and Z/,\:\:i . cet
W
W o
: )\,q = % )\hk
and let k(m Y\) max ie Qﬁj} .= We havc';

> RET )

n
. ”“ ‘ -
W, 7 b )\“ u‘n, R(vn,n);
y
Given M Né N let
EE M\ai ™ 7 M’; .
o
- We prove that Y =1. Cléarly 0 ¢ X‘E: A . For myM we bave

X, - A7 Wi >,Z_'\ (\A e \L) Z (\L s

an\ (u.—u) (Z\“‘ ..Z__y\ )(u -)7/ (i- 8) uNfu)_

lence

W = 2 (‘ ”K‘) (u‘.N = u,)‘_ .




9~

4

S_ihce Wn \L\k and k’taLN«u)_\_?éo it follows thati"zf=1. Hence fOx_‘ ¢>0

e : » \ -
there is a pyM such that 5‘ )5;?—1"" . Let
- i+e

2N

0w, )= GR(pom) |\, #0 ,w«;N}

Then

(1+e)"0’ > (1+e)% 2 ( H—i)?; ‘PM m,k(v,w)
> (1) N, Ya Mm)>(4+a)z>\ & L(Mm’

nyN

>/ A+§.>( )uN)'?x(M,NJﬁ)Z uwgk(ﬁ,N,i) 2

which cormpletes the proof.

Lermma 3.4. Let E be a Dedekind & -corplete Riesz space.

Qun*:\o se that for every £ F “and every s guences -?
- é € e ( nk)neﬁ\f

k ¢
'such that nk’i\!e#n/rng seathefer 45 an a?O‘an-d a sequence

.@)’"‘>néN . such that:
W, Naf

ii) for every m ,nEMN there is a k(m, n)e [N' such t‘lat

’W‘ € ‘? k(m)h)

- Then E has the Egoroff property.

. Proof. By thm, Th. 5 dm WA, J.:Luxemburd’s and A.C.
Zaanen's Look 1] have ito ‘show that every pr1n010a1 kan&
has the “goroff pronertv in the Ioolean alaepra SQ(T) efithie l
projection bands: : : :

So let Ew be the rrogectlon ‘pand deternwned by 1&€EE+

Suppose that the progectlon hamm A vk eatlsfy A“KT B
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Since the principal lhands forlm an ideal in 93 (E) there are
'\L‘nkee*\' such that Ahhz Bunk,. s A‘nk CB}L_ we can asgmwe :
by lenmma 74.1 insthe quoted bookithat u%h.'f‘ku s henfthore ds
a sequence (’O"Y'.)MQN in E, and an a0+ such that

i) &, faw 5

ii) for every m,n¢IN there is a k(m,n) & W such that

Viy & W, k(mmn) ¢

Then it follows that %v“'l\ﬁwand S,Q,M & Aﬁ)&(*"m)
which completes the proof. :

Theorem 3.3. Let I be a Dedekind @ -complete space' such
that for every extended Riesz norlrtg on F the extended Riesz semi-
norm QL has -the weak Fatou property. Then E has the Egoroff

property.

, Proof. Ve apply lemma 3.4. So let f,ghkr?né E+
be such that Fhkai“T“ ? s By lemma'34.l we may. assume that £
is not regular. So by lemma 3.2. there' is a sequence (3",.,\,,‘6_(“

o & | ; . : fordevary
such that O_gn'f‘je and (E{l 'j‘v\){’ #O 'fcr every €7 0

5 AN . ¢ ~ - A
and n €lN. Then replacing fh‘( &}f' ’?NJ&A 3,” and £ by Fn ?n
we may assumne that (&f—-,{ )+750 for every & PO and ndN. Finally
n .

= s % . b L = - P . - . i
_}:eplac_lng_ :¥W\k by inf £, We may assume that fnk 18 decreasing
; famn i
in:n, ; :
Let X be the convex hull of {—ﬁnk\‘h){xé N} and
et -5 be the set-of €L such that there is a ke K with ,i\S k

S is an absolute convex set, so if

(OREEC N ETES

(understanding that inf?‘=o®) then S is an extended Riesz semi-

norm on E,. Because "L ’é f, for every' xeS endiE is Archimedian




1t followc that Q is an extended Riesz norm. We have
gL(‘£ )é 3(1?“0 <4

S0 SL(£> ¢ <00. There is a sequence (4 )W‘{'W such that
04 A fj\‘{i and A\,\\o S) m)‘ G d, i Let vt (c+4> Mg

It follows that t e S so there is kaK S bk
Pt | s ‘
s et ? -t
uﬂ,\:' .ﬁ- £hk, i i C(CH) ¥»

Then \k'hk, isincreasing in-n and 'decreasi'ng in k and we have

: : ) S - -4
uhk/ >U, - 2dlso i @W &MCL (“n"‘-){- = (((H”l ;fz —f )+f-é0 -
Finally g {Q is in the convex hull of S\UMk \h l’ éN%

and \3— ,L_, R . Thus: the hjwothe51s of ler“ma 3.3 are catlé-
fyied. Let 9> be chosen such that . (4+§) (\,-{-/l) -5 >O -7 *then

by lemma 3.3. for every m,n élN there is a k(m,n)¢& [N such that
Q.
(«+§> Von '\‘\ "’ (h\ )

that is

;kamw) /\+S)'t !F

N e e : :
(‘\‘-\' S)tw = 31' T\ (_(‘\'\”%)(CH)' “S> ? the hypothesis of
lenma 3.4 are satisfyied.: Thus E. has' the Egoroff property.
Corollary 3.1. Assume that the continuum hypothesis holds,
on = ? 1)

ané let j-L'-l:e a locally finite and localizable measure on X.

) That is M(X, 5 'Js Dedekind cor pl@tc and for every 2 G? wnth

/b\ AAYY0 there is B Y with BCA and O<}z\(1§ 460,



S B ~ 
Let M(X Z,Pf be the Riesz space of equlvalence classes of mea-
surable functions on K. £ for every extenged RlPSZ norrlg on
N(x,z r) the extended Riesz semlnornngL' haq‘the weak Fatou

property then /x, is 0 - finite.
PROOF. Tt follows from thm.3.3. that M({X,Z,k) has the
‘Egoroff property}then. from W.A.J.Luxemburg,'A.C.Zaaneh, ﬁll,
© thm.75.6, it follows that M is g’ - finite. :

4, WEAKLY ¢’ - DISTRIBUTIVE RIESZ SPACES

A.Dedekind € - complete Riesz-space is said to be weakly

'~ di Tthntive 1f i for eve order bounded sequence (b
6 - distributiv for ry ' * d 1 : ( mn)hmeﬁJ

: r
decreasing in n we have : v eN
sup inf b = inf .sup' b ,

wenN e, @ NN e )

(J.D.Maitland Wright,£3]).

A quasi—Stonian-t0pologi¢al spaée is a compact space X
guch that for every- open ﬁ; set G.the closure G is open. A com—
pact space X is quasi—Stonién if and only {f the Riesz 'space:
C(X) of all real-valued continuous functions on X is Dedekind
¢’ - complete. :

' A 0;— meagre set in a tépological space is a subset of a
countable_reuniohtaf closed nowhere dense Baire sets.

Let X be a quasi-Stonian space . Then C(X) is weakly
G - distributive if and only 1 eaqh O ~.meaqrevsubSet‘0f-x is

nowhere dense (J.D.Maitland Wright,ﬂBl, lenma L) .
. 2 : o 4& g el

_THEORENv4.1;’LetvE‘be'a'Dedekind' 0 - complete weakly
0 - distributive Riesz space. Then for every extended Riesz qua-

~sinorm- §on E the extended Riesz pseudonorms Q_and'fL. are
: v



quasinorms.

PROOF Let X€E, be such thatj’ (x)=0. Then for everj
mEN there is a sequence (1’"“>n(N such that 0 <<Imy, 7\ .
and Aw [X‘ g(ann)g—" l. Let 13“"” - A=— X wy, A fl‘nen \3\{)1?% \l/Y\ O
for ‘W\€N SO | 3
A ; S’ 3 :O
In : M*} ’\&W)(P(m)
NN meN i 5

This implies

S .Su{) h\,{ -,Y,/\P(m)
¢ NN wmelN

For (P: N—_g ﬂ\f’ /&d— a |y41m ‘?(M) ihcn
v méN

S(ﬁ((f)é (nf % ?(im tp(m)) . '“4 — ‘0

eN helN "

m

So ch"‘O. and _JCi Adf) X\P :O.'
S A=l

By thm 13w id4) ?T' is also a quasinorm.
Theorefg 42 wlet! Bibe: o Dedekind ¢’ - conplete space.
Suppose that for every exfended Riesz norm @ on E the exte'nded

‘Riesz seminorm L?T is a norm. Then E is weakly ¢’ - distributive.

PROCF. It is sufficient to show that’ every principal (ohai

der ideal of BE.ds weakly 0 distributiVe.' So let ¢ E-}—\{to—‘]’énd'

A& -~

Let Fit): be ithe pPrincipal ideal gcnerateu by x.' There is.g quasi-

Stonian space ‘X and a Riesz 1somorphlom T of E(X) onto Ci(x)i

such- that T (x)= l (the functlon 1dent1c one) Suppose there is



T T

a 0- meagre set in X which is not nowhere dense. Then there is

an open-closel set ¢7£ YycX and a sequence ‘*(An)hEN of closed.
0 _—
paire subsets of X such that /\Y\’:?S and UAh’-‘—ﬁ/ . We prove
neN

that there is a sequence (I-sll)h-EN of mutually disjoint nonvoid
. ‘ 5 ' Bt
closed baire subsets of X sucih that B.n3¢ and UBY\"J Y
- o ' neN
Indeed, let
: "
N - Lo
" A

Then Yn is an open Baire set, SO there is a sequence

(Y“m)meﬂ\f of mutually disjoint open-—close@ sets such that

Yn= U\/J\m o Put AW"\'AY\H.O\/V\MV . The sets Z\:',nm are
€N , s e

mutually disjoint and U A_mﬁ,‘ = »’ . Finally range those non-

- “)W\GN i

VO.ji.d séts A, in a sequence k‘B“‘>hc’:N.'

Fo_r a set McX let 'X)M ke the characteriStic function

Sofi b
i : -
Let ‘\3=T (,X’Y) . Dcfine-g by
S(?;): o Z€ E\E(‘é) o
9z )= Avp _4;_ Sup | T(2) )\ : zeE®), -
- nwelN 27 feB, .
As \.) Bn B y it follows that @ is an extended Riesz
e yelt D : e
norm. Let Ny 37/\. 48}, ‘ N,y i saniopen Faire set so the-
e : L= :
re is a .sequence Vnm of mutually disjoint open-closed sets such -
: that  \{“:‘Y&)é \/“m. As BH‘W"M : compact and 'B“‘\'WC\/W'
for myll we may assumne Bn+mC U\}hk, e Let
T o )
'%nm_T (%Vv\w\) S : S (\3““’35 Z)’i.-l'mand
i - SieiEe L D IEOllowsiETEE i ‘
Nk | am

= : RN G e
. : ng (%) é% g('\(]wm)\ }%,'ZH*M

. Thus ?T(ﬂg): O , which 1&; a con‘t.radic_i:-ion.

7
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