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ON MAXIMUM PRINCIPLE FOR DIFFUSION CONTROLLED PROCESSES

by
A
C.VARSAN

Abstract.

: The problem we are con51der1ng is described by
nonlinear Ito’s equations in which the contrcl variable is ens=
tering both drift and diffusion coefficients. In ‘ll assuming
that the control range set is a convex one it is obtained the
- maximum principle in local form. °

In the lack of the convexity assumptlon for drift
coefficients one has to exploit so called nfaxed controls. Pro-
ving that the convex cone of first variations in the relaxed can=
trol problem can be used as the first order approximation in- the
original problem and using a simllar technique as in gj one gets
the maximum principle,

1. INTRODUCTION

We consider stochastic control differential equaticns

1) dx=Eit %, u)dt+21. 95 €= u)dB (£ tc:w ,t ] xeRn,

i=1

with given initial condition x(0)=x0€Rn,where
'B(t)=(Bl(t),...,Bk(t)) is a k-dimensional Brownian motion on thg'
probability space{S}, F,Pfg.

As the functional to be minimized we consider
2) 3 (x,0)=E{G (x(t;))+ ]L(t x(£) ,u(t))at f

As adm1531ble controls we allow any bounded measura-
ble non-ant1c1pat1ve process with respect to o - algebras Ft ge=
neratedAby %B(s), togsét }, togﬁéﬁl,'taking values in the fixed
set UCR™; denote it by % . . |

For an& uxfzé.there exists an unique non—antipipat%-
ve proceéé xuxti verifying (1) 1nw1ntegral form whose trajectg—l

ries are continuous functions 1nlté{p0,tlJ a.e. 1n<vésj

Thé dynamiczprogramming'approach in [2] and the



convex analysis method in [37]:ave net suitable'fof our problem
since the diffusion coefficients are depending on ‘the control
- and we are not dealing with the convex case.

In the case the control range: set U iga convex
one then by using local variations in £ and 93 we obtain in
[1] the adjoint system and maximum principle via a general mul—
‘tlpller rule: theorem.

It seems that the local variations are the most
suitable ones for theicontrol entering'functions g;- When the
controlvrange set ﬁ is not a convex one we are obliged somehow
to con51der that the control variable © splits into two parts

=(/U, {L e &Ll is entering in the functional and £ only, and'ﬂ,
is. entering in g9 only. In the case the problem contains a flnl-
te number of functional constraints Eﬂ/(x(t 1)£0 i= l,...,m}
Bﬂf(x(tl)) =0, i=m+l,...,m+m’ then the maximum princ1ple in [1]
or - in the present work (pointwise form) has the same formula-
tion except the flnal value of the adjoint variable which will

mim

be P(t;)= Zo(i 2 = (xq (1)), where {30, 1=0,1,...,m,

; i=0
MEr

Zﬂd?l + 0, are same constants determined as in determlnistic..
case applying a separatlon theorem in a finite dimensional spa-
ce. ‘The general procedure in [l] or in this work will not be af-

fected by the prezence of these additional functional constraintt'

2. ASSUMPTIONS, DEFINITONS AND AUXILIARY RESULTS

From now on‘ﬁlﬁczc will be fixed.
The functions f,gi, G'and L in (1) and (2) are sup-
" posed to be continuous in-=(t,;x u)é[to,t-lxR xR ;. and they have
first derivatives in x, ZiL(t,x,u),h—f,gi,G,L, continnous in

P
(x,u). In addition




ﬂ/‘)h(t X u)ﬂ~ Mo for Ibuéf, (£ x) € [to,t ]xR h=f,gi

”'TZ(t X u)![é M (1+¢x1) for ”uuLf , and -;)—“Z-(t x;u):is con=

tinuous in (x,u);

b)u'h(t",x u )—h(t’,ﬁc u')lléKf (1+ px 1 p) o (A t",u al) il /Iu"lléf

h=f,L where ¢: [to,tl]x}-to,tl]xR s p =) is continuous and
c(t,tyu,n )=0
c) Il l&(t,x,u)ll, Ih (t,x,ujllé N (i+<p;x117") if MLU < f -
o § »
h=G,L. ‘ ' |
Let Lg( ),...,llﬁ( E be arbltrarlly chosen. LetJy be -
the set of all f-dimensional bounded measurable functlons :

p: [to, 1]~>R£ verlfylng P (t)x0,:1= l,...,f Denote £ ’f(t X) =

=f(t,x,u,(t))+x Z Py @) (£(t, x, iy (£))=£(t,%,uy(£))),

i=1 ya ..
ufr9e)= L)+ - q (t)(u (£)-ug (6))
J=l

for re[0,1] p,qe?f.

Of course fr’p(t,x) 7 ur C‘(t) are random functions.
Let x ‘be the Ito solution in
L r,p,d.
3) dx=fr’f?(t,x)dt+ o n

£o,0; (e,x,u 7 Me)) B (6) x(bg)=xgeR

Using the smooth dependence of x on ré@,l-[ (see for exam-

r,p.d

. ple Lemma 3 in [1]) we get

4“) xr_;p,'q(t) =x (t)+rxsz/t) + o(t r) ‘
wherg' lim% S{;ipf‘ ' rElo(t r)l j —0, and X/’"i .is the Ito s'olutio_n
in ¢ : ' 2 SN
5) dx= [F(t)§ R Py (t) (f (t) 55 (t))] dt+‘,_(G (t)x(t)+
pades 3 )
g (£) 2 ay(t) (ug (t)—uqx.t))) aB, {t)

R e
| x(t0)=0



\ "~‘cF,;.(mg)_=_;§(t,x0 (£) yug (£)), £5 (£)=E (£, % €D 0y (€)1
£, (£)=£ (£,% (£) 4y (£)) 6, ()= (g (6) yug (£))
gta (t) = —2‘% (tlxo (t) ruo (t))

In addition

r,p,9
a bounded fzt. -

6) K =E iop_”x (t)um 32, uniformly in re[b,l],p,qf?aéz?,
. é't1 P - 36
(see (4) in [11)

R

Since f{t,x,u) is not linear in u‘and 6 is not
convex it is obvious that the solution X doesp’t.correspoﬁd'to
an admissible control %565&5. Even if we suppose’ fhat
u‘ﬁ.)g=@Z, the solution x  is still non-admissible since f/'is
not generated by an admissible control.

- Our attention will be concentrated mainly on how
to approximate £f by random function correspondlng to admissible
controls such that the first approximation for the admissible
solution to be the same w1th Z1HE(5) .

In determlnlstlc problems the function f i
is corresponding to so called "relaxed'varlatlons, of the fixed
field fo(t,x)=f(t,x,u0(t)). The approximaﬁioo of the fnﬁt,x)
by'admissible fields in deterministic problems is relied on the.
essumption.that x belongs to a coﬁpact fix ég# in R" which allow
us to uSe-the wnity partitien-theorem.. . In stocheetic case the
compactness assumption is not a realistic one anymore and we have
to use dlrectly the properties of solutlons T (30 |

The defition of approx1matlon ﬁwaQ %) is &imilar
to that in deterministic case. We recall thc definition of such
' approximations_which were introduced in [4].

L;Let’rod§,11 be such that ro_;g' pi(t)<\1




\

te[to,tl]. Fixe'ré[O,rO_} arbitrarily an_d'de'fix'ue E s=1,...’,1§,
a partitidh of [to,t ] in intervals whose measures are bounded
by.a number depending on r which will be specified later.

= ﬁ Each«lnterval I is d1v1ded into (f+1) subintervals
0

E ,...,E1 such that meas E =L fpl(t)dt, i—l',...,f , Meas

g 2 Iy
Eg= jf(l-r' Ei Pa (t))dt The order in which we consider subin-
A =1 iy :

tervals Eg,...,E

0 = -

is not important. Denote Il the partition of

[tO'ti] givén by Eg,..;,Eﬁ, s=1,...,N, and define fw— as'follbws
70 ET e )Rk, W (B ) téEEi;, TENCHEIN O T :
We call f77 the commutaﬁion funétion'correspOnding to 77.anq
£q(t, x),...,fﬁ(t x), £, (t, x) £f(t,x,u,(t)).

In the same way one defines L’ (t,x) téQFO’tl}’
x€R" ‘ LHE
7”).Lﬁ}t,x)=L(£,x,ui(t)), téEi, iéo,l,;..,f, s¥i,...,N, xeR®,

and LT 'P(£,x)=L(t,x, 2, (£))+r T p, (£) (L(t,x, & (£)) =L (t,x,%(t)))
i=1 .

wﬁefe L is enteriﬁg the functional to be minimized.
Let § and M be such that -

R R T RACEI (o () PR S e RS SR P 1 S, 7
phdei 0l e M foryulle § o h=fagy, o d=lyuongke

Denote by (¢ &z ~ a bounded set.

LEMMA 1
Let (a), (b) and (c) be fulflled Let x( ),u ( Viie v
,...,uf( )€QQ be::fixed." ket gﬁf@ l) and C§C\?> be such that
r, ;L_ p; (t) <1 for all pé?O‘ Then for each ?6(b 1) and
ré[p roj there ex1sts a partltlon W’dependlng ‘on 7 and .r such
thialy o o £ . | P

> %
'.sup : E [[? 'p(t ¥{t)=h (t,y(t)] dt/ S

g 7 - for h=f,L,
t? tnéu-_o,t’l &

uniformly with respect to y(.) sQlution in (3)_corresponding'to

p,qé(p and ré@hlj,



a\~gwhere the constant Cl,is not depending on'p,7, T«
; - >
: _ - ek : % (£) £ Ctg ity
Define  %(t) .fzz’.(s)ds, where u (t)a .
J 0, “ltgrty)
By definition :

9) E[U((t)” sup : Eiﬂl(t)/ 5. Lim ui}t)ﬁiﬁ(t) a.e.(dtxdP),
e

% L. ' ;
Denote fg}t,x)=f(t,x,éé(t)), fi(t,x)=f(t,x,ui(t)).
Using (9) and (b) we get that there exists ¢ 290

suff1c1e1tly small such that

/ ' :
z:’—é i g
/] PE, Sk, (£))-£4 (£, <] sl R Lo el
for all y solutions in (3) corresponding to réVO r],p (t),q t)>0
T p. ()l x q (£) 1.
0 ie1 hE ) ;J =1

Denote f (t,x)= f (x)5 1—0 l,...,f Using again (b) and conti-
nuity of ‘f(t s)—EC (t,85 uélt), u (s)) on [;O,tl]x Lpo,t Tesin=
ce f(t t)=0, there ex1sts Af?))O such that

2?//1 : :
<y S R

L DB [E, RS -£, (&7, (£)]
uniformly with respect to téE@o,tl] and vy solutions in (3) cor-
responding to the parameters re[0,1], Als), q(.)éCQ. Similar
propertles ‘will follow for the function L(t x,u) and we denote
them by (10’) and (11'). Let the 1ntervals Ig “4n partltlon

be such that meas I 415(7), meas I <17

Let f be the commutation functlon corresponding

to f (s x),...,ff(t x) and the partltion /7 . Denote

Z
'P(t w)=E i, x4 2 pyitd (f (t, %)~ f (&, x)), where pi(t)
i=1
are the same with those defining £ TR Computatlon gives
: ¢’ 7/
12) sup ][f P le,y (0) £ ey (e)]de/? (7 <

t' t"
4 %
(/Elf 'p(t,Y(t)) JEE P (e,y (1)) dt) "




P (2 7 / &~”
[t -t ( /’E/f (kv (£)) - f’%t.y(t))/%49+

L il

éuptu 2 // 'P(t,y(t)) ,y(t)ﬂ at/ f

Denote by T, II and III the terms in the rlght hand

side in (12). Using (10) it follows

: y 7 , o ‘ . %
13) Iéytl—toéi%) (£ x‘i(t)E/fl(t,y(t))-fjl(t,y.(t)_-)/ e

(AL ek, ? where Y, > Z)‘(t) =1,
14) i1 ¢ VFEF‘_ogZ/ /f (t,y(t)) £5 (t,y (£))] dt} (1+E),t to’z
; :
TIRE _ |
where Ay= ;f Eg, and Eg are defining the partition IT.
: = ; _

It remained to estimate III. Let tséIs be arbitrarily chosen.

On an arbitrary'Is we have

2
{E/J[_f 'Pe,y(e))- -f (t,y(t))]dt/zfzé

2 /f[f P e,y 01 -F P ey e ))]cu:/JZ +

{ /ﬁ'“ (t,y (t)- 7r(t,y(t ))] dt/l g & +

4

[ /][fr’p(t,y(ts))-rf/l(t,Y(t;)) dt/zfé_

The first term in the right hand side 4o (0o toim
.jorized by . _
16) I'¢M. meas T 5 ﬁn;y(t)—'y(t 15 dt } z

_ Using the hypothe31s (a) is follows |

/gi(t,x)uﬁt)ﬂJ ’p(t xﬁa M(l+;x)), silians the constant Mol des
pending on &F' and ‘M. Slnce y(t) is an’ arbltrary solution in (3),
wé obtain
17) E|y(£)-y ()] % © [e-s]
where C is dependlng on M

Hence )



- : ) » >é 3/2‘-
18) IQQCME Mmea;Is (éatftsldt § Mf(measIs) 
. . i, . !

For the second term in (15) we geE.the same

‘majorant

ok 3
19)7/ ¢. CM. (measI ) %
di = ? s

the third therm in (15) we get

For
20) 17 < {E /J[fr'f’(t,y(ts))- (1-r S py () £ gy (£))=
Iy deell
4 . 0 %.
r = py (EVE; (b y (e )] ae[f 7
g : s . i Y/
+_j§=:0 E f Eytegry e =55 e,y )] at? s

t?

‘Using (11) it follows that any term in (20) is majorized

by Y‘measls.
~ Hence

21)5@’ < (le)Z/‘measIs

and finally using (18), (19) and (21) in (15) we get




/

je /If [F5/P (e,y (6))-E (£, (£)) ] dt] f 172, o éneasrs+(f+z)7)measxs

S
s

£ (2CM‘)-0--lf'(f+2) )Zmeasis

Regarding the function L(t,x,u) we have similar inegualities to
(12)-(15) which we shall denote by (12')-(15"). The inequation (L6
‘has to be reélaced by

l 1
16%) ey fmeasty ((msup (v (o)) ) HE fﬂE v (07 (kg 4 22

tety T
'S

Instead of (17). we use
- ' 4 i 2
273 Ely{t)-y(s){ffcl\t—s\

for an arbitrary solution in (3), where the constant C doesn’t

depend on the particular solution y( ) in (3) and t,s.

Since C,=Esup (1+]y(t)V’) (see (4) in[1]) from (16")
tLt
and (17 ) we get 2
" 18’)‘ i'SSC'N§ q measIS(‘j(t—tsldt)1/2‘C’Nf(meésIs)3/2
S

where C'’ —C C2
Similarly we get the same majorant for the ‘second term dhigE

@By ; s
5 @) ' II{CN, (measI )3/2
: . 3 s :
Writting (20’) for the third term in (15'), (wheregﬁ is replaced

by L), and using (11') it follows that;any“term incze! )uds majosa

rized by iameasls. Hence III’ in (15") fulfils

Y -

21') ITL (f+2)17 measT

i s B (10 Y ST Ao BT, wE gl



e

22') = / jgi“f'mt-,y(t)>—§§t,y(t>)jdt/2]fl/2 < (X'N J.ﬂ/m?a{s‘zsﬁ<f+'z)7>measxs <

é(2C’N€+(f¥2))ZmeasIS .

For the estimation GETET :dm: (12) ox  (12") Follows .noticing that
any interval Lt’,t"] can be covered by a finite nu@er of intervals
i-s .end two other possibly subsets of some I_. - | ‘
‘Hence, the integral in III is estimeted by a f'inite sum
of integrals of the type in (15) ((157)) and another two integrals

of the form

2 -iE/ijr'p(t,y(t))—f/(t,y(t))]dt/zj}.l/z =
2A'lmeasIS "I(Eis:lii (it (y(t)} /242M( K2.+l)
e | / TR (e, (1)L (t,yi)) a3 2 &
3 (o]

2 \/ measI . N (Esup (1+ \y(t) l Py 2) 1/2 4>ZN \/ +1)
AT , =
“ . _' N
where [t,rt/]g A
In conclusion, III in 22 and (22') is estimated by G
[2CMj+(f+2)) (t -t )+4M( v K +1)]z and corresnondingly by

[zc No+ (F+2)) (£)=t ) +4N A% e & /= Since I and IT in (22)

5 Bor
((22 ')) are majorized by (f+l) yt t 7 (see (13) and (14)) defln—-

—
ing € —C+2(f+1) V&1 t ' Cl =C’ +2(f+1) Vot ts and c —max(cl,c Y he
proof is complete. .

We are going to establlsh the connectlon between x

r,p.q.
- selutien ‘in (3) and.'the solution T obtalned‘from the equation

: k ,
.24) dx=£ " (t,x)dt+ S5 (t X,u 'q(t))dB (t) :
i=1

XAt Jex € o




—41 -

which 15 similar to (3) except fgﬁt,x) is replaced by fwlt,x)

corresponding to a fixed-partition 7 N

Lemma 2

Let the hypotheses (a) and (b) ~ée fulfiled for h=f. Let

u (‘);...,ui(gﬁZbe fixed and define'xr g the Ito solution in (3)

r~r :
'corresponding to r<db 1] D q(?&p Let 7 and f be given by Lemma i
corresponding oyt e (05 o1 ] and 7—r2 where B .Z_D BEXC T .
1—1
Define x%— the Tto:solutien: in (24) corresponding to that
R = : Sl :
£ givenin Lemma‘l,.and gecé'defining oA ; , '
Then - ‘ ' e i : i

lim sup l,!E/x (t)—xilt)fggl/2=0

r>0 tét1 e teRed
If in addition, the hypothesis (b) and (c)-are fulfiled for h=L,

t
then limisup %gE/ y [Lr’p(t,x q(t)) L (T x '“’q(t))jdt/%fl/2=0

r=0 tét1 Tl

e

uniformly with respect to p,qefﬂ(bounded,subset on@ )=

Proof

By hypothesis, the conditions in-Lemma 1 are fulfidled
either for h=f, or h=L. Then for any: e 10y £ ] and ?= 2~there'
exists a partition T of [t L J dependlng on /Qand DG?CQC:;)SUCh -

that-the second statement follows and

A 2 4
2 s T :p
.&i?mmﬂ £ Gﬁmmﬂfmﬁmdeﬁ Q,A%%J
e - | | i
o
By definition of Xr,p,q and X, we have

i R ' :
26) EJx, o (&)-x (0] 2 3/ [ [f//(s,xr,é,q(s))-f .(s,_xW(s)‘)Y as/ 2+

ey : - gl s
T Blg; (5%, 1 &) 6 6 (9), u(e))) s

i=1 =



The second term in the right hand side 'in (26) is majorized by

R t - :
2 2
ok 1143 (M) e =t ) E/xr’p,q(s)—xﬁ,(s)) ds
: = : :
o :
: - ; _ e 5
Snd the last term in. (2.6) 1s bounded by 3k(M§) f E{kr - q(s%o%jsv ds
o
In conclu51on from (2.6) we get
'f(t)éE]x (t) x (t)/<:3 P+3(M ) [(t —t )+k]‘g f(s)ds

O -

Using (25) and Gronwall’s‘lemma we obtain the firstAstatement.

The proof is complete.

3. Optimality principle

Since the set U is not supposed a convex one we need the
follow1ng assumption

m
d) The control u -splits 4into u—(ul,uz), uleR iAo ujeR A

m,+m,=m, such that u, is enterlng in Loapd £ only, and u, is entering

1=
95 only. :
Let (Xo(')"uo(')) be the optimal pair in the problem

defined by (1) and (2). One defines two subsets of our admissible

o

set of controls.

Uy is the set consisting o aldiaal. )é?é u( )—(u () su 2())

U, is the set con51st1ng of all bounded measurable fune=

2

~tions u(.)=(uol(.), ( ) “suech that u, Ct0) ds Ft—measurable and

for Ye (0,1) sufficiently small (uOl( i 61 A)u ( )+ru2( ))féz

Remark 1
e ' o, _mz' ;
In the case U=U xU2 - UlgR - Ui;R : and U2 is a convex

set then 4@ consists of all bounded measurable functions

—measurable, i=1, 2 The initial

ul.ff t£1x12~»u and uy 1t ) s W,

S A B 53



Define

] (2 bt

adm1551ble set of coentrols CzéWlll be QZ 4% Q?
The optlmallty pr1nc1ple has an integral form w1th respect

to the setsQ% and@Q’ but in the case that the conditions in remark ¢

'hold then from integral form is getting a pointwise one with respect,

#o ulgUl and u26U2

s K

H(t,x;u,yuM) ¢ flEx u) 4L (t,x,1) )+ (M ,g e x u))
. ) i=1
where %, MiéR 2 Ll

'Theorem_

s

Let the hypotheses (a)-(d) be fulfiled. Let u_(.)=

-=(uol(.),u02(.) be the'optimal control. Then there exists Mg(t,w)q,

t
: . o 2
measurable, nonanticipative, glEfMi(t,w)

t
©)

_ TR
dt < =0, apd 9§3R unique

such that the Ito solution of the adjoint equation

k

2 B}I . / =

) ay=-200ex, (0 () ()t 3 M ‘(t)dB ) ., Pe)=%

verlfles %Kt )ﬁ)G(x (t )) and the optimality condltlons
t ' e

S fH(t,x (8, tuy (8 u, (), ¥ (8, MO(0)aR(E ) Hit,x, (8) u, (8), &) M (ED

&2
o

for all u, )éﬁ%l,

t

)

; 1 e o L,
'ii1) E Q(’ t,xo(t),uo(t),y{(t),MO(t))_, u, (t) —u_, (£)>dt)0

to
forzald u2(.)€g%2

In addition, if the conditions in the remarkihold then
£17) | (e (0, (a8, YEt) ,M°<t>>2H'<t,>j<o<t>,uc.,(t),wt) M) @ wey
L4 (%{;(tlx (£) yu_(£) 4p (£) ,M° (t))‘u 2 (0220 ¢ o Mgl

a.e. in (t @)é[} t S} with respect ko the neasure dtde



Proof

Let u(.)éézl)pl(tk-l,'ps(tkso, j#}. Define xr(;) the solu-

tien:in (3) corresponding to u(.)éQZl ’ p(.):(l,O,...,Q); It follows

(see (4))

x (£)=x_(£)+rX (£)+6(k, t) , 1im _)1: = {E oz, 0l 2}1/2=0

/43
y—> 0 t‘"tl

where x(.) is the corresponding Ito solution in (5).

By hypothesis the conditions in Lemma 1 and 2 are fulfiled.

Using Lemma i for h=r2‘we get a_partition 7T’and u (e )61’/
such that
_ t L )
29) % / ﬂPﬂMtX&)u&HﬂbehMMd%ﬂtxw)u&ﬂ&blﬂ:
t
(o)

Using Lemma 2 it follows that the Ito solution xwr(.)'

: k
30) dx=t (t,%,u  (£))dt+ 3 g (t,%,u, (£)) B, (&)
x(0)=xo
: has the structure
31) x_(£) =x_ (£)+rX(£) + ] (r,t) ,
where lim % sup g_ fél(Q £)/ 251/2=0
- r—>0 7 tet,

The functional is getting the form-

32)  Jix il )—J(x s (ug )+rE[g (% (t ), §(t1)> +E j[
_ T b

G.
+
@-(r}

L @ x@ywm-nmlat

:where im -
L—>0

~0, L, (=22 (%, (8) ,ug (8) , L, (D=Lit,x, (8),u(e),
L, (£)=L(t,x (£) ,u, (£)) . | _
" When we choose u(.)é‘@% the solution x,(.) defined in (4)

corresponding tO-Pi(tkgo, L et ql(t)zl, gj(t)go, TEL

«
B

SN N AN




g

uy (.}=ul.),; is an 'a-d'missible one and has the stru¢ture s

x, () =x, (t) LS

where x(.) verifies (5) with p,q as defined.
This time the functional is getting the following form
33) 4 )=J(x_,u )+1:E@9-(x (ty)) ,x(t,))+E 5'1 L_(t) >”<(t)>dt+ 6- (%)
*prYy o' o e _ <x g 2

where lim —0‘(r) 0.
r-30 . e
As the pnrimal form of the fqut order neces“ary conditions we get

7

3,4)E<%G;(Xo(tl))’§(tl)> +Etf/[<nx(t),§(t)5+ L {eY=1 {E) fat30

0 C e

for all X(.) verifying (5) with py=l, vy (. )=ul. ), p 0 e ?50,@

j= g u(.)e%) and

£, %
347) E(—- o CE YK e 14 E/ L (1), E(£) >3320

for all X(.) verifying (5) with 12 P L T ql,l Z(( Y= zc( ),

qjso,. 3£ if ()% .

From now on the condition (34) or (34') is transformed into adj,oint'
‘'system and optimality principle using the same general scheme as in

[1]. The proof is complete.

_ REMAFK 2
~ Consider that a deterministic control\-ksystem -é—€=f(t X u),te)j‘to,tli)
is perturbed by a n01se descrlbpd by Zgi(t x,v)dB, (t) and we are

(=1
tryinq to minimize the larqost effect oroduced by the noise uqing con-

trols U -



The problem can be stated as
i

1) min max {Q(xu'v(tl))+ _£L(t,xu’v(t), u(tf)dtf

L Vel

under the constraints

. k .
2) ax=f(t,x,0)dt + L:Z4qi (t,%,v)dB, (£), & é[to,tl] :

.x(to)exo

. . ’ 0
where the setsizé and % _consist of all nonanticipative
Lt t] Q»U(Ucp Y [t tﬂ Q__>,V[VCR 2
L BE t oot 7, generated by
ety .

with respect to ©- algebras *72,

the k- dlmensional standard Brownian motion (B =)
optimal pair for the problem (1) and

"“'Bk('))

Let ( u( Yoo Vi) ) obe the

(2). Then, under the hypothesis (a)-(c) in theorem a
T ET TR % ive get

Ao e - - -
=~ N ¥
mns

nd V a con-

vex set - e
the optimality condltton in pointwise form given in theorem
except the sign ">0" in (iil') which will be renlaced bv 17l e

for all veV"
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