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'Summarz.'One gives sharp apriori and apostériofi erfog :
bounds for the secant method for solving non—lineaf equations in'
Banach spaces. One also investigates the numerical stability of
this method. The stability results are analoguous to those |

obtained by Lancaster for Newton’s method.

1 ... Intreduction

Let us consider a class € of pairs (f,yo) where f is a
nonlinear operator defined on a subset q%f of a Banach spaceé?
; : P _ :
with values in a Banach space J’( and VO—‘X—k+l""'xO) is a
system of k points frcmyik. We want to attach to each pair (f,vo)

&t a sequence (xn) of points of. 2 converging to a reet x#

n% 0 £

of the equation f(x)=0. One way of doing this is to associate
with the pair (f,v_ ) a mapping F:od C?&B?~—vé & , where kyp, and

to try to obtain ‘a sequence (Xn) by the recurrent scheme:

ny0

.. =F e +l,...}Xn) b ShEDadi2iime : (1)

n+1 n-p



The above scheme will actually yield a sequence (xn)n70 Ay

if u(-)=(x_p+l )y isFan adm1551ble system of starting p01nts

in the sense given by the following deflntlon:

’.--"x

55

Defi‘nit‘ion’ 1. Consider a mapping F:2c Ep —-%X and define

recursively
o’z‘foéﬁ ; $n+l={u=(y1,y2,---,yp)é 27 (yz,---,y JFlu) e DT r=0,1,2.
Any ug é f\ A will be called an‘admiséible'svsUanpf‘sﬁnﬁing

70
points for the recurrent scheme (1) .1

“"\

If uo=(x_p+1,...,x0) is an admissib

}_l

points for the recurrent scheme (1) we shall also say

rative lcorltbm (1) is well defined.
Now we can deflne the notlon of an 1terat1ve Drocedure of
type (p.l) for the class ¥ . The more general notion of an iterative

procedure of type (p.m) will be given in {11]. (see also {9l)ana f10])

Pefinition 2 Let é’be a class.of pairs (f,vo) where £ is

a nonlinear opefator defined on a subset Qf of a Banach space £

ak

e ; .
with values in a Banach space 7, and VO=(x_k+l,...,xok£¢Lf. Let

p be an integer less than or equal to k. By an iterative procedure of

the class 2?we mean an application which associates-

ﬁzge'(g.l) for
with any (f,vc)é'%? a mappin3 £<Z p**?ﬁz having the following

two properties:

(1) uo=(x_p+1,‘..,x ) is an admlsolp]a system of starting

points for-the recurrent scheme (1);

(ii) the sequence (Xn)n> generated by (1) converges o
: _ 8

x ;
root x- of the equation f£(x)=0.89 - ¥
Having an iterative procedure of type
¢ it is important to find a function X:Z >R, and a function

2 m%i—»&y cuch that the following inequalities: be satisfied

d(x x’“)éw(n) ' e 53 ; (2)
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S i ))‘ , (3)

5 -
d(Xn’x )< /‘)’(d(xn-—p+l n-p n

n-1

for every pair (f,xoﬁfé’ and every positive integer n.
The inequalities (2) are generally called apriori estimates
because the right hand side of (2) can be computed before obtaining

the points x PR via algorithm (1), while the inequatities (3)

17
are called aposteriori estimates because their right ‘hand sside can
be computed only after obtaining these p01nts.

The estimates (2) and/or (3) will be called sharp 156
there exists a pair.(f,uo)€@? for which these estimates are attained
'for all mel-2 3ea. . aaUaitig the. nethod 'of nondiscrete mathematical
induction, in a_series of recent paper ( E]—{l@) one has obtained
sucﬁiestimates for some well known iterative procedures. However,
these results have mainly a_theoretieal;importanceAbecause in practi-
cal ‘applications the iteratiwve aléorithm (1) can be performed only
approx1mat1vely Thus instead of the "theoretlcal" sequence (Xn)n>0

~in practice we shall obtain a perturbed sequence (xn) given by

nz0

s ~ . ‘___
uo"‘uo 7 Xn+l F( n—p ]---lxn) n—o,l‘,... (4)

‘The demaincg of f{‘is included in the domain 2 ‘of F. In practice
i;consists of those elements of which‘are representable on =2
certain computer, being thus a finite set.

It is impoartant to glve sufficient condltlons under which
there exists a number >0 and a sequence (tn)n;O such that the

following inequalities be satisfied:

2 e ’
d(xn,xn} < t g §. . | | vn—0,1,2,... (5?

2

In applications, the set £ being finite, it follows that

& ~n
after a certain numbers cof steps the sequence (xn)n>0 will become
. : 7

pericdic i.e. there exist n and m such that X, =X/ for every

nyng. In this case (5) implies that the following estimate



: d(gerﬁ) € §  : s B : G ' (6)

v ‘ : ; il ‘ g -
hollds:‘for all nyn - To see this,one has to wplte d(xnﬂﬁﬁkm)—

=d (%

n+km’xn+Pm) < d and to let k to tend to infinity.

The estimate (6) shows us that we can -computé the root

*® with the precision given by e But this result is not very con-

-

X
venient in-applications_because the number n  can be véry Targe. In
this case we note that from (2) and '(5) one can obtain the following

estimates ‘ : e : .
atx %% ¢ t_+ ot(n) S DRESEg e IR T
nl ) ~ n 14 ) ) ¥ 7 14 (G 2

T£ the-function'/S is increasing, in the sense that
a, < bl,...,apg‘bp imply ﬁ(al,...,ap)ﬁ ﬁ(bl,'...,bp), thfan frpm (3)
and (5) it fellows that
~ ~

£ oA4d(x

- *x
xRt FHRE
_d (Xn' ) th P( n—p+l+ n-p n-p+1 'xn—p

. g % (8
) h +tn%thrl+d(xn’xn—l))’ )

The inequalities (7) andi(8)Amay”be.iﬁterpréted as apriori,
respectively aposteriori,estimates for the perturbed algorithm (45.

In this paper Qe shall make an analyéis efsthe type
described above for the secant method and for one of ifé modifica-
tions. The results obtained in the "theoretical" case constitute
3 slight improvement of the results contained in {61 and (7]. The
results obtained in the perturbed case are new. Similar results

' n

concerning Newton’s process can be fouﬁéYEhe papers of P.Lancaster

[2], J.Rokne {14] and G.Miel {2 1

‘2. The method of nondiscrete mathematical induction

Tn the study of the iterative algorithm {1} we shall use
the method of nondiscrete mathematical induction. This method was

dAevelapped by V.Ptak by refining the closed graph theorem (see f127]




or [133 for its general pfinciples and fnotiv_atién) . V.Ptak used
this method to iAnvestigate‘ite‘rative .algorith'ms of type (1) with
§=1. In {7] the method of V.l?tak 'has been extended tQ th_e case where
p was arbitrary. In this secﬁion we shall restate the results
Jobt.ained in the above mentioned paper.

Let T denote either the set of all positive.numbérs, or
an i’htérval of the form (0,b]={xe[R; '0<xsb}. Letes be a xﬁapping Aof ‘

‘the cartesian product T® into T and let us consider the "iterates"

Q(n) of « givén for each t=(t

17" ,tp) e TP by the following

recurrent scheme:

. w(o) s <'\J(n+1) 2,

o '_,tp‘,-fu’(t)l).,-' =0yl ne 0 ABODS

(t)= w(n) (t

Definition 3. A mapping w:TP — T, with the above iteration
law, is called a rate of convergence of type (Ripl) oﬁ T, if the series
ek . | ' _
sit)=x ™ (e - (11)
n=0 g :

is convergent for all te P . @

In what follows we shall use this notion in the study of
the iterative algorithm (1). F will be a mapping of 2 into X, where
X is a complete metric space, and 0 a ‘subset of the cartesian power

XP. We shall attach to F the mapping F: 9@ -—>Xp, defined for every .

u=(yl,...,yp)€'2_ by
Flu)=(yy-+r¥y Fl0)). . ‘ g

Denoting u_=(x

e Snepadlone ,x_) we shall have

u

.n+1=F(un), . ln=of1,2,... : (1')~

Similarly we shall attach to « the mapping o:7P — 7P

defined for every t=(t,,... ,tp)e P py



B ke, el | | (13)

Let us denote by ES(n) the iterates of & in the sense of the usual
composition of functions i.e. CB(O)(t)=t, CD(n+1)(t)=53(C3(n)(t)).

Then relation (10) reduces to

! )=t " S e ™ ) . NS

p

It will be convenient to introduce the notation

P(t)= b“(t)-_tp.

&l

From (11) and (13) it follows immediately that p(t)= GEsi(E)) .
With the above notations we can state the following

proposition:

Proposition 1. Let X be a complete metric space and'letéb

be a subset of Xp; Le£ us consider the mappings F:,z-——> X and

Z:7P —> exég% . where exp2 denotes the class of:all subsets of 2 .
Let e be.a rate of convergence of type (B3 L) on T.

.oy x Ve L -and t, € TP  such

If there exist u =(x

that

)uoe Z (tO) | (14)
and if the reIations

Fu€ Z (33 (t)) | . i)

-d(Fu,yé)g‘ & 2, 2 g (16)

'are satisfied for all t=(t1,...,tp)§ TP and'u=(yl,...,yp)e Z{t), ‘then:

(i) The iterative élgorithm (1) is well defined,

a4 i ’ * ;
(ii) There exists an x € X such that x

*

w
P3S

=1im S
n
n>® -

(iii) The following relations are-éatisfied EoLyailds n=0k ek

b EE e S SR




et il ) ) B3 e | o SN (17)
n 1 "

Sl ot Sa S Eadlh T ot (18)
axxg Sy - (™ ), Lo , i
n (@] (@] (@] g o ;
atx << 6™ e . | S

'(iv) Let n be a positive integer and let d ¢ P, if

u €7 (dn) . then 2

n-1

n

. X %, & e, . : F .
DS 4 i : :
a(x ,x2)s B(d,) | (21)
gt A . % "3 ¥

Proof. The fect £hat u, is an admissible system of startlng points
for @It Tis a consequence £ (17) sPoxr m=0 Ehis relatlon reduces to
a4) o~ TBE we suppose that (17) is true for a Certein n, then according
to (15) it follows that it is true for n+l also. The inequality

(18) follows then immediately from (17) and v(16)-. Now for ahy keN

we may write

: n+k=1 ) ] ;
By 2 0) $iZ s e () ~ (22)
j=n )
This shows that the sequence (x ) is a fundamental one. Point

n'ny0

(i:i)  of the prdposition follows then from the assumption that X is
complete. Letting k to tend to infinity in (22) .we obtain (20). To
get (19) we have only to observe that |
a(x, %, }\Z w® (£ =61t ) -6 ™ (¢, ) (23)
'Thus we have proved the first three points of the propo-
sition. Taking n=1 in (20) it follows that in particular we have

proved the implication
y o x " : /
O If uOGZ(tO),then d(Fu X JES /3(to) . (24)

Reple01ng U, by v, _q _and. ts by d_n we obtain point (iv) .@



3. Optimal error bounds for the secant method

In this section we shall study the iterative procedures

ey s | » ‘
Xn+l *n S-f(xn—l’xn) £(xy,) ¥ o ; 2

?{n+l=xn—é‘f(x_l,xo)_lf(Xn) | | o gl

wheré f is a nonlinear oper?tor bétween two Banach spaces, X_1 and
X, are two.points in the domain of f, ahd &f is.a consistent
approximation of ¥, o
‘ The first procedure is.genérally called thesecant method
but it is also known under the name of Regula falsi or the me£hod
of chords. This proceduré has been known.from the timé cf early
italian algebrists (see [5]) and it wasextended for the solution of
nonlinear equations in Banach spaces by Sergeev (}81 and Schmiat
[15]. In the above mentioned papers one has‘used the notion of
divided difference of an-operatof. The péésibiliﬁyvof using the
ﬁore general notion of~cénsistent approiimation'of the derivative
was realized later (see [1) and [16]). .

The itefative procedure (26), called the modified secant
method, was first considered by S.Ulm {19].

. In the sequel we shall prove that if the triplet (f,xo,
x_l) belongs to a certain class EYhO,qO,rO) Fakthen the iterative
procedures (25) and (26) are convergent and we shall give sharp
apriori and aposteriori estimates.

'We shall consider the notion of consistent approximation
of the dérivative in the acception given .in [1] , which is more
particular than the original acception given in [4] . If &€ and F
are two Banhach spaces we shall denote by L(E}?) the Banacha space

v o

of all bounded ‘linear operators from & into v ..

g A e
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Definition 4. Let € and ¥ be two Banach spaces and let V be a convex
and open subset of & . Let f:V*—*ét- be a :lnonlinear operator)

which is Fréchet-differentiable on'V. A mapping 8f:VxV—> Lilid)

" will be called a consistant approximation of f’, if there exists
a constant H$0 such that fhe following inequality be satisfied for

all x,vi.z¢€Vs

WSE(x,y)-£' (2)|l§ H( yx-zi +jiy-zit).8 27

The above condition implies the Lipschitz continuity of e
' In this case using a standard argument (see[4; 3.2.12]) we deduce that

Il £(u) = fly) = £7(v) (u-v) ] SHIIQ-VIIZ; eV (28)

Thus, ror all x,y,u,veV we have

W) -£ (v) =8(x,y) (u=v) i€ [ £)=£(V)=£' (v) (u-v) ||

+ I (V) =3£ (%, 9)) (W= B fu=v- I+ i x=v ][ Hly-vI) fu-v], (29)

& Lot €7ho;qo,ro)l be.the ciass of éll the triplets
(f,xo,é_l) satisfying £he following properties:
(CI) f is a nonlinear operator having the domain of de-
finition ¢2f included into a Banach'space & and taking values in a
Banach space g

‘are two points of & _ such that

(cz) X i S o £

i
x-x_; I € gy - "(30)

(C3) f is Frechet differentiable in the open ball
U=S(xo,ﬁ)'and continuous on its closure U.
(c4) there exists a consistent approximation &f of f!

such that DO:=§f(x_ ,xo) is inwvertible: ard

o}
-—
u,1
t-h
»
~
e
Nee?
I
I-h
~
_

(2 h (Tx-z+ 1 y-z 1) (31)

fer ali 35 Vg2 &3l

(c.) the following inequalities are satisfied:



Il og f(?co) Nz, » P (32)
h g, +2 \/ hr, €1, _ ' (33f

1 2 ' <3
1\4 }—Z—Q(l—hoqo— \/(;—hoqo) -4h_r_ ‘)-—.{’10‘ (34)

- Let us remark that the constant hO appearing in . (31)
generally depends'on r1. On the other hand (1'has to be greater or
eqﬁal to f1o'which depends on ho. It is worth then to note the

fcllowing inequality
£ kel q+r) /Ho A oy {35)

which allows us to take for ﬂ the estimate r + /. r (g, +r ) which
_ e 1O o)l e S o)
does not depend any more on ho. '
Uéing the iterative procedure (26) we shall show that if
(f,xo,x_l)e?f(ho, qo,ro) ,  then the equation f(x)=0 has a solution
xx which is unique in a certain neighbourhood of X e First let us

associate with this iterative procedure a rateof convergénce of type

Ay,

Lemma 1. If ho7 0, g.%0, ro)>0 are three numbers satisfy-

O

ing condition (33) then the function

; 2 Ceny el gl 2 :
ﬂ0l(r)fr(hor+1~2 hoa +hor) (36)

' is a rate of convergence of type (1,1) on the interval T=(0,roj

and the corresponding s—function is given by

G&(r)= a2+h;1r—a7 i F ' R ) i

~ where 4 ot |
a=si (1-h )2—4h r B e " (38
2h o%o o« TR )



Proof. Let us first observe that (33) implies that the

quantity under the square root sign from (38) is nonhegaﬁive. Let us

consider now the real polynomial g(s)=h (s?-az) and let (s(l))n>0

be a sequence of real numbers satisfying the follow1ng relation

e e () s L
el Taaa oS, b 2, _ (39)
1 i e i (1)
One can show that if s ¢ (a,h a) then the sequence (s )i
o) o ' n - ny
decreasing and converges to a. Let us, put now sél)— él)(r)z_ a2+h;l
‘(1) 1-h q S

then, for all re(O,rO], we shall have B e(a,—EH———)c:(a h ~-a).

We also observe that in this case ng' )) =Ey g(s(l)) ui(r)< r. Let

us denocte by cafn) the 1terates of c¢l'in.the sense of the ﬁsual

functlon composition. We shall obv1ously have

It follows then that cgl is a rate of convergence'of

type (1.1) on the interval (O,roj and that

a(w{n)(r)hsrﬁl?-a, (o= e et 39 il o ity

1

r

We shall pass now to the study of the iterative procedure

(26) Before stating the main result let us note that from (c i

follows that
lio, (f(u)-f(v)-gf(x,y)(u-V))Hs hy (Qlu=v i+ fix=vil+jy=vii) Jlu-vi] (41)

for all X,¥,u,v€U. Using the above inequality, together with Pro-

position 1 and Lemma 1, we shall prove the following theorem:

- Theorem 1. If (f,xo,x YE %f otES 3. 'then by the ite-—

\

rative algorithm (26) one obtains a sequence (x 'ny0 of points be-

longing to the open sphere S(xo,lqo)[ which converges to a root

x* of the equation f(x)=0 and the following estimates hold 3



Mxrs il € - 6, @ (e 1Y, a0l o

e =0 6 Cflxymx il -lxmx 1o n=1,2,...0 (43)

where w, and 6, are the functions given in Lemma 1.

Proof. Let us consider the mappings F:S(xo,‘Mo)~§ & and

Z:(O[foj ~—» exp X given by the following relations:

k) o mRy = S T
Fx=x Dovf(x)) M 5 (44)

2)={xe s In <8 r)-6, ), I peeoll< Y, (45)

S in ] o7 = i Z ) 2
cbserv ng that 6, (r)) ﬁo’ it follows that (r,C_S(xO,rO) T.E

1 e(O,roj , x€Z(r) and x'=Gx, then we have
“X'—XO“ < .“x’—>'( I +AH x—go\ls r+ 6, ) =67 (£)=6] (ro)'*(;1 (W, () .

The relation x'=Gx is equivalent to f(x)+DO(x'-x)=O,

so that using (41) we obtain
m f (% “—W x)fm%Dm-mm hHl—x iuﬂwhﬂ%ﬁdﬂﬂim”
¢ hy (2 67 (0 +g r)r=cty (r)

From the above relations it follows that the hypotheses
(14), (15) and (16\ of Propos1tlon 1 are satisfied. Thus the se-
" gquence <Xn)n>0 converges to a point x ¥¢ €. The estlmates (42) follow

then from {(20), while, corresponding to (17) and (18), we have

g, €aEPED oy, et It gLl 3us i 1 5 46)
Using the fact that Gl increasing on (Ohyéj from the above o
relations we deduce that xn_lé Z(i{xn—xn_llﬁ), se: that:according o

point (iv) of Proposition 1 it follows that:the aposteriori estimates
(43) are true for n=1,2,...

~ To end the proof of the theorem we observe that by letting



n to tend to infinity in (26) we obtain f(x#)=0. ]

The following proposition contains some information about

1

4642 . The cases a»0 and a=0 are considered separately. Let us observe'

the behavior of the séquence ( Gi(afn)(ro))n70«which appears in -
: : LAl C

that a=0 if and only if we have equality in (33).

Proposition 2. Suppose the hypotheses of Lemma 1 are

verified.
(1):21f-a 20 then for alils n=01,2.,..0 hold the inequalities
2ro B n - (n) , rb | n '
RIS T R 6. ™ ‘ — (1~ ) 3
1"qo—2hoa Lho(qo+r0{] § l(Lﬁ (ro))§2hoa( 2hoa’ . iz

AT a=0)then the following estima£es,are satisfied
for every n=1,2,3,...

For §
e | o () 1
'n‘ﬁ\/ n WO Gl £

S

o

Proof. (i) Observing that for r€:(0,r6] we have
h (g +r ) r<ed (r)g(1-2h a)r

and using the fact that ﬁdl is increasing on (O,ro] one can easily

show that
T ) . ety -Fo
roiiho(qo+rO{] gcdl “5)§ ro(l 2hoa). L LR e SR

The estimates (47) follow then as a consequence of the inequalities

a=0 from (29) and (40) we have



- 14 . -

6 @i =6 w0 M e -n [ 6 kg () (r >)]

The result obtained above will be essentially used in

the proof of the following theorem:

. i ; " x
Theorem 2. Let (f,xo,x_l)C?ﬂho,go,ro) 5 and flet: x -be
the root of the equation £(x)=0 obtained in'Theorem 1.
(1) "If. 820, *then x¥ is the unique solution of the equation
if(X)=0 in the set Uﬁs(xo,/%+2a).
(ii) If a=0, then xX is the unique root o'l the'equation

£(x)=0 in tﬁe closed ball S(Xorﬁo)

Proof. Observing that (31) implies the_Lipschifz condition
| ooteer -£r (s 2hg [l v u,ved o (49)

and using the equality :
£ () - (y) ~D (x-y) =J [ £7 (it (-2 ) =" x0)] G-y at
+ (£7 (x,)-Dg Y=y .

we deduce that for all x,yeU we have

o 6 =€ () =D eyl € g Cll ol + 11y, I+ gyl - (50)

(1) con51der an yeUnS Iu+2a) such that f(y 1=0.. - “Using: the

inequality nx,-xo < Mo We may write
i x*-y ﬂ HD (f(xx)-f(yx):—b (xx-yx)) i
Bl y¥-xg 1+ 1%, I e -y 1) 1 %=y 1)
< hg (2f +2a+q,) I xF-y* | = i\.xﬁ—yi‘E I

and thus we infer that yxzxx.
(ii) Let (x )n>0 be the sequence considered in Theorem L

1f azo then Gi(ro)szz N[”ET;; and from (4§)~it follows'that



_ I xn-xouéflo— 6'1 (c,_i_'fn) (ro) Ve slf yxe S (xo;_/»to)f— and f (yx)=0, then we

have succesively
] xnﬂ-y* e D;}(f (x,)~£ (™) Do (xn-y*) ) : |
ST o Y Py B [y B JE
n, (fraat o 6 ™ (2 )) l1 7%, |

. ! : :
y 1 » ~ ( )
€(1-h_G] (™ RPN B -Yn]s 1 x,-y™] Jl_=.ll(1-houJL i) gz g

o0 ;
The series E: G, @ﬁlhT))belng dlvergent (see (48)), from the above

. inequality 1t follows that y =1lim xn—xx.ﬁa
n->o

Let us remark that in the proofs of the results from thlS
fsectlon condition (33) was essentlaly used. This condition is

. fulfilled only if d, and rO are small énough. In practical applica-
tions qé can be takeh as small as wanted, because, heving an ini-
tial approximation X, r We can take Yo Very close to it. On the
other hand r, is small only if the initial approximation'is “good
enoﬁgh". In practical applications it is sometlmes very diftfienlt
topfind such an initial approximation. However one can prove that

condition (33) is in some sense the weakest possible.

Proposition 3. Let ho>0, quO, rO»O be three numbers which

do not satisfy condition (33) Then there ex1sts a functlon f:R—> R
and two points XorX_ 1&& such that

(i)'oonditions (cl)—(c4),as'weil aé"ihequality (32) are
satisfied.

(ii) the equation f(x)=0 has no solution.



P - P

Proof. Let us first observe that the inequality hbgofz\[}5r0>1
is equivalent . to h 1<q +2F +2\/ T, (q e ) We shall consider -two
cases: . '

5 = — 1 )

» If qo+2ro—2\/ro(qo+ro)<'ho < qo+2ro+2 'ro(qo+ro)’.then we
shall take

£ (x) =h x>+ (2h (q+2r ) -1-h2q’

: : =i e “
and if O<h_~gq_+2r - V/rofqo+ro), then we shall take

%

iy r S
.f(x)—qo X +ro . xo-—O, X_=d, - @

In the fbllowing lemma we shall obtain<a rate of convergence
of type (2,1),“which will be then(used in the study of the iterative

procédure (25) ,

Lemma 2. Let.T be the whole positive axis and let a be a

positive number. Then the function

+

o la,r ElhE) e (51)
r+2 Vr q+r) +a

s gagrate of‘cohvergence of vtype (2;1) on+T and:the ecorresponding

¢'-function is given by

Gb(q,r)=r—a+ r(q+r)+a2 5 g (52)

Proof. Let us consider the real polynomial g(s)=sz—a2. The

secant method (25) applied to this function Treduces to the following

recurrent scheme ?

G AR A A AP AL e P R e A o



. (2) é—;+a2 ,
Sn+1 (2) (2) 7 _ n=0,1,2,... . A53)
s +s
n n=1
.It.ls obvious that if s(f)/ (2) a,.ﬁﬁen via the ébove schemé

one obtains a sequence (D( )) which is dec¢reasing and converges

to a. For every t=(q,r)eT2 let us put
TR ey (2)__(2)
Ba oy (t)=eryhelgtr)ta v -S_J —so. i

In this case we have

If we define the iterates coén) of &, as in (10), with p=2, then
it is easy to' see that

“”(t) {2) (2) A | (54)

e T

Thus it follows that @, is a rate of convergence of type
(2; 18 lon @ dhd that Gz(t)=sé2)—a, which is exactly formula (52). It

also follows that

(,fz(mén) (_t))$sr(12)—a S0 1y 2t 4 M ' (55)

In the proof of the next theorem we shall use the following
well known result concerning the ihversability of linear and boun-
ded operators in Banach spacess

Lemma 3. If LOEL(f,?) is invertible and if LeL(f,?) has

S : : -
the property that liLi]<|]Lo‘1i 1 then the operator L,-L is also

invertible and

Juot 4% ’m/



o
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Theorem 3. If (£,x_,x_,)e (é(ho,qo,ré) , then via tl"le itera-
tive procedure (25) one obtains a sequence (xn)n?/O of polnts*from
itlie open ball S(xo, 1\10) which converges to the root'xx of the

~equation f(x)=0 and the following estimates are satis_fedl

I x,-x* i< 52«¢‘n) i) Byl A ts Ly . BTy

&
n=1,2,... , g (58)
where wz is the rate cf éonvergence obtained in Lemma 2 and the

.constant a is given by (38).

Proof. Let :,b={u=(y,x)€ U2; Of (y,x) is inv'ertible} and

let F: 2 — ‘Ez be the mapping given by
Fu=x-3f (y,x) "1£(x) . " ' (59)

Denote t_=(g_,r.). From (52) and (38) it follows that &, (t )= M_.

- For every t=(q,r) € T2 consider te set

z (t)={u= (y,x)efiz; yeU, W x-yit ¢q, I x-x_ils ‘\«o-(\‘é(t),

the linear operator D=qf (v,x) is invertible and }iD_l (% “ ST
One can easily see that Z(t)c® and uO=(x_l,x0)€Z(tO) valetqus
prove now that if u=(y,x)€Z%(t) then (x,Fu)GZ(&??(t)). For this we
’shall denote z=Fu and we- shall prove the following relations:
xeU , zexiisr ' {60)
llz=x € fiy=8, &y (L)), | (61)

1

the operator D1=§f(x,z) is invertible and |} D-l- f(z) d<c.1?(t . (62)




Relations (60) are immediate consequences of the fact
that ueZ(t)jbecause,z—x=—D_lf(x).

Using the fact that 6}(&5(t))=65(t5—r'we,may write
Uz-x W€ Mz-x 0l + fIx-x, ¢ T+ =6, (£) = =6, @, (£)) -

In order to prove (62), let us note first that according to (31)

we have:

Izt o i ot o8 G| + ungi (£7 (0 -D || € by (s [l + ey 11+ k2 )

$h(gg+r+2 (=6, (8)))=1-h (x+2 \/ r(gtr)+a’) .

Applying now Lemma 3 it follows that the linear operator'

D, is invertible and’

T L (63)
ho(r+2 \/r(q+_r)-+a2) ' ' .

On the other hand, (59) implies the identity
f(z)=f(z)-f(x5—§f(y,x)(z—x)
and‘using (41) we obtain

“Dglf(zﬂié ho(]lz—x\\+\\x-yﬂ ) | z-x|i€ b r (g+r) . (64)

[N

‘Finally from (63) and (64) we have

=l

Ip7te () = o2 o) Do (2) Ik wy (k) . (65)

Thus we have checked the validity of (60), (61) and (62).
It follows that the hypotheses of Prop051tlon 1 are satisfied ‘in
our .case. Conseauently, the sequence bggloproduced by (25). will
,converge teo a point x éaa and the aleor¢ estimates - (57) will be

satlsfled Moreover we shall have



‘.—‘ 200 =

'..A(n—l)' .— gy
(Xn-Z'Xn-l)EZ(wZ (to)? 7 h=1,2,3; <% (66)

“Xk+1"xk“<‘°§k)(to) : ’ By e

The function 6‘2 being increasing: (in the éense that qls q,

and rls"r;,2 implies Gz(ql,rl)s 62 (q2,r2)) , from the above. relations

one can easily deduce that

(Xn;2'xn—l)ez(\\Xn-l-xn—Z\\"‘%ﬁ?xn_lu ), n=1,2,. .. (68)

) of Proposition 1 we obtain the estimates
x

According to point (iv

(58) .
We still have to prbve that x55 is.a sqlutiori of the equa-

tion f(x)=0. This follows easily if we substitute in (64)

_=(n) - 5 TR
=0, (to)__’ s S and let n to tend to 1pf;;f1ty.@
The following proposition shows that the estimates ob-

tained in this section are sharp in the class @(_ho,qo,ro) A

Propgsition 4. Tet h'o>0, qov,O and rO?/O be any triplet of

real numers satisfying condition (33). Then there exist a func-

tion f:R — R and two points Xy ¥R such that (f,xo,x_l)

¢ €(hg,q,.¥,) and for which the relations (42), (43), (57) and

(58) are verified with equality for all-ns

proof. Take

£ (x)=h, (x"=a°) s x = (1-hgag) /2hg) & x_,=(1+hgag)/ (hg) (69

The rest follows from the proofé of Lemma 1 and Lemma 2. @&




4. Estimations in the perturbed case

In this section we shall consider that the iterative pro-
cedurés studied in Section.3 are perturbed} We shall suppose that all
the elements contained in the construction of'these,procedures are
khoWn only approximatively; Moreover we shallfsuppose that at each
step the matrix inversion (or the solution of the reSpéctive~linear
system) is also performed appfoximativély.

Thus we shalllconsider that the perturbed iterative algo-

rithms correspbnding to (25) and (26) are respectively of the form

~ oo ~ ~ .~ ~ ;l. ~

X_17K g ¢ XKy 0 X 17 —(af(xn_l,xn)+En) (f(xn)+en)+gn 7 (70)
~ ~ A~ e s R R ;

XK1 X7 —(of(x_l,xo)+Eo) | (f(>':1_l)+en)+<3n ' (71)

ntl n

"where e € Lot EneL(f,if) i gneg x
Tn what follows we shall suppose that there exist three

bositive numbers €, €5 and ‘23 such that
e i< €~ HE USE o Hlg & & (72)

for all né Z.*.

In the preceding section we have seen that if (f,xo,x_l)
€ (e(ho,qo,ro) * then the sequences produced by (25) and . (26)
stay in the open ball Uo='S(xo, M) and qonsequently in fbf. In the
perturbed case we have to suppose that £ is defined on a ball

x x . x . : ' .

- U=s (% h5) with M >F40. We have also to suppose that the
mapping o f extends to UXXUX.

In the definition of the class f’(ho,qo,ro) one has
impose‘d condition (31) for all x',y,zéU. In the perturbed case it

is more-convenient to suppose that the following conditions are



8 satisfied for all x,y,u',veU*:

R

o Bk SRR (%) ‘ ] “ (73)
I18£ (x,y) =8 (w, W[ HO x-u il + Hy-v 1) - s (74)

These conditions are more restrictive than condition (27)
but théy are éatisfied.by the usual examples of consistent appro-.
ximation (see [16] and [19]).

- If (f,xo,x yes (h e Z5) théﬁg he 1ineqr opérator
gf(x _17%,) is 1nvert1ble for all ny0. In order to assure the in-

3

vertibility of oLkﬁn_ ’Xh)+hn for all nzO we shall suppose t“at

i
Sf(x;y) is invertible for ail x,yé:U and that the norms
_ ﬁgf(x;y)—lli are bounded. More precisely,invthe perturbed céée we
shall impose "one, or both, of the following conditioﬁs:

(Cx) The open ball U*=S(x ,({X) is included info the domain
of definition of f and conditions (73)-(74) hold for all Y Al V'GU

(C ) The linear operator gf(x,y) is 1nvert1ble FOr all

x,YeU* and there exists a positive number @ such- that
l/¢>sup{ﬂ§_f(x,y)_1“ PRyeU:Y . : (75)

We can state now the following theorem concerning the

“iterative procedure (71).

Theo:em 4. Suppo;e (f,xo,x_i)éfﬂho,qo,ro) and let (x %00
be the sequence generated by the iterative algorithm (26). If con-

dition (C¥*) is satisfied and if the following inequalities hold:
- -1 -1 Lo -
AL L CHYE NI B 4 - (76)

i g e e ' ‘
g, =d. H(hO 2a) 26, 70, | } 4 (77}

(78)




S & Q‘X‘ f‘o O B Loy - A79)

then the iterative algorithm (71) is well defined and we shall

have the estimates
~ ' e -
W ie el ' e

(1))

S i : ]
O okl n;Z; , where the sequence (tn. .

is ‘given by
: ]-_h q e - ) :
(Lyii. T} _="ode o o(1) . Y. (12 2

B e BT 2h, £ sn+l—s_’n hoi(sn ) -a ]

(g 1

n+1 do—£2

E

(H (tr(ll) ) 44 (2H (sél) -Sx(u_l) )+qu+g'2) tr(ll) +

Y a1 "
n —Sn+l)+£3(do—52)) *

+£l+ fzv(s
Proof. We note first that from the proofs of Lemma 1 and

Theorem'l it follows thét

: 1)__(1 1 1 . '
I A IR L S e (81)

for. all nez, .

Using Lemma 3 it follows that the linear operator
Sf(x_l,xo) is invertible and

“(Sf(g X ) +E "Ii\<(d i );1 ' (82)
gl Ol O) = o 2 o . . \

This fact, together with the remark that (79) and (80)
imply §;6UX, show us that if (80) is safisfied)then the formulae
(71) make sense. Let us prove the inegualities.(BO). For n=0.they
are trivially satisfied. Supposing they hold for n=0,1,...,k we

shall prove that they hold for n=k+l tqo.‘



~ _ _
Let DO=§f(x__1,xo) and D_=D_+E_. From (26) _Iand (71) we h-ave.

Ry _N—]_ ~ : e - _. -] i '
X 14120 (f(xk) -f (Xk_) —Do(xk xk) EQDo £ (Xk) +Eoﬂ'(xk XkHek)_gk" (83)

Using (74) and (81) we deduce the following inequalities

IFEE )48 12D (& = W BOPR ~x W42z —u i #lbe s 1k o

s 42(s M) - (1))+q )t(l? (84
e ple e | = 1B, (gm0 € £50s s 1)) - (®5)

‘Finally, from (82) - (85) it follows that

ilxk+1 xk+ll]\ L l{ﬂ( ) +(2H(S(l) Sé ))+qu+52)tél)+fl

(1) _, (1)
Sk+1

(1)

+éy (s il

pHgE =% )] =t

Let us denote now. B=H(h;1—2a)+.€_2 s C=¢ +'£2ro+ 83(50-—52).
G IR & SRR S (&) (1)_5(1)
1

Because s S {8, '~a and s S 41$S we. shall have

IPgE D taeaks edg 3.

This completes the proof of the theorem.
The function [31 (r)=/ a2+h;lr—a is increasing only on the
; 0 ' it 2 . .
interval [—-a ho ; ro+qo(2-hoqo)/4 ], so that we cannot give, in
general, aposteriori estimates of the form (8).. However, related
G o tL)

R0 o : ;
to (7),we have || % ~x & B e Al

Concerning the perturbed secant method (70) we have:




Theorem 4..Suppose (f,xé,x )Gfﬂh 139200 and let (x )n>0 be
the sequence generéted by the iterative .algorithm (25). Suppose
also, that conditions (CX) and (Cxx) are fqlfilled. Denote

v =max {qo,roi. If the following inequalities are satisfied:-’

6v _H . ‘ '
Q2=¢— ~2€,70, ~ b (86)
342 | |

ol o =i 4 : |

D,=Q; 4H(€l+€2vo+é3(¢ "2))?’0' % (87‘)
P “ ‘ -
) e . :

X,z”‘ il f‘ f‘o ! - (88)‘

then the iterative algorithm (70) is well defined and for eachi

IIEZ% we shall have the estimates

1% = lis £{?¢3, . SHH3 I = ¢ 810 ol

(2) )

where the sequence(tn o 1S given by:

1+h g 1-h g
§2) )i (23" "So"o (2)_~ "o*o ~
P TRy Tl A v s TR i )
. o (0] ;
(2) (2)
M2 el +a’ R RN )
n+1l (2)+ G n °n n+1
S
n -1
A2) (2) (2) (2) 020
tn+l ¢ 6 [Ht +(H(w+w )+22)t +Hwntn_l+a1422wn+£3(¢—22)]

Proof. For n=-1 and n=0 the inequalities (83) are trivially

satisfied. Suppose they are satisfied for n=-1,0,1,...,k, where k0.
feins ﬁkeUX.

tion (CXX) implies, according to Lemma '3, ‘thesinvertibility of

From (89) it follows that x In this case condi-

Aj N ° .
the linear operator of ,X. )+E, , as well as the inequality
: P K17 Xy By, 8 Y



WS IR ema TP e TR R geeeds - (o0

Let us denote Dk=5f(xk_l,xk) and Dk=5f(xk_i,xk). Using (?5) and

(70) we may wfite:

A %(+1_ﬁ+f (’1_5’k+Ek> THE ) ~£ (&) B (R + (Sk-nk) by & () +

(91)

. _ G Vo B
+EkD f(x )-E (xk-xk)—ekj+gk .
Taking into account the ‘proof of Lemma 2 X o follows that
wk—ﬁ”k)(q ,ro) and then from the proof of Theorem 3 we have .
=L 33 2y ; ; . L. g .
HDk f(xk)“ "l!Xk+l X, ¢ w, . Using this remark and inequa-

lities (74) and (28) we obtain the following estimates:

(2) (2)-

lefite, ) £ (R ) B (xR N Bty B

I}(B' )D f(x)ll H(t(2)+t(2))w

From (91) .we can now deduce that

_" §k+1—xk+1“‘< (¢'£2)“1[Ht}£2)t}ig)lJ"(H(wk’LWk 1)+£ )t(Z)
| o

(2)
= + €5 (@5 T at:

-H‘IW1 _1 = e

4& +£2wk

Thus we have checked the first ineguality {89) for n=k+l.
Remarking that
((:{”‘r) &
r+n ¢ (q+r) 1+2y2

; e« L2
we obtain the inequalities WoST s W gl ,wq§

1 2
142V 2 1+2\F

«(q,r)¢ max(q,r))




It follows that

6v H

—+e, )5

142V2

(2) (2) ¢
(H(wk_1+wk)+£2)tk +Hwktk—1‘(
(Note: for k=0 and k=-1 one has used the fact that to=t_1=0).
Denoting B=(6VOH)/(1+2\/—"2)+£2 ; C=£1+€2vo+£3(¢—£2) aéd taking
into account the definition ofzgé it follows that téii S

P -1 2 T _
(¢ 82) (H52+B(,12+C)"§2' .
In this way we have proved that the second inequality (89)
is also satisfied for n=k+l. The proof is complete. B
The function‘ﬂz(q,r)==Vr(q+r)+a2—a.is increasing so that

for the perturbed secant method we can obtain aposterlorl .esti~

nates of the form (8). Thus we have the fcllowing

Corollary. Under the hypoﬁheées of Theorem 4 the following

estimates
I % -x*lI< sr(lz)+tr(12)-a | | (92)
ok 2 2)...2), (2
W3 16 [T 176276 Sy 141 B 1 el
7
+a€]+téz)—a (93)

are satisfied for all n€Z, . @
Iﬁ the end of this paper we shall apply Theorem 4 to an
"j11 conditioned" example proposed by Wilkinson [21] and considered

also by Lancaster [2]. We are asked to solve iteratively the

equation &



using a computer characterized by the accuracy £l=£2= £3=0.5x10-
.Starting with ‘§’_1=l.21, ‘§O=1.2 and using the secant-

method we have obtained !

El=1.1105182
$,=1.0789103

$,=1.0550694
€4=1.o424910
_€5=1.o358181

€6=1.o332202

€7=1.0326199
€8=1.0325685

€n= 58 for ny8 .

oy > T P R e
If we take x-_l—§'6 , x0—§7 , -and /10 /i( =0.0016199, then we obtain
@ <

H=1, ¢=0.0331112, qo=0.0006004, ro=0.0000517, tl<15,7x10 7,
L -7 '
e,<16,1x10 ". _
We want to find an estimate for the distance [ES—XX\ . Lhe hypo_
theses of Theorem 4 being satisfied we can use Corrolary 1.
From (92) it follows that |Ez-x*|<25x1077 , while from (93)
 we have iig—xxlxj25,3x10~7 X

Taking advantage of the féct that we know that the
sequence (?n) becomes constant beginning with .n=8,' we obtain

according to (6) that ‘%;-xx \<16,1x10—7. Thisids wvery closed to

the reality beecauss x*=1.0325673..

7

o

S S Y
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