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STRONGLY LATTICE-ORDERED MODULES OVER FUNCTION
ALGEBRAS

by
DAN VUZA

N.Bourbaki ([1j,§ 2y €¥erc.5) uses.the term "strongly-latticef
ordered" ("fortement réticulé") for a ring A sech that hxglcldjlj,_
for every x,yéA..According to this, we define a strongly lattice-orde-
red module to be a lattice ordered module E over a lattice ordered
.ring A such that ]a;x) 14)!11 for every atA and xLE. In fact, we are
interested in the case of modules over some funetion algebras. -

After giving the definitions, we study inéLZ some first
consttuctiens which yield'strongly latticefordered.modules (completibn,
quotiens, inductive limits, duality).

:n1§3 we consider the_question of the extension of the exten-
sion of the ring of "“scalars"; further facte related to the extension
(e Q. the "regularity" in the sense of measﬁre theory)'and application
of the results to obtain new proofs of some representatlon theorems
known in measure theory w111 be given 1n a later work. |

In.§4 we introduce the concept of principal modﬁle and in§ 5:
the'constfuction of the spaces Et; these will be used iné 6 which hand-
les:the AM-modules. For an AM-module E over Ckfx) (the space‘of-conti4_
nuous functions on the compact X) a natural map T is defined from the
dual EX of E to the dual C (%) ©of CK(X) . Then we characterise those
modules with the property that T is an isometric Riesz»homomoréhism.

'In [2] N.Gretsky consider a Banach function space Lg over a mea
surable spaceﬁZ The quotient space Ng-gfi ' (My.beihg the closure of‘
the space of 51mple functions)is under certaih aseumptions an AM—séace.
. By mean of a certain map he is able' to.represent’ the dual N*'as a space
ofibounded additive functions on the Boolean algebra of (equivalence S
classes~of)measurable subsetsroflz. ' |

We give in é? an abétract generalization of the above




situation, namely- an AM4$pace E and a representation of a- Boolean

algebra.QLr into the set of positive linear prdjections on E.- Ve

construct the map H from E* to the space of bounded additive func-

.'tions on Q/(, and we apply the results of§> 6 to ldentify ithe case

when H is an isometric Riesz homomorphism.

§ l. Preliminaries.

a) Vector lattices.

For a real vector lattice we shall use

tions:

Xy= 2VO
. Rz (—1)\10
|X\ = 1\/(—1)

the standard nota-

We shall employ tihe concept of a complex vector lattice

of Mittelmeyer-Wolff ([5]):

A complex vector lattice is a C -vector space E together

with‘a map m:E-"E (cailed modulus) satisfying:
i) m(m @)= m(x), X€E,
,nf,ﬂ(ax> \ﬂm@@)aéﬁbxéﬁ

A (m(m(x)-{— m(y)) =¥ G+y)) :m(x)+m(3)—m(:c+})/

iv) E CSGS’;m\netf QJM (E),

1,4 &€,

Let E = v (E)-—'m (E), ER is a, real vector subsrace of

Ev\,rj XEE can:be unlruel_{ written as A = l,'-l-LJ(L

_ We shall write Re 1;— x4 Im 4= x'a 57 The cone
@ SEructiure of redal vgctor lattice} 5 we - dcnotc by

- we have

\wth .’17,3(265

> m(L) defines on

4 its ordering

=

i
&4
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S 'Av\f;(:z =L)X E E:K G

(;(.pg)é \m(l)+m(a))l)3éf ‘ 4 . =
v (e (1) = () w\(z’-g) a)gé’E @)

According to (1), we shall empley the notation.fxl‘

llnstead of m(x) for every x¢E.

Throughout all the paper the letter K w111 denote one of
the fields El,'d: . By a vector lattlce we shall mean a real or coms
ple# vector lattice.,.To unify notation we shall write Re 2= x «Xéf?
for a real vector lattice E.

" Let E ‘be a ve’ctdr lattice. We_define:

A set ACE is order bounded if there is x¢E such that ACZ),

A set ACE i_s solid if Z(z) g At “for-every € A . A vector sub-epace
FCE is a vector sublattice (an order ideal) if xeF implies Rex&F
and |x|€ F (2 G)C F) . Every order ideal is a vector sublattice
(for the complex case see [ 6]). :
Various order properties- required to ‘E (e.g. Dedekind
comﬁleteness) will in fact refer to Epe
_ Let E,F be vector lattices. We shall use the notatlon
(£ F) for the space of linear ‘maps U:E—F and L(E) for
=K, €). A map (IE[IF)F) is a Riesz homomorphism if
U(x/) U(I/) for every x¢E. -'If E and F ‘aré real or“if Ecand'F

are complex and F is Archimedian then (€ L[E)F—) =% fig. a Rieszy



cw

m/\% 0> L((x)/\U(§§> 0.

h_omomo_rphi sm iff

%, 36 B4
{see 6 ).

By"E and F are order isomorphic" we shall mean there is
a bijective Riesz homomorphism U € L(E,F) e

L7Z. (}E F) will denote the space of order bounded maps
u éL(E} ) . If F is Dedekind complete then L,,_(F F) isda
'Dedekind complete vector lattice. We have

W20 = UE)CFr s
U [(x) = Awp [U(Y) |, x eEy (5)
O 4eZ@) ‘ '

(for (5) in the case K=(,. see (6)).
Let E, F be vector lattices. A positive map u < L(C F)
is order continuous if for every downwards directed set A C ER with

inf A=0 we have inf (L (A-): A positive map W € L(,E)F) is
0’ - order continuous if for every decrea51ng sequence (7 )y,eN with

v EVE o EK and \m,}( Ay = O we have lmg u(In)= Q- . IE'F is Dede-

kind complete, a?gng\{; \/\ € L,l (F)F) hv(;l%\li be called () order-con-
tinuous if | U) is (¢) order;continuons.

Let E be a vector lattice, FCE an order i_deal)' .g_ the -'
quotient.vector space., /f>,‘ E- -E— ’the quotient map.vThere is a uni-
que structure of vector lattice on i sucn that p becomes a Riesz
homomorphism. e

Let E be a vector lattice. A locally solid topology on E
.is a. l:mear topology which admlts a basis of neighborhoods of O con-
-sisting of solid sets. TE-SEtalsaa locallysolid topology then (3)shows
that the map 3 > h‘ is T - unlformly continuous; so,; if T
is Hausdorff and if F is the €T - .completion of E then « }-—-9)1.]-%1(1,)
extends uniquely to F. We can easily show that one obtalns a structu-
re of vector lattice on E (to check (iv), in the“complex case, define
the ‘the involution X |}— Jf* 7 x € E’_ = where A ﬁex -t Iml

Since E is Archimedian we have



=
Bl= 127

*

Thus X > A7 is T - cdntinuous and can be extended to a

in?olution on f. The maps L145U2: F;—G'F: ‘given by
U ()= L (12l +2)
g sei(lslet).

- are continuous. We have

..2— 1( x+x) -U, ( Gtz )+LU< (x % Lu (——(11*\)
But if xcE

u, (—;’ (1'%1* >= (%1) ém(F)
s (A (xe3®) = (Tn)s €mE)

Since ™M (?;>is T - closed, the result follows).
A solid seminorm on a vector lattice E is a seminbrm'q

with the property

x\ ¢ lj\ = ‘L(ﬂé Cb(?) :

A normed vector lattice is a vector lattice equipped with a- solid nort
The topologlcal dual of a topologlcal vector space E w1ll |
be denoted by E;: :
b) Function spaces

Let X be a compact space. We shall use the following:



~ function spaces: :
C' Q() the space of continuous K-valued functions on &
B Q() the space of bounded Borel K-valued functiomns on X.
k@ (X) the space of bounded Baire K-valued functions on X.
These spaces have canonical la£tice~ order, normed and
multiplicative struc‘turesl. Thé function identical equal. to 1 will also
bo denoted by 1. |
For a set MCX, /)C will be i;cs chara‘cteriétic funcfion.
It is an well known result (see W A.J. Luxemburg, DG
Zaanen,{}), exaple 27, 7) that for any Riesz homomorphism LP CK(X)-—)K
with @(4)= 1 there is an unique tex such that @(F)- £ (t) )/}Qé e ()()
From this we can easily see that if G CK (X)——)CK( ) is a Riesz

homomorphism with Ll ﬂ i there is an unique continuous map?L \/—-BX

such that u(ﬁ oa ? éC}L(X)

c) Stonian spaces

A ‘Stonian s?ace is a comi:aci: space X such that for every
open set GCX its closure G is open.
‘ A tompact space.X is Stonian iff _CK()().is Dedekiné.com-
plete. | |
_~ If X is a Stonian space there is a ¢’ - order continuous

Riesz homomorphism T BKO{)”? CK O() with thé properties:
i) for every ‘F = BKUQ . the set

Cte X | £(6) £}

is meager

i) L? )L&I. is a famiiy of elements in CK (X)_ooand,
1f fé’gkbq is such that F = /3‘*}3 f (’f) 2 for every téX then
te l

’L(z")x Au/n i

LéI



' 0‘-) o~ Stonian-spaces

A O -Stonian .space is a cbmpact space X such that fqr
- every 'open Fo’ set GcX }its 'cloeure- G is open. |
A compact space X is (O - Stonian lff C,( (X) ie Dede- -
-kind . - complete.
- e isa O Sfonian space there ievatfeorder‘continuous
Riesz homemor;;hism S i \(DDKOQ"% -CK (X) with the .property: foi‘ every
§E6$K(7()th‘e set | e : y :
ftex\ @) ApD)]

.is meager (The ex:Lstence of S? and r is an well- khown result whicH
U

can be ea511y proved by showing that the famlly of sets M(X for whlch
' there is an open-closed set G such that i‘(j()( , X/ 7/' X ("QE
is meager is a g - algebra Q/(, contalnlng every open—closed set if X

is O - Stonian and every open set if X is Stonian; then use the

fact that the span e'f YXM \Mé Q,L]j | 1s dense in {%KOQ (BKO()),

e Vector lattices with unlt
A vedor datlic with wnif 1s a notmed veetry qufto; E whith has an
elewenl € (cadled the uw T of E) oudh fhat : .
e k=&

T3 B la.lle, xet,
A lattice-ordered algebra w1th unit is a vector’ lattlce
E with unlt e equipped with a- blllnear map (1’) )\-——> )L‘j/ such that

D\Q;: eXzx 5 xeb

lxy| = lc\ly] Z;JGE:,

A Riesz subalgebra of the lattice-ordered algebra E with
unit e is a vector sublattice of E closed under multiplication and
containing e.

For every vector lattice (lattice ordered algebra) E



WL hit evthere 15 & compact =pace X and an ‘(algebr_ic.:), norm-preser-
ving Riesz’ homomorphism 0, E"“"CK O() suoh tmat u (6) = 1

and U (E) is ‘dense in CKO() . We bave ‘ (,((5)2 CK(X) iff E is norm
complete. 2 : '.
If E is an Archlmedian space and X ¢ E\ iOR then F(i)

equipped with the norm ” ” given by

,””1: mf{a€R ) ['\J\é'a’i'}.

becomes'a.. vector lattice with unit 11, . B is calledluniformly com-

plete if E(x) is norm complete for every x’eE_\Sk'O}'

f) The monotone class theorem (P.A.Meyér,&j,
ch.1,§2, thm.19) -

Let X be a set, g{ a vector space of real bounded func-
tions on X containing 1, closed under uniform convergence and such
that for every increasing uniformly bounded sequence (fw> CIN of

_ n :
elements of 2(6 the function f=1lim f belongs to ?6 . Let
h— o0
a subset of ?6 closed under multipllcatlon. Then% contains every
bounded function which is measurable with respect to the 0 -algebra

generated by the elements ofcg )

§. 2. Strongly lattice-ordered modules

Definltlon 2.1. Let A be a vector lattJ.ce with unit e. A
strongly lattlce-ordered (s.1l.0) module over A is a vector lattice E

together with a biliniar map C#" A+ E— E : ‘with the properties:
i) Cb(e )it XEE

13 (4,0 = ¢ (18],1=1), #eA, €.

When the context will be clear we shall write fx instead

oe $(21%) .
'7) That i the o~ efgebra ?MVJ“X by the sdk, ¥ (A) wiﬂq fé ‘@c\vul AcR
. opem o .




e A sub-A-module of E-is a vector sublattice F of E such
thét feA, x¢F implies fxeF. :
_ Let E,, C be s.l.0. modules over A. A linear mapp/
.uq "61—-}-EL is called A-linear if U(‘¥1_> ﬁu x) for ?éA
and x € £,
Proposition'Z.l. Let A be a vector lattice with uni&g;and :
E a.s.l.o module over A. Then: = ;
a) £QA+ and X € E+ implies £ x4 Ey -
_ b) Zf-EA and X&EK " implies 3?16 EK
) for every f¢A and xeF we have
[ Ea) = \Lf\l\l‘
d) for every feA- the map x%—~§£~1—'is order continuous,
e) every order ideal of E is a sub-A-module,
f) if E is equipped with a locally solld topology the'

map (_{)1))-—) —?1 is continuous:

g) if E is a normed vector lattice then

W2xfl ¢ WL W2l , fen =€ E.

PROOF. | - A
ay Mal=1flx]= 4 4o faxe €y
b) Follows from a)v ) A

c) We have Hﬁ“e -LH& A + 's_o, according to a),

(l[fl\e lﬁ)\i‘éE.Q.,. Thus v -
[$x]= 21| < e)u\ EZ/REAR

d) ,e) ,£),q). Follow from c).

proposition 2.2. Let A be a vector lattice with unit, E

a s.l.o.:
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module over A equipped w1th a locally solid Hausdorff topology T  and
let A be the norm completion of A, E theft; completion of E. Then
there is a unique structure of s.l.o. module over A on E whlch extends

the structure of E.

"PROOF. According to prop.z.l f) , the map 43 extends uni-

quely to a continuous biliniar 4>2 AXE— T . since ar>ia| is

T - continuous, i) and ii) are preserved.

Proposition 2.3. Let A be a vector lattice with unit,
Ea s.l.o. module over A,F an orderAideal'of E. Then there is anuni-

que structure of s.l.o0. module ovetr A on E such‘that:the quotient

F
map P=E“9§é“ . becomes A-linear.
PROOF. Obvious.
Proposition 2.4. Let A be a vector lattice with unit. Con-
sider a vector lattice E and a family (E.) of sublattices of E

i’iel
with the properties: '
i) I is partially preordered and directed upwards;

ii) for every i€I, E; is a s.l.o. module over A.

1i4) if 64)i;€'I' and t4'$ 3 then Eéd C:Eéi

_ the inclusion map EL =) Ef is A-linear.
B
LEL
Then there is a unique structure of Sl o..modulo over A
on E such that for every gé_l the inclusion map EL—) E is A-1li-
near.

PROOF The proof is based on the well known algebraic

constructlon of 1nductive llmltS.



= 11‘ oy

This propos:Ltlon Wlll be applied in the following to the :

—% 3 c=> x| S(‘g\

: Corollary 2.l1. Let A a vector lattice with unit e, A
‘its cémpletion, E an uniformly. compleﬁe s ilbion mbdgle over A. Then the-
ré is an unique’ structuré of s.'l.c') modu;e over A on E 'whzi.ch ex{:ends‘ :
the strt‘l}ctu;ce of s.l.0. module over A.

 PROOF:; If we would hé.v.e two structures of ?_&:module ovei:_ E,
‘then the identity maip would be K-linear‘by 'contin’uity s;o {:ﬁe twc'v sf‘t;ruc~-
ture would coincide. | :

For the existence, apply prop.2.2 to A and the Banach

space E(x), xéE\SLO}. Because the inclusion map € (x)—> E(‘g)
(for ‘2,\ £ (*3\ ) is A-linear, it wil_l.az$o be A-linear, by conti-

nuity. Finally apply prop.2.4.

Proposition 2.5: Let:A be a véctér lattice with unit e
and let E be a'real vector lattice or a complex Archimedian véctor'iat_-
tice. Suppose there is a bilinear map (¥, JI.) — jEJ; et )'—?éA ) X E
e o e . Then this map defines a structure of
's.ll.o. module over A on E iff: . |

i) For évery féA and every x,y¢E  'such that I/\\j/: O
we have gi\/\H{H\ :

: ; ii) For €very X¢Ey andjeveryvfl,fzeAi_ such that .
; £1A£z= O we haye' ‘4641/\4&11:0 s = l

PROOF .

".=" i) follows from prop.2.1 c) and ii) from def.2.1l.



= 1'2__
* <«2 " Suppose first E is revél.. From ii) it follows ﬂtha_t.
the map fipfx is a Riesz homomorphism for every x¢E . ~Lert fcA and
VPE Because fz+/\7( = 0 we have ' 1‘31”/\ [ﬁl’-l “O Ao |
x [= (Lo L) = sl + 1] = (e +ui(z_ (=],

Now consider the case E complex. From ii) if follows that -
feAy, and xeEy implies fx¢E, so f'eAR and xcEp implies fx¢Ep. The pre-
vious argument shows that Ep jga s,) .0 module over AR. ‘It follows

from [6), prop.6 that E is a s.l.0. module over A.

Proposition 2.6. Let A be a vector lattice with unit and let
¥ be 'a compact space. Suppose that CK (Y) is a s.l.o. medule ovér A,

Shen = = T : : : >

where by xy we mean the usual product in C\(()’) .

PRoof We: show first. Lk tey; Uk CK (\/> and ¥} £)=0

implies (if‘a) t)-0 for every ¥QA Indeed,

Iw ©! = Mgl(t Wy 1) = 0 T (| =0

- wow tet § € () ror v we nave (- 4)1) (B)-0
o (4330 (E)=0 ,  enac 1s ()= GHOIO.

" Corollary 2.2. Let X,Y be compact spaces. Suppose that
CK (\/) is s.l.0. module over CKOQ ‘Then there is a continuous map

,f\ \f._}\)( such that
| H (3e0)y ﬁé Q(x) ;}eCK(\‘)



-.13 =

PROOF. The map '£ \—91{3& ﬁéCK(X) Y48 a0 Rises ‘homo-
morphism, so there is a continuous map h? Y_—;»x such that '

_‘ }Ei ¥ f)\/ 1€€C (X) According to prop.2.6. we have

4= G0 - (Foh)y

Proposition 2« 7. Let A be a lattice-ordered algebra with

unit and let E be .a 's 1.0a Archimedian module over a. Then

fy(ﬁx) (\Q >1 3 %e/\;ie(:

PROOF. We can assume that A is a dense Riesz subalgebra of
CK (X) with X compact. Let 'xLE\iOE and let F be the norm comple-
satdon of D), AsEix) is . a 8il.o. modile over A, F becomes a.s.l.o.

" module over (K()(> . Buk FE.is isomorph'io to a space CK(Y) so by cor.

2.2, . we have

Flgn)=Ua)e, £ 5én.
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.Proposition 2.8 Let X be a compact space, A a dense vector .
sublattice of CK()() such that 1€A, E a s.l.o._module over A. Then

for every § >0 and every, £,g,h€A and x¢E we hAave

1$ (4x) - P e (u{ig,&i)u)]x[ ,‘:

PROOF. Let x¢E ~{o}and let
300 = §3¢€ L 1gle alzlvarol,
' e
The space F(x) (I>

where 79’( E(1> -—9 £  is the quotient map Let F-(x) be the com=

is a vector lattice with unit {ox(li\\) '

pletion of F(x). As F(x) is a s.l.o. module over A, F(x) becomes a

s.l.0. module over CK()() . By prop.2.7 - ‘
b (1) - Rxl)= [ @R ) - Wb (z)\» \(%M )= hpo)s
2illdgs &\\p (121)=p, (155 &I jal ).

Thus there is a u &J(x) such that

g =41l = \¥(3vx)f&; | 7.

f It follows that
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. )}’(gx) b | s"(ug»a\;lx\mg'lt,?g—_'&n () +lu] <
| (gg-RI+E)El

Proposition 2.9, Let A be a vector lattice with unit, E a vec-

tor lattice, F a Dedekind complete s.l.0. module over A. Then the-map

) SU SR UEL(E B ) siven by
U ()= SUC)
defines a structure of s.l.o. mgdule 6ver_A’o§ Lr‘E,F),

 PROOF. i) of def.2.1 is trivial. We check ii): if xeE, then

UV (x) = Awp r(mxg)i—w Uty -

YeZ(E) | YEZ 0
oup U] = [f ep (UG = |£Hul(x>~
Y €20 ' ' géZ'Ci) | »

_(epnub) .

Proposition 2.10. Let A be a vector lattice with unit, E.a

s.l.0. module over A, F a Dedekind complete vector lattice. Then the

map (§,U) = FU, § €A, UEL,(E, F) oy s
@u)(1)~-U($l) | |

defines a structures of s.l.o. module oyer'A on Lr(E,F).

PROOF. We apply prop.2.5. If fe€A and er+1thén



" - We have

e =

Mu\(xfz awf,' ' j@d)(»g)l: oo UGS §)l £ op lu\(\¥3l)_<_ o
. e EeZE) : ng(x).
s Ml\‘ sy 1ULQYD) - 1) ‘UKO
' ‘362(1)' s &

]

o_ » \’SU\S“&IHU\ )3£€A-)A uéLlL Cfﬁl)

which shows that i) of prop.2.5 is satisfied. 'Ney':t' we prove ii).We can |
assume that A is a dense vector sublattice e Q(X) with
X compact such that 1€a. Let U GL,l (E) F) : U270 - ana 1et
44’;{37’ €A 5 be such that 1{4 /\'qEL: (. Put V= ('g,\u>/\(’gzu> '
et £20 . Thére are ?4’316.C\<(X>+-such that %? —{-??/.: i)
\l&ﬁ:\ '« £, i=1,2 (For instance take g, such that 'Oé.gqsd
g,(6)=0 on {EERILE)ZT]  ana g (6)=f on SteX\ 875
As A is dense in CK (X) and  1€A thezl:ev are {{,)&zeA 4 such
that &AHZL:A) W fyl ﬁ—%—_—,i=l,2. Let X¢E . By prop.2.8 &

i Uh'bi) S—%—x ¥ 324,2 :

. ' »- i : ((’zl/l)(i"”zl):
V)= \/@\nw €\11> ¢ (4,U >Q‘4 J i |
= u (£4(£\41>>+ u(@l(&zx)) . é ¢ u(x>

As ‘¢ is arbitrary and F Archimedian,GV(x)=Q.' :

Definition 2.2. Let A,B be vector _lattiées with-units, E a

vector lattice which is s.l.o. module over A and over B. Then the :



s

two structures are called compatlble if
i) - glie) e JGA)ge’E

‘Proposit'ion 2ekie IE i0 -Drop.2.9 (resp.prop.Z.lO)'F (resp.E)
- has two compatible structures of s.l.o. me_dules, then the structures

obtained on L_(E,F) are also compatible.
PROOF. Obvious
3. Extension theorems

Definition 3.1. Let A be a vector l'attic‘e with unit. A @ -con-
tinuous s.l.o0. module over A is a s.l.o0.. module E'ox}e_r A such that
for every x¢E4 the map £ fx is o - ordéer continuous.

A ©' - order continuous s.l.o. module is Archimedian.

Proposition 3.1. Let X be a compact space, E, F 0’ = continuous
s.l.0. modules over 3 (X) VEE o s a positive ¢ - order

continuous CK (X) - linear map. Then U is LB 09— linear.

PROOF. It will be sufficient to show that for every xé-E_‘_,

_and every ?é: JBIEOQwe have Q GJ’.): -g u(l) .. .Sd let be ‘er_‘, . - We

put e 3[}2@()‘ L{ (a‘x)‘—"a( U(J()} ,

Clearly C[R (X\)C%”f % is .closed under uniform convergence: —1ndeed

if fn = 7{ 4 Lim “,{h_,}” g then ,f & 55 X) and

‘N —7 0

Mo 4% 4D 5



HX- £ oata 1\3( 3(,“\\1
Y- PU(x)\ & UE- |
e x)\\ Hf afn ) =

(1)

o e \M‘rﬂ* gu(ﬂ\< 24l )f—a%\\ Ux),

As F is Archimedian, uc& ‘(,>*9 jC u( ) : _
Flnally, let :ge 302(X> 7{ é% [96 such. thatig /Mi

- order contlnuous and E,F are g - contlnuous, we have

AAs U is ¢
UG- UGy 300 & (o e e
nEN héN
= Awp iy = EUG)
nEN _ o

By the monot;,one- class theorem, ?{ = %@(X>

Definition 3.2. Let X be a compact space ., A s.l.o. module

E over B ()() is. called quasi-Radon if:

" i) E is O - continuous

11) 1f X€Ey i?( B (7() .and (£ )LGI _ is a family
. of contlnuous functions such that i({)—— 9«*; :f (JC tex then

{el
o :ﬁi':-m*?, 4"1 . :

cel

Proposition 3.2. Let X be a compact space E, F quasi-Radon '

5 1o, moduleg ovér B\( ()() ; u : E—? F : ia bositive order con-



=
tiﬁuqus CK(X)"linear‘ map. Then U e BK(X> _-. 1inear.

PROOF. It will be suf.ficient to show that for every X€E 4

and every f QB (X) we have u (£l> £U(1 . 80 ie£ XEEL
\ % {4 B0 | Ul = RUE
B = (Ka|GCK 5 Gofend '

« We put

i

{4

Clearly 1 & '26

and C’@l}a is closed under multiplication. We have

C@ € ?@ ‘ Indeed,if GCX is Qpen then let

F= x| $ecp(),0¢fele],

(5: is d'irected upwarlds and A‘XGI = A“:?gj~

u(xgx) u(%f;q:)—ﬂwfg(/(@:)~aaf{£t(i HeC (%),
0§ < 7‘@} = o U(x) .

. Because U is order

As“in the proof of prop.3.l)j€ is closed under uniform con-

gei'vence and monotone convergence. By the monotone class theorem,
Theorem 3.1l. Let X be a compact space, E a Dedekind (  -com-

plete s.l.o0. module over C‘\( ()() /. There is an unique structure of G-

- continuous s.l.0. module over $K O() on E which extends’ the

sttucture of module over . CKO()

PROOF. The ﬁnicity follows from prop.3.l. For the existence,



-

consider first the case E.'—'CK (}l) S AeTE s ‘Dedékind G’ - com-
plete, »I is 0 - Stonian. There is a continuous map EL“, Y——a X

By = (k) 5 e Gy e 6

such that

Then the structure. of s.l.o. module over %K O()we

look for is given by

Iy= o(Sed)y  Fe By (x) 3 € Q(?_). .

Now consiaer the generé.l case. For every x € BES SO.B”
E(x) is isomorphic with a space ((y (\/) © , so by the previous
ar'gument, E(x) becomes a s.l.0. module ove-r %K (X) .. 1f
4 .[xl _4_113\ , the inclusion map E(x) —> E‘(\a_ is ZBK(X>5

linear by prop.3.l. So by prop.2.4, E becomes a s.l.0. module

over B, ).

~ Theorem 3.2. Let X be a compact space, E a Dedekind com-
plete s.l.o. module over CK (X) . There is an unique structure
of quasi-Radon s.l.o..module over BK (X) which extends the

structure of.module over CK ()()

PROOF. The unicity follows from prop.3.2. For tlhe exié-
ténde, replace in the proof.lof thm.3;l the .0 - Stonian spaces
by Stonian spaces, £K(X)€E BK(X) andS) by ir.. .

s These theorems will be. usea.to obtain, in a latér paper,
.other extension theorems. They will find tl:;eir \éép;icat'ion in
giving new proofs to vario_us representatién ‘th‘eoremé; In parti'cu- 3

lar, Riesz’s and Daniell’s ‘theoremis will ‘be derived as- corolla-

ries,




e .
4. Principal modules

Proposition 4.1. Let A be a vector lattice with unit
e and E a’s.l.e. module over A equipped with-a'locally' selid -H'a'tlxs-
dorff topology. The following assertiene are equivalent:
_ i) For every x¢E the set %{»/¥€A} is dense in
'E('x) . V X G5y ‘
if) Por every er'+ the set ifi ' fé/-‘(_/OSf,gﬁ} is ,
dense.in %‘ief {O'fj.(,?i,}‘ :
iii) For every ;zé/(f._;, the set {f [ ﬂéé\) 5@{\( e}

is dense in Z(x). 5 » ‘
-L\l) Fei evevy x € € H\e ?e,’r A |flee e
devse w 2 (2). ?f §’¥ ) | }
" PROOF,
1p=>14i) Let X¢Eyg and Y ¢ G ‘3 Lot There is<anet
(5"0) such that '_{y cA % 1“93 3 Then $f '1 (Pe:%)/\@ we have .
0 \%%46 =7 and

ogg(x = (Re

x) /\i‘——é‘}

ii) => iii) Let er+, ye€Z (x) and let V be an open solid
neighborhood of O.There is a £3> Q. such that il‘a\ é\/ . We

can find.‘a“.. .)‘A“ €€+  and 4,)..,)5(,,, e X such that

[ai\:1)‘ 7.5(:£'Y\'

W {\4
ac

[ ™
IN
S
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(if k=R , put 34:\&“‘35\3_,4,:1);{;—1 G o8 KeE,

see [6'), prop.4) . _ : :
There are nets ?f S) éuch that\;'nge A)

RS g—* <@, &LS "”%L )'( <£Lén . Defige inductively.

i
3&8‘:{43)‘ L‘i 3
_ 6368 = g’os'\ (e _%%éﬁ) '

s n : ' '
= YU ;
Then 63' >/O ) Z-%Lgée D g(,g : HL){SLSI'\. Put
LD _
za is e

We have ’%S\ e and C& X—> Z. a j el flollows-'
+hat there is S such that 4 — 3 % éL\/

s 1ii) => iv) We may assume. A is a dense Vector sublattice
of C (X) such that e=1l.

‘ Let x¢E and let F B the closure of %41 ?éA 1@[ 63
We show first that |x |€ F . Let V be a neighborhood of O. There
150 solid nelghiborhvod W-of O such that “WHEW W eV »
By hypothesis there is a f¢A such that ){\ée and ;F\:L\-—Ie\l\lf
We can £ind £>0 such that €]z} €W and geA such that
_[3\'56 g4 ~[#1|| < & (There is he ;() such that [f ¢4

and e\(f) _f_(.t_J. Faz H{(M . As A is dense in

C\(_ ()() there is a geA such that 13\4 e 'and i[g &{( 4 g ; this

g has rthe requlred properties). By prop.2.8’
|4 (F1e)) —1#112 { ¢ el=]

It follows that



e
gx £\x\)e\f\/

CS@M)'-— 12{\x| €W
Hlx] = (=] e W

80
g —lx)eV,
_ Let \362(1) 'and V a neighborho'od of O. There is |
a solid nelghborhood W of O such that \/\/+ w+w G \V4 o By
‘hypothesis there is f(—n such that lH L@ and Y —Tﬁli ew. By
the previous argument there is ggA such that [% \ée and
\x\-—%% EV\/’, consequently :F]:L\ &(S ) ¢W . Ve can find

€0 such that & |x \C\j\/ as A \,gc\ense W C (}() Theie i &,6'5\

Sachﬂzd’ &\Q{ Gﬂc, (L4 2‘“<£ B ‘, 7 8 . :
Tt Sellows e Lx eg\/. 2 P VQ?‘ ’ k 3‘1) E\:‘rl &x

iv) == i) Obvious

Definition 4.1. Let A be a vector lattice with unit.
A pr:\.ncipal 8sl.06 module over A is a s.l.o0. module E _-
.over A equipped with a locally solid Hausdorff topology and sa-

’tlsfylng 1)-1v) of prop.4.l.

Theorem 4.1, Let A be a vector lattice with unit e .and
" let E be a s.l.o. module ovef A equipped with a iocally solid
Hausdorff topology. Then .E is principal.iff ‘for every

Ly A€ E_,(. such that %4 AX = O and for every neighborhood V |

: of O there are {’)f'?,e/_\* such that ,f,, /\i =0 and.

2 = bxp eV, =0T

PROOF. Suppose E is principal. Let .- X 4 : ol Epibe
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such that X, NANX2L=0 . Put of = 14.4— P
are nets (% S) such that gCSGA g

Define

. By hypothesis there
and ﬁc%l.—-ﬁlt‘)'t'—‘l)?_.

§xm Qi ~Tuslas » oA

We have 845./\ §’LS:O and iﬁch-———)x(:)(:z()'l, From

d;_,'fésii\é e 8

(S

s;}*ehave that 5 ::(' _'_;d L 42 .
Conversely, suppose E satisfies the condition in the
theorem. Replacing £, by ,S A€ we may assume that g’) andi&

also satisfy f Sl e Me shall prove that E has the property
~i1) of prop.4.1l.

Let x,y € E+ \3 £ and let V be a neighborhood

of 0. There is a solid -neighborhood W of O such that W+w+W CV
_ We can flndy\GN :

e

such that 2 ‘xe\/\]

.+ Define for
odkén-1 L
;% (2- /\”?C'a; )
B s B g et
zk“ <23 Tx)+/\nl'
We have

e

Aj oW i EEL.‘Lkgtfﬁ

. e (6)-
i k=0 2 -



b
uk'\'\y - _0<£{é"”’i (7)

A x—=W%y N0 Olk<€‘
2o A% > ol (8)
VN B A x 0ethani-d L gy

It follows from (7) that there are nets (FK > i
s

'(%k%)S) .O<&<n -4 , such Fhat
f%& ?RS A'_
Oéfm<e1 @Sj/zsse
56?5'/\ s~ h g
JASU/L““/@”&O/ ks p g 20
Put :
Wi ST ¢ s

‘8) implies
Ay N0 ) Ock<lsn-L o
' We,also.have

SO

o0 | wiel—0, 0<ks A

Uy

et 0¢kelen=g . From (9
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k%‘ A {w{s‘ /\“"3‘ < | whs\ '“es (za\“’/&> =

(w2 V(\% "y )

so by (10) and (11)

]'»J‘&S\/\\w%} = ’whs"\lw&s\/\ Lfiid 4 -
¢ 4()wis \A 175 '\_'—1)_—)0 o).

(12) implies o S g k<€gn -4
w4 ' '
Z— ’wkf\’ A“’F \wkg\\_ao
k=0 0¢leen-1
But

. so . there is a S; sgch that

; Ei%— \10118 A\ g:\A/f+\wd ;

Define

, q:4
te o P
" We have ‘ : S
\;\—«’H\é\} Z“\x\f\g-o— j

50~y Xiebe (6).
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Proposition:d.2. Let A be a vector,lattice with unit’E
a principal s.l.o. module over A, F a closed order ideal of E.
Then _é; is a principal s.l.o.:module over A.

f::

PROOF. Apply prop.4.1l ii)

Proposition 4.3, Let A be a vectof lattice with unit .e,
SEa Hausdérff locally convex locally solid s.l.0. module over A,

Then E is principal iff for every EPE*E;*’ and ¥ éfif wevhaveA
A9 l(x) = e V€(F)),
, feA ¥
\fl<e 0 iy
‘ PRCOF. The necessity follows ffom prop.4.1 iii). Fo£ the
sufficeny, let xéE+ and let C= %'fiif’rel\)w\ée}‘ suppose

6—-7‘ Z(i) . As C is convex, there is xS E* 7y € Z(i) :
and Q.E'GR such that . - .

Re ¢ (8x) < ;.< @e_,tp"'('\w CFeEA IR e,

Tt follows'that

2 < 1461 < 121 03) €M) =@

" .which is a contradiction.

5. The:spaces E,

Let X be a compact space and let E be a s.l.0. module
over C;<(><) equipped with a Hausdorff loéally solid topology.

We define for te¢X
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L treq | pr o}
Slieé CK(X ,f(’-‘) &) —onQ€€4 e ane/g/,{oz/moc/o}f}
%Zf&(neﬂ\f)(é J'.GE}

o {5 telven heg e

Obviously, M‘f ZN‘(C « Also, if xe.Nt‘thgre-is' J[é CK(X)
such that 0¢f¢1, 1—fe[]f and £x=0. ;

;- Proposition 5.1. _I:Iq

& is an order ideal of E.

PROOF, It is.sufficient to show that Nt is an.order

ideal. Let g € Nf and 2 ¢ Z(ét) . There is fé CK (X) such that
(—-3( (—J_t‘and' fg =50 It folloWs. : V

fal = Ill<] < 113t = 1Fgl=0

so 1:(4—:{)1 GNf

Je N | R
For {'GX let Ct:-l;\(—__ﬂ | and lét Q,E——%Eﬁ
be the quotient map. t : . ¢

If g is a solid continuous seminorm on E, we denote by
9 the guotient seminorm on Et. For every x¢E define the map.

@i(x) AR by
| /s(z)(f) 7(/:{({))

We also 1ntroduce the set

9;(1) - Sl dup z(fl)} /wéﬂ\f :)“ Q(Ck(/\))Hjﬁf"j

~ /4ULéh
f<iem 4



pomi s i es s

~ Proposition 5.2. '.‘ | ey : -
1) 47.-4‘(';1—,) = [p] 8,0 For fe (X) and xcF.

ii) 9; (1) +is directed downwards énd

4@ of G

" In partiocular sq(x) is superior semicontinuous.

PROCF. i) Let téX. We have (f #f[f.)l)le /‘1{, |

. ,/){ (jz;) = pi (f{{«)x) = {/é)/;(i).
: e -, (1 50) = 14013,(1C 0)= 1] HCAE).
2ii) Let f,;)‘- ") fn) 2.4)’_' ')'ym 6(&((){)).& l;gsuch th.alt
dgpefs=ivap i
feién ey
st e S ~ .
14§4m o '
3 (hengy )= 3. (g ) <0 (03057

e (o 3 (9057050

14(4n < 148
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 On the other«hand

Au{: {—L /\ja = /\
120¢n o
4sJSM<

w0 ke F bk
‘ v Let —f,f) ‘f € (CK(X»{' t?e, suéh that . °
, ‘l’-:‘t[‘? ¥(, =1 and let teX. There is j such that i)f- f) i . It fol-

lows that- X — 1),& X é M so

4,00 - 7(&(1) 7, (r(hx) ¢ ‘i(f'i)
- w ht)< o 4(h)felt)

4LL‘h

Thus

at) ¢ Pf FE

' Now let t¢X and € >0 . There is zeN_ such that

0602) € 9, (e )+

iherg is fé CK (X) | such that ) {-41 )4’:;egfand‘ ._ '
e -ﬁ%r-o . We can’ find g € (CK (X))+ .sqch that 36 j‘t and
5\/3‘» 4 we have

- um» amwl) 1(“%) RO

S EO) < vy ) -W") R
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~ As § was arbitrary if follows that

o F@ £a@).

Proposition 5.3. For every xEE we have

- Aup A‘l(iﬂt) 2 g(z),
el s 2T

If q is an AM-seminorm we have equality,

~ PROOF. -We can assume XEE, . We have .

%(i)(f)” 9, (V) < ?(i)

Suppose g is an AM-seminorIﬁ but‘ sup Ae (1) ({7)< CI(X) .

R ek
By prop:5.2. 11) there is € D -and - {L‘).--) fné(CK(/’())*
such that sup ¥~ = A ~and .
A 2 i B
ap G ¢ g(x)-e
{4len
We can assume that for every 1 thel;e is tC e)( such that

. 1?: ('(:L) =] . It follows that

p qlhie) ¢ ‘W) ¢

(LL-’-V\
As A= AMd’ ghi we hafre ~'
eiem '
) = aup %(f x) ¢ 7(1) E

_ 4£L4 :
which is a contradiction. :



Proposition 5.4. Suppose E is principal. Then for every

teX we have dim Eté ﬁ. .

PROOF. As E, is Archimedian, it is sufficient to show

t
that (E’C>R is linearly ordered. To this end, we prove t;hat 1E

el e tlet ZiAE D thed o0z 0
; , _ :

So let i) %zé(Et>+ )% 4/\%7.: 0 . .Suppose
Z15%, ?éO . There are X 4,X,€ E-(— - such that
x ALy =0 and Z; = Ptcx;) , i=1,2. Also there is a
neighborhood V of 0w Ef such that Z—_,)Z‘z_%\/ ?

"By 'thm.4.l. thereA are f,) fz € (CK('X))'f’ such that
f,Aflzo and /bf (1,,\"‘}?';7({)6\/) A ey . We have -
i{, (f) or- - 7’% (l{') =0 ; suppose for instar.l’c.e ,{’ [z")‘:— 7 B

follows that /Dt [;{’, :i,’), I ' so

Zy= }’t["d? 7 (‘z/‘f42‘4)6 N

which is a contradiction.

The converse of the statement in prop.5.4 is ‘false:

take A = CK (['O/ 4])/ E :'/.4 (50;43) X [/ ([O/ ’IJ) and define_
Fle )=t ty),; fen pegpecs
where by fx we mean pointwise multbi'pliICation‘.
6. AM—mOdules

Let E be a normed vector latticé. We shall denote by

'~ € the injection of E into E *, ¢ is a Riesz homomorphism.
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By Ew we shall denote the space of order bounded norm °
and order continuous linear flunctionals on E; 'Ew is an order

ideal of Wt

Let X be a compact space. We denote by RK <><)the vec-
tor normed lattice of K-valued bounded regular Borel measures on

Ko Rlesz s theorem sLates there is a norm and lattice isomorphlsm

™ ".C\((' >-—~)Q X)glven by

[ o) 90) L 1€ G, 7€ K

By-prop 25 10 BKOQ is an s p module over B X)
As R (X) - can be :Ldentlfled with an order ideal of BK X)
we obtain a structure of s.l.o. module over BK(K> on R )()
which is transported by m on C ()(> .+ in this sense we shall
write f<]0 for f ¢ B ()() and ({’é C (X) . This structure
can also be obtained by applylng thm.3.2-(in fact this is: the
idea of deriv1ng Riesz’s theorem from thm 3.2 we have spoken
of)s
In the rest of the sequel we will consider a compact
space X and an AM-space (not necessarly with unit) E which is
bs.l.o. module over CK ()() . E% is an AL-space and ’E** is e
Banach lattice with unit e. E 185 Esds0n module over (’K(K) .
by thm.3.2 £ becomes a s.l.0. module over'BK(X) L
a s.l.o. module ovef CK (X) and over itself, if we consider the
unique product on Ea'de turning it into a vector lattice with unit
e (the uwnit e of E** is defined.b.y e(\p):”\F”) «{)éf":). By prop.2;6,

the two structures are compatible. It follows that E%')(-‘)Q

¥* ¥

‘is . s.l.0. module over CKOQ and E ; by prop.2.11 the two.

structures are compatible.
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‘ = F*X S o oREe
... Let ¢ E—F d € —>F . be the ca-
nonical maps; £ and d are C\(O() - linear.
( ;) will denote the duality between CKO() and C\((X)/

L L
We define a map o E e CK (X)

..U_np)§> CEOR Ge»?) %E &éCK(X)

Tis positive4 ana CK (X) - linear.

Proposition 6.1.

i) T is order continuous : BKO() -linear and its range

)
: ®
is an order ideal of ( KO<>

ii) |quJU = [ {a q € Ei ;
1) ATel ¢ Uel o g€ BF.

PROOF .

i) Let ?’C E a downwards directed set with infF - =

As eC(E )  we have for '-FG (CKO())‘F

e (T4 §)= i (&59) (e, §9)= (e, rafy)- 0
- VeF Ve > pef Yex
- So T is order continuous. By Prop. 3.2 it follows that T >

lSB O() =-1inear )1n particular T(E ) is a B\(O()- submodule.
Let J € T(E ) and let NE€ Z(ﬁ) . By Radon- ~Nykodim'’s theore_m ;

there is ,}q 6'8 Q()such that A= ; , SO 1< T(E*)
11) \chpﬂ~ (T¢, )= (e,9) = el .
114) u“nfu LTl i< T(W}\\ gl ‘F\\

- Let "ol & E . By s(x) we shall denote the function /;%(i)
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constructed in 5;5 taking for q the norm of E.

Proposition 6.2,

i) Let Z¢& E+ and 24 5> f (CK(X));‘_}quch that
A:‘P % =d o Then

A&l o é(‘\‘“{o MZ :Llhe )6 _

f<Len

il) Let X e-E*_ and (€ ET+- . Then

() < j A@dwm (Tg) |

PROOF. _
Z
" i) We have sup i— SO
' €ten

o
L(x) = owp ‘{ ¢e) Sk

f<een

But

2e)¢ | feolle = )l_x( paolle - ltfxlle.

e T ' e ¥ (u) i | \f e,

Now i) follows, ' :
() 2 1 . ? ‘ :
ii) Let ;]&1 32" ‘ﬁh ¢ ((K(X)}+ be, such that ,iug: f‘ Sl
: % LEn
i)implies that e ;



e (,c@,@ & ((Mo 19\l 4 )6»0

- P
- _ (T ¢, AW? M X \\%L > .

Cp4uém

Then we épply PEOP«5:2,

: Let téX. If dim E £ A let A't E —>K bethe ‘uriique K-1li-
. near injectlve map with the property A (% ,\%n : for Z é@ft)%.-'
If dim Eoe for all tex define S E—a R ()() by .

e
S&) (t) - (w)

» As S(I)z A(x)é B O() for ZGF+ we have that the‘
range of 8 is indeed included in B O() Clearly S is a C (X)-

linear Riesz homomorphism.

Theorém 6.1. The follo_wing assg_rtidns are .équivalent:
i) T is isometric . ' |

1) 7T ié one-to;one r

iii) T is a Riesz homomorphism,

iv) E is prineipal,
v) dim Etéﬂ_ for aee,‘%é)(-'

. When i)-v) are fullfilevd. S is isometric and there is

- _ : ¥ :
a positive linear map R s CK X) — E” such-that

ROV ¢ I N CK(X)’i o
R (NG&) -;S S(x)o(m(?\) . xeCKoQ*)x_ee“.
e _.

RT = 1w,

PROOF .,

1St il Obviouss
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11) 2 11i) Let ¢ ‘(?LGEJ( Le such that \PI/\\P oy
. Put X (T‘()O/\(T?L) i Bl e <T«{? there are f. € (B, ()())+
such that ¥ <4 and }\ fT&PL T(:g tﬂ) ¥ If we denote
Jo=f @, wenave P €9, ana A= T‘P, =Ty, . Limsa
is one-to-one it follows Y=Y so <{Jf P,AY,=0 ana.

n=0 .

1ii) => iv) We prove first that 1f(\][ ¢ t_ ‘P,,\QLQE

and &(‘3)&(‘?4) &(\PL) then - |
(T40,8) =40 (Fp), < C9).

£y d () = ) (580 = (»cq;)dm) o
9q () = () ()
(T 2,9)- ($Tp L) = (Tm)i)

s0. 1t is suffJ.c:Lient to make the proof when f=1l. We havel ‘
U‘Pu z . (e;f)= (“U\Dz) ‘e) (’C(J)d(‘ﬁ))e)’ '
| x (d(ﬂ),/c(;/)e) | 0/[%),&(7)) (da)xﬂ) %/;,«)

Q .

Now let \P € f and  x¢E. Because .E* 'is an AL-space

xX¥x
. the range of d is an order 1deal of E

.such' that £(x )Ki(f) d(yj) :

, S
‘ so there isW ¢l
. It follows -
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,c(m)ol (1) = [ea)]l dAp)/ ca)cw)] d(\PHé A(1¢1) -

By the precedlng argument

B “P(fac) jf{fCK()(_))
righa) = o0

~ Because T is a Riesz homomorphism [T‘M T’\M

= (19, Y= (mba)e = Anh \CW f?)\
- 4 i b e Ry

: - =L

= AW? \‘?(fx)\ v .

- fe CKGQ
NIy

By prop.4.3, E is principal.
v)«;j i) S is isometric: if xéﬁ:+ we have

\\ S(’()“ “ll by prop.5.3. It follows for x¢E

1 S(x)H =l (S(i)i = \S(lxl)ll (Ll ==l

Fbr >\ (& C\( (Xy(’ and xeﬁ: we.have

| § Sty do ()] € SCOUINL = Ve A

a

s0 R(k) SR o RO AR

To prove "RT = ’\e* Abigs é’uf_ficiegt to 'show that
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| *
(RT)(2)=¢ , peEL .
Let x¢€E,. B'y' PrOP.6.2. - 11) we have

(RT)()) > 4(2).

So Q{T)(‘f)% (P « On 1;heother hand :
i L RT)EN < \xw'\l <l

As E* is an AL-space we have LRT)(‘?) 2 LQ

Let LFGE . We have

Al = LR (TN 4 1T € IH\\

so 1 T¢ = \\‘?“ o

Prop;)s-ition 6.43.' Supp‘ols.e i)-v) .in thm.6.1 are. fullfi-
led. . v
Then R is an order continuous Bk ()() = llnear Riesz
homomorphlsm If P=TR we have that < P< i ¥ and
CulX)

P is a projection onto the range of T.

PROOF. Clearly R 'is order. continous and CK (X) =ld=

~ near. By prop.3.2, it is [3 O() - linear . We have

P :’TRTR_T({~P,

let N ¢ (CK(X)) ._a'nd fe (C,0), i
(T(RN ),3)= (e, FRO) = (e, REN)= | R(ﬂ)ll<
‘ < LR —(éx D=059)



=40 -

e 7o O(>* Jf {ollows thal Pis a Q\esi Q\omomoz\olm&m

Le¥ N € C U(*' we have :
()R(l}\\)) PN 1POV)- lT(R(x))\ T\RO\’)\

Because T is one-to-one it follows that R (\7\\> \RO\)\

7 The s.l.o. module associated with a positive

representation of a Boolean algebra

We shall need the following
LEMMA, Let E be a vector lattlce and let P € L(F) be

such that ‘O £ Pt = 46 and Pt ? : 'i-—l,2. Then

P4 sz T (P« 1>/\(P7—1))_¥ €Ey .

PROOF. Put & = ( P, x)/\ (?gt) . We have P, X <2

Ha Py P,Lx é;Pl A . From the hyp.othesis‘ ¥ P,Ll' é P, x so
PPk e
From # £ V,‘ X it follows that

05 (I ~r.)® < (lg=Pt2=0

so = P4z . AR kil P,Lx. it follows that

Z = @4% < Pq Pq,x’

Let QL be a Boolean algebra, X its representation
space. We shall denote by SK (2L> the space.of contindous,fini-
tely K-valued functions on X and by (/aK<2(’) the 'space of boun+ -

ded additive K-valued function on . There is an order and
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norm preserving isomorphism \/ CKO() —%J{ (%)given by
NOIGERTICTY %Q(X) ,ne%

Let Q«(/ be a Boolean algebra and let E be a vector
- lattice. A positive represéntation of 9«(, into L(E) is l‘a mép-
ﬁ:Qj}—aL(f\ with the properties
- 4) P«(O) -

KCA)?O e I
b K(A’) Sl -kl AéQi
A’ being the complement of A

AN ERAINGS ,%GQK

It follows from the definition that h(A) is a projec-

tion such that O iﬁ\(ﬁ ) < 4(,; . and that

b (ANB)- &(ﬁ)f&(%v)——-ﬁx('f*) A(B) .

Proposition 7.1. There is ‘an unique structure of s.l.o.

module over S (Q'Qon E such that

K . .
Ty X = ﬁu(/&)(x),, AeQ_L,xeg,

- PROOF, Let j— € SK O() and.er.E ; £ can be u_niqugly
written ;

"
F Z Ce X/A
2| &

with C EX b€ 2&, ACAAa\?-OSﬂL\fj. We .define

o e
e e b(A; )(")
=1 Y



s

It is easy to see that the map (f,x)+> £fx is bilinear.

We preve that f‘x.' = Lﬁ”l\ s aWe have &(A )&(Ad) @) f?r :

C?éi so | |
T RGN ARDI- L)) AR 1<)

It follows that

PRSI Cls 3 ) 1

\

\,—(

Proposition 7.2. Let Q‘, be a Boolean alcjebra; Xoits
‘representation sbace, E an uniformly complete. vector lattice,

-2(-—-—? L(E) : a positive representation. ‘Then there is an

unigue structure of s.l.o. module over CK()(> on E which extends

the structure of s.l.o. module over (29
PROOF. Follows from cor.2.l.

- ~ Proposition 7.3. Let 2‘4 Ee a Eool_ean algebra, X its
representation space , E a vector lattice equipped with a locally .
soiid Hausdorff topology, K QL F——}L(E) ' .a positive represen-—.
~tation. - = |
‘ i) Suppose E uniformly complete Then E is principal

Q% a modﬁle over S’K (2{,) iff it i85 pr1n01pal as a module over CKO()

1i) E is principal as a module over §K.<'2() iff for
every nelghborhood V of 0 and every &,,% -LGE.\, such that 14/\1"1.:0

‘there are A4, A ¢ Q/( such that A /\A '0 ~and
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@

&(A)(i)c\/ 1,2,

PROOF .
i) Obvious. :

i ii) Suppose.E is principal. Let 's!,,)i’z_ & E+ be such
“hat Xy ANX, =0 and let V be a nelghborhood.of 0. There is a: solid
'nelghborhood W of O such that \/\}'PV\/ & \/ « By ‘thm.4.1l. there are
-f‘f S f‘L € (SK()())1“ such that ﬁ,(\/b=0 and . e fc*.yt‘ C_W) 'L',:/}Z ‘
' There are- /A”/A—L'é Q,L such that f'—\), Al 20 and

A = ’KAL !L' | o _i=,l,‘2. It follows _xﬁé'af." - %’qﬁfc- XL‘ cW
80 -

"X, P oy f)i(-x»l/}f) —1/}1’ el/k/+WC\/

Conversely, if E satisf'ies.tkhle' condition of‘ ii), it is
principal by thm.4.1l. | ‘
| Let Q,L ‘be a Boolean algebra, E an AM-space, & 2(‘9‘.(6)
doa po?itive representation. Deflne a map H . C¥ —> C/a (QL)

by

Hee (A= UL gl eel , aed
.where.z ’{\.(P( )* is‘ the transpose of ﬁ(A) "

Theorem 7.1. The fdllov}ing assertions are equivalent:
i)- H is isometric,

ii) H is one-to-one .

$i4)' H i5-a Rlesz homomorphlsm
. 20
iv) For every ;z,,)»,( ¢ €+ ‘sucn that ’i A, =0 .and

bevery'£'70 there are A, /4 ¢ 2L such that /),,/\,Q Oand' :
.QL-——/&,(A)();)Hdgi R _. i
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PROOF. We can assume that E is Banach. Let X be the

' represehtation space of QL By prop 7 2, E is a s. l.o. module over

CK OQ . Let T.6— C O() be the map defined iné 6.
Observe that H=VT and apply thm 6.1 and prop.7.3.
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