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ON A CLASS OF ITERATIVE PROCEDURES FOR
SOLVING NONLINEAR EQUATIONS IN BANACH
 SPACES

by

Florian—-Alexandru Pbtrax)‘

1. INTRODUCTION

In a joint paper with V.Ptdk [14], we have given optimal

convergence conditions, as well as sharp error bounds for the follo-

wing iterative procedure for solving nonlinear equations inm Banach

spaces :

=t O mFLIm yanel
#n n n-1' YnT*pn-1
(1) -
Bkl ke el T
x5 == —Sf(yn,xn) £(x), k=0,1,...,m-1

n=1525 35405

For m=1 this reduces to the secant method.
In the above formulae f was a nonlinear operator between
two Banach spaces, and gf(y,xi was a divided difference of f at the

points y and x (see [24]).

It is known that the order of convergence of this proce-

dure is (m+Yé2+4)/2 (see [21]).. The natural number m can be chosen,

aécording to the dimension of the spacé, to maximize the efficiency {
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(see[9] for thé définitiop 6f the efficiency of an itérative proCe?
dure) . | . ‘
For example/if the dimension of the space is respectively
equal to 1,2, 3 then the optlmal e 43sS respecﬁively equal to 1,3,4{
In what follows we intend to show that the results of Ll4]

remain valid if instead of divided difference one con51ders the more

general notion of consistent approximation of the derivative. We also

intend to study the case, which appears in numerical applications,
where the iterative procedure (1) - can be- performed only approximative-
ly. More precisely we shall investigate the following "perturbed ver-

sion" of the procedure (1):

&3 a0
; =X =57
Ky ng s ¥g- 1of
‘T~ A0 m ~ ~am-1
X =

(2) ,
’”k"'l_f"k_ N/ n : \"l Nk 1 3 Tygly
e Ge (7, K )+E ) THEE D e )49, ko
=0, die ws pmie
n=1'2%3% %
: ; i b e s
Ih the aboye formhlaeg}(yn,xn)+En and f(xn)+en,k repre
sent our estimates for SE(Y ,§ ) “and f(ﬁk),while the vector g con-
Rl n n,k.
tains the errors made in the matrix inversion (or in the solution of
tHe correspondlng linear oystem) oecurring dn- (2).
Supposing that there exist three positive numbers 51,22;
53 such that :

(3) “en’kﬂgfl, HEn"<¥€2' Ugn k_U§£3"

- for ali neM™N and k=0,1,...,m-1, we shall prove, under appropriate
J Lol +*

p 1 = w p‘ .
hypotheses, that there exists a number A 'such that



(4) )% —xklléé\' | e |
for gl k=01 .05 ;meiand 0=0,1,2 6 o

2. ITERATIVE PROCEDURES OF TYPE (2 ,m). AND
NONDISCRETE INDUCTION

In the study of the iterative procedure (l)we shall use
the method of nondlscrete 1nouctlon.

'_For the motivation and’rhe-éenerél Principles ‘of thds'
method see [15) ori[l6] - The iterative procedure (lf bPeing an itera--
tive procedure of type (2,m) we shall reproduce, in what follows,the
.results obta1ped in [14] concerning the appllcatlon of¥ the nondlccre—
te ratheratlcal 1nduCtlon to the 1nvest10atron of these type of ite-
rative procedures. .

First, let us give the definition of an iterative proce-
dure of type (24m) « Roughly_speakinguan-iteretive procedure of type
(2,m) is an iterative procedure which produces, at each step, from
the last two points, m new points. To be.more precise let us introdu;
ce some notations, |

Let X be a complete metric space. If k is a natural num—
ber, Xk will stand for the cartesian product of k ‘cepies of X. In.ithe
whole paper, m will be a fixed positive Jnteger, the elements of Xm+l
will be_flnlte sequences of the form z=(zo,zl,...,zm),with zjeX. For
SaCh. 350, Ly veie p10 weldenote by Pj the mapping which assingns to each

zeXm+l its j=th coordinate; thus

Z =(Poz, Plz,...;sz).

We shall also use the mapping P from Xm+1 onto.X2 defined

by



Qz= (Pm_lz ' sz) .

Let ;bF be a subset ‘of %% and let F be a mapping of ZbF

into_Xm+l To-simplify some of the formulae it will be convenient to

use the abbreviations

F.j=PjF, 3 ) j_=0,l’;..’m

and to introduce the mapping F_l:xz—+x defined for u=(y,x) by the

formula F_, u=y.

Let G be & mapping Irom jj)F fnte X -amd let ¥ be the

inapping from 201‘ into Xm+l' defined by setting

(5) Fly,x)=(x,6(y,2).

The mapping F will ev:ﬁ.dently sati»sf.y ﬁhe ;elation
(6) P _FPz=P 2
fo;: all zeP“]:bF.

Conversely, any mapping F:j)FCX-‘"?Y satisfying (6) will be

of the form (5).

Let now F:;’DFCX —>Y be a mapping which satisfies (6) and
let uoeibF be given. The recurrent scheme
O - x =Fugi X =FPx n=1,2,3,...

1 o

will be called an iterative procedure of type (2,m).

Set ;bozﬁbp and define recursively




a%ﬁ&é{uébn; ‘PFuéan P =032, v

The set ;b:QO ibn will Be calfed the ‘setics admissible

starting points for the iterative procedure (775 If11€2)then we shall

say that the iterative procedure (7) is well defined.

Now let us see how the method of nondiscrete indpction
applies tb the study of iterative procedures of type (2,m). First le£
us introduce the notion of rate of convergence of type {@om) ¢ <

Let T be elther the set 2O all p031t1ve real numbers or a

half open interval of the form (0,s j for some 8.>0. Further, let
) i ]
m- be a fixed p051t1ve integer and let W be a. mapping of T2 into Tm;

“its components will be denoted by Ul’“ﬁ"'”’“ﬁ sc. that :
td(s)=(ui(s),aé(s),...,e%(s)))for each s=(q,r)€T2.

It will be convenient to introduce also the functions

le and(do by the formulae:

g 0 (s)=q, & ()=o) (5)=r; s=(q,r)e1?

Let us define the functionS(Jén):T2*—>T by the recIursive

formula

w M) (s) =0y () (81, wPhe)), ke,

] ’l’"’ll[l
n' O ’2

0
1

7P ® e

We shall attach to the mapping u):T%—9 Tm, the mapping

e 12 Gesineniny

o (S)—(w 1(S) SV {5) Js



”( ) the n'th iterate of &3.in the sense

If we denote by O
- w(l‘l*‘l) (S)=°"(w S)))

of the uéual composition df functions (i.e.a§%s)=

n=0,1 2,...)>then we have obviously
Cﬁn)($)=(o}gzl(5),uﬁ?)(s)), for all seT? and n=0,1,2,%.-

Considering now for each n=l,2,;,.'the'mapping

) Tz—Jva'with components<»{n),uén) (n)' it follows that

“§n+l}(s):w«3(n)(s)): for all seT2 and w0, ;2 jie s

Tn the sequel we shall omit the brackets or the sign."o"

dicating the composition of functions. For example we shall simply

wrltecou} )(q) 1nstead Ofcu(u} )(s)) orcumo( )(s)

A function(A:Tz—?T with the law of iteration described

above will be called a rate of convergence of type ’°,r) on T lf the

series
. A ; o B =) M-{ (n)
(8) gist= 2. 2 el 48
: n=1 _J=0 J

is Convcrgent for each se€T

+ 1
Slrcew(n l) ;f) For all =01,y Ehe above expression

for 6 may be replaced by the follbwing one

o0 m
TRE T W L (51, s=a, r)e T2
n=1 k=1.

It will be convenient to introduce the functions

c 61,...,Gm by setting

Of

PR TRaR -L(_,J -.A\. k=]:2,..-o;m¢



We note the following important functional equation:

(9)  GEEEIEGlEl BT

With the above notation we are able to state the following

result:

"LEMMA 1. Let X be & complete metric space and let
F:bFCX2~%>Xm+l be a mapping which satisfies condition (6).

| Let Z.be a mapping which assigns to each teTz a set

z (t)<dp. :

‘Let « be a rate of convergengence Qf'type;(Z;m) oh'Tl;v

Let uoeﬂbF and t &T” be given. _

If the following conditions are fulfilled:
(10) uoez(to),
(1) PFZ (t)ecZa3(t) g
(12) d(Fku, Fk+lu)gdk(t))

for all teT?, uez(t) and k=-1,0,...,m~1, then:

1° the iterative procedure (7) is well defined and it
vields a seguence (Xn)n7l of points of P %bF;

2O there exists a point xkeX such that each of the m+1l

. *
sequences (ijn)n>l’ 0£jsm, converges to x;

O

3° the following relations hold for each n=l,2,3,...

(n)

(13) Px €Z® - (t ) ,

(14) @R pkﬂxn)gw}in) iy ) Otksm-1,



L R e Cw(n B (), Oskgm 7
40 suppose that, for some natural number n, we have

(Lo - - o ?X EZ(dn)7

n-1

: 2 _;l 2 L ; - x ‘2 = =
where anxd(Pm_lxn_l, Pmkn-l)’ a(P x._1+ Plxn))eT and Px_=ui
then

; S :
¢17) . d(kan,x ):Gk(dn)' oskwm. 73

The prcof of the above lemma ié,very simplé énd it Qill
be omitted: The interested reader may find the proof in L1411

In whét fblloWs we shall construct a raﬁe of convergence
of.type (2,m).which will an. be used in the study of the iterative
pJocedure (1) A

There are some differences between the cases m=1 and
m?%}but we can study them together if we make the following convention:
*if an algorithm requires, at a certain ‘stage, the computation‘of a
’quantity Qk for k=0,1,...,p, and if p happens to be negative, ignore
_this instruction and_pass to the next one} in the same.senSe the suﬁ

'ao+ai+...{ap will be taken equal to zero if p is negative.

LEMMA 2. Let T denote the set of all positive real num-
bers, let a be a nonnegatlve real number,and let m be a positive in-

teger. For all.q,reT consider the Functioné: ) - $e

e— o o e et

(18) ' @(q,r)=r+V§(q+r)+a2 ;

(gei=g; e lgr)=r,
3 1 s Vs :

o~
b
O
~—

D
=1



and define

wﬁ(hil+wk+2 (wo+f i .+<-]?<_l) )

k= 0,1,00.,m=2,

(20) e = =
ekl 4 2T+°?1 ’.
(21) ' ' ='°3m—lcq-l+d%—l+2(O%+"'+Cm—2)) :
sy 20= 2O * o w )T o

1.
Then the funétiohto=(wl,ab,...Kuh) is a rate of conver-
éence of type (2,m) and the corresponding §'- function is given by:

(22) | G%q,r)=r+v57€:;7:;§~a.

B

PROOF. For the .proof let us apply the iterative procedure

(1) to the real polynomial f(xf=x2—a2'ahd iﬁitiai points xo=sg=<ﬂq,r),

yo=s§_l=¢(Q}r)+q. We shall obtain m+l sequences of positive numbers

(sk) ; Ogtk<m,related by the following fovvﬁulae:
n'nzl 2y _ :
' o_m k+1_ _k (S]; ye-a :
(23) Sn=sn"l’ n = n_ sm_l+sm ? k=0’l,oq¢"m—l; ln-"-“l,2,3,...v
n=1 dn-1

From the convexity of £ it follows that

m m-1 1 O
s, 8 < «ee<S, K8, = 8

) L
From the definition of X and Y, ve have

m-1 N 0 _ 3_ 1
55 "bo*q—“il(qrr)l 84 Sl_so Slur—&b(q’r).

One .can ‘prove that

Sl”sl =a&(g:r) 0 . k=071;r5-;m"l,

and more generally



. o I}j—.};*l:w}im (2,2}, k=0,1,...,m-1; n=1,2,3,...
It follows that « is a rate of convergence of type (2 ,m)
and that
G(q,r)=sm-a=?(q,r)—a.
, (e}
Moreover we shall have
...l - , 3
(259 G’k’u&(n )(q,r)j_——-s};—a, Otkim. : : LI

3. SHARP ERROR BOUNDS FOR THE ITERATTVE.PROCEDGRE'(I)

In this section we shall make a semilocal analysis, in
thevsense of Ortega and Rheinboldt [8] , for the_itefative procédure.
(1) . :

‘ First,let us -explain what the symbol Jf(y,x) means. Let
x‘and Y be two Bénach spéces and let§bf be an open convex subset of X.
Let finCX~4»Y be a nonlinear operator which is Fféchet differentiable
5111%? Denote by L(X,Y) the Banach space of all bounded linear opera-
tors from X to Y. A mapping Ef:Df X Df<—?L(Y,Y) wilf?%alled a (EEEQE"

gly) consistent approximation of the derivative of f£,if there exists

a constant Hy0 such that
(26) | 3, ) -£7 ()| LB hx-z | + hy-2z 1)

for all k,y,zeﬁf.
Let us note that condition (26), which was also considered
in [1] and [20], is slightly stronger than the condition defining the

mtion of strongly coneistent approximation from {8].

fu




‘In (1) the linear operator Sf(yn,xn)\appears to the po-
wer. =1, In the sequél we shall use the_following'Wéll known result

concerning the inversion of linear operators in Banach spaces:

LEMMA 3, If LoéL(X,Y) is invertible andfifBlel(X,Y) satis-

fies the condition

po<gzsty L,

‘then
o™ ga- nn gty MU .

We shall investigate the convergence of the iterative pro-

eedure (1) within the class defined below. '
Let ho be a positive number and.iet'qo and r, be nonnega-

@ive nﬁmbers. We denotevby 87ho,qo,ro) the class of all triplets

(f,xo,yo) éatisfying the properties:

(C;) £ is a nonlinear operator defined on a.subsetgbf of a Banach spa-

ce X and with values in a Banach space'Y)‘
(C2) b belongs to the sphere U=%EX; “x—xo“ (f‘})
(C3) f is Fréchet differentiable in Uz
(C4) £ is continuous on U={xeX; “x—xox\é/ﬂ}j
(CS) there exists a mapping of: U x U—>L(X,Y)

such that the linear operator Dozgf(vo,xo) is invertible and

(27) iIDgh (€ (x,y)-£7 (2)) || ¢ B ( flx-z il + fy=z 1 )

m

for all x,y,zeU

(Cg) the following inequalities are satisfied:



(28) B, Yol €95 %

o i sl R
(30) b T
. 7 ‘
(31) I4ng= %F_(l—hoqo-v&l hoqo) 4hor9) #
O

In the following theorem we shall show that if

. i k
(£1%170)¢ Bl 0,,7,) , Ehen each of the m sequences (xy)y,

(1gk§mx,proﬁuced by (1) converges to & root x> of the equation f(x)=0.
"Refore stating this theorem let us make some remarks on the conditions
vy 3 e
defining the class Qﬂho,qo,ro). ‘
The constant hO appeIaring in (27) generally depends on

/4a In (31) we ask /H to be greater than /%,which depends on hé; It s

4 = R C QL - + ‘. + Ry I + Y\ FfAr 21 : e inres
then useful to note that ﬁogLo+yLo\qo+Lo, for all h 70,so that we

. . = = : al < 1+ 3 N - 1 3 £~ -
~could take M= ro+,/r (q_ +r ). The most restrictivé condition from the

| 6 " "o
definition of the class Zﬂho,qo,ro) seems to be~inéguality (30Y .

This inequality is satisfied only if_qo and‘ré are small enough. In
practical applications d, can be taken as small as wahted; because hav-
ing an initial ‘point X, we can choose Y, very close te it,  but r, can

be taken small only if the initial approximation is "good enough"
(see (29)). Tt is not.so easy to f£ind such an dnitial point! Howé&er
it turps out that condition (30) is optimal in some sense. Indeed one
can show.that if. this condition i's 'not ‘satisfied *theniehie canznot
assure any more the existence of -a root of the equation f(x)=0

(see [13] or {14}).

Let us state now the main result of this section .

THEOREM 1. If (f’ﬁ’yo)égﬂho’qo'ro) then the iterative pro-

cedure (1) is well defined and it yields mt+l sequences (xg)n7l,
o¢j¢m, with the following properties: there éexists a point x%&x for

: o fk~ ol 3 ; 2 1 S
which £(x")=0, each of these sequences converges to x#,and the follow-
N




E e
ing estimates

(3898 fdent oeis™)

(agrry),

(33) =g oy - | -k |,

hold for all 32051 v e, 10 BT D) 203 5 e where ¢’ is the rate of

convergence defined in Lemma 2, the constant a being given by

il = 2_
(34) a = -2-5;-\[\1 Beoge)“=th r .

PROOF. The proof is'based on-Lemma 1. If u=(y,x)£’:"-'2 set
F (u)=x, F. l(u)=F.(u)—S§y x) lf F (8 e 9=0 l,...,m l.3Lét us denofe
1373%,the set of those u for which the above formulae make se“se (i.e.

Xf(y %) 1s invertible and F (u)QU for j=0,1,...,m~1) and 1etvus define .

. @ mapping F :D ~iX_ by settlng

F(U)-:(Fo(u), F(u),.-c’Fm(u))“

This function clearly satisfies the properties

B EPz=P z, Py Fu=F, u, for all zeP EbF and quF,

It will be convenient to introduce a mapping F-l as well
by setting F_, (u)=y.

, 5 :
Let us assign to each t:ﬂq,r)éTz a subsetof X defined

as. follows

~ s , \.\2 . v i Y e u o % PO
(35) Z\c)={(y,X)ed.; YEU , liy-xij £q, ”xfxoh;o\c

CJ

D=§f(y,x) is inyvertible, “



In the above definition of Z(t), t stands for'thé pair (q ,r ).
Hence using (31) it follows that Z(t)CUz.'Consider now the rate of con
vergence ¢ described in lemma 2, the constant a being giveﬁ-by (34) .
Our theorem will be proved if wefshow that_z(t)ci%,and that - con-
ditions (10), (11), (12) and (16) from lemma .l are satisfied. First
of ail, if~-uO stands for (yo,xo)rwe clearly.have uer(tO); Let us pro-

ve now that ueZ (t) implies

6] F},(u)eu for -lstksm

‘and
(37) \ ?k(u)—F Wl ¢ @), for -1gkg§;1 J

K+1

For k=-1 these relations reduce to yeU and \\y-x\\¢q; for
k=0 they follow from xe€U and.!lgf(y,xf1§(x§ “ < v, Consider now an
i, 0gfig¢m-1, and suppose that (36) gnd (37)hold for’k;—l,O,...,i. Ve
have then .

»

[

']Fi+1(U)'Xo”§-llFi+1(u)“Xli+llX”XoH§§§% “Fj+l(ﬁ)—Fj(u)“ +“X“XO|)§

A

L
P ol B(e,)=Gle)=6le ) -6, (8)

so that Fi+1(u)6U as well; this establishes (36). Lef us remark that
from (35) and (36) it follows that 2 (t)edp. To simplify the formulac.

let Dy =f (F

m“_l(u), B0 ), fj=f(Fj(u)). The.relation defining

Fi+l(u) may be thus wri?tenlin the form fi=D(Fi(u)—Fi+l(u)). Hence

we may write , ' . o

R g T et T
(38) F. (u)=D "f & DO (fi+l

:L+ZL(u)_F

S ~£,-D(F 7 (W-F; (W)).




- 15 -
i AEthie stage let us note that condition (27) imblies that
e | : '
(D L= ;yz))xx £ 2h_)ly;my, |l for all y;,y,eU.
:w'Uging a standard argument (see(8; 3.2.12]) we deduce that
({D (£(yq) ~£(y,) ~E" (¥5) (yq y2>)HS hy [l ¥y yzu 'for all y;,¥,¢U.

ST fo;lows that for all Yir Yor 290 26U wglhav?
: (39) ”D;l (£ (yl) =F (Y2) -df (zll 22) (yl-Vz) ) “<= ” D;l(f(yl)"’f (Vz)‘f’ (YZ) (yl-yz) ) “

L (6 7) 3£ (2,20 vy | £ B Ulyz- Zl I+ Hyzmzall + vy 1D Yl“’?.]/ .

Now from'(38) we obtain

(w)-F, ., il |l D"lp)'lﬁ h (IF; (@-y | +;§§‘i(u)—x'fr+nF () ~F, 4 @)l)

@y (t) .
(@, (£)+2 (W () 4ot o (ED+T)= W, 4(E)
nF (a)y=E. +l(u)“: m 3k "0 S el 1+%.

L

In this manner we have established (37). Now we intend to

show that ueZ (t) implies
(Fpoq (), Fp(u))ezes (&)

It will suffice to prove the following inequalities !

(41) [ F g W-Fp@lge g (8,
(42) |F,, (W) -x [ 6t )-8 (£),
gy i £ llgeq, (£)
' Sl =i 1 .
(449 : “(Do Dpo) “g ho(zym(t)+a%_l(t))

The first inequality is a éonsequence of ¥(37) ‘andsoiiis

(42):, which follows from. (40) for i=m-1. By (9), (27) and (37) we have



= 6=

S R LU RN R L S

{__..ho("Fm(ll)-xo'“ N ERRCEN RN XN RS

ého(zﬁ(toriqﬁ‘t)+qo*“&-1(t))=1‘ho(2¢5‘t)+°h—1‘t))'

Accordihg to Lemma 3 this implies the invertibility of Dm andithe
inequality (44).
Using the identity fm_l=D(Fm(u)—Fm_l(u)) wg.obtaln

-1-1,. '
Do(fmfﬁm—l-D(Fm(u)_Fm—l(u))ﬂ ; S

ot =l oot
T 07 1p )7t (I, _y (@ =y{+[Eyq (@ s+, (W) -F,_ @D]|Fy (@ ~Fp g @
-1 (t) | ‘ y . o '
T O EENN ) (2L (0426, (44w i, (£)) iy (£)) = ()

Until now we have proved that conditions (10), (11) and
(12)‘of Lemma 1 are satisfied. Our next task is to prove (Le), that
is to show that the inclusion ‘

. -1 -1 1
(45) CoRE R L e S el

holds for each n=1l,2,... ‘
But according to (13) and (35) we already know that

m-l m : (n—-1) (n=-1)

flo) (Xn—l’ xn—l)ez(uh—l_ (to)’uﬁ (to)))
m~1 m (n-l)

(47) ”xn_l—xn_llsé U T T

(a8) |8 -xblead™ ()= k)

(¢}
Fh
[
3
O
ct
-
O
3
aQ

~ T e \ 3 1
e that ti given by (22) is

It is easy to s

o]
3
joN]

: ES 3 Ty i en Jon YO0 a R B oo 4 ,:'
monotone ln.tﬂb sense that if g;¢q9, 2 riirs, then u(ql,rl)g(ﬂqz,rz)e

]
[
(N

' Using this property from (46), (47) (48) it follows that




sl

1ol 6Lt -6 x‘;‘ L e

‘ 4
| (D Sgeant) x SW | < [h (uf(ux —x‘n-(n - 1)+ 1l Sl

The above relations together with (46) Cimply (45):.

Then Lemma 1 1mp11es that there exlsts a point X el
which is the common limit of the sequences (xn)n?l(lijém) and that
.estlmates (32) and (33) are satisfied. Thus the 'proof of our theorem
will be complete if we demonstrate that x> is a root of the equation

£(x)=0. To show this let us observe that (27) implies

Y e '  § -1
oot et N =leg (f(:<n+l>ef.<>:f§>-—}'f(x§ o Gk -]

s “Xi+l'xg—l“uxi+i_xi {18 e j. g ‘ & ]

nA

From the above inequality, using the continuity of f£
on U,we deduce that £(x*)=0.2
We shall conclude this section remarking that the

estimates (32) and (33) obtained in Theorem 1-are sharp in the class

%«holqovro)- Indeed, let h >0, g

v

(o)

20, ands v o be sany numbers

satisfying condition (30) % and consider the real polynomial

. DR T : i 95
f(x)—ho(x -a“), with a given by (34) . Take x = srFT5 and

q o 2hO 2
e e e N0 '
fo 2ho e & Al Have (f’xo’yo)egaho’qo’ro). _
and from the proof of Lemma 2 it follows that 1in this particular

case the estimates (32) and (33) are attained for dll n=1,2,346a8k "

4. AN ERROR ANALYSIS IN THE PERTUREED CASE

In this section we shall investigate the iterative
procedure (2) tryingto find estimates for the distances

|§k-xk | for k=0,1,...,m and n=1,2,3,:.. % We"shall do this for

f&ﬁkyv%AV(6



e

triplets (f,xé,yo)éfﬂbo,qo,ro) satisfying the foll?winq two condi-

tions:

(C*) The nonlinear operator f is Fréchet ‘differentia-

~ble in the sphere U*:{xex; “X_XO\V:W*S and the following relations

(50) | £ (x,y) = 8 (u,v) || £ H(ix-ul+iy-vi), ldee )

*

" are satisfied for all x,y,u,veU ..

(c**) The linear operator Sf(x,y) is invertible ' fer

all x,yeU%} and there exists a positive number»ﬁf such that
: I ) : -4 " * 3
(51) 'y¢ 2 sup{l[ Sf(x,y) [\; X,y€U }

Let us remark that condition (50) is stronger than

. condition (26) but it is satisfied by the most used examples.

THEOREM 2. Let (f’xo'yo¥5€(ho’qo’ro) sand let
0¢j¢m, be the sequences generated by the iterative proce-
dure (1). Suppose conditions (3), (Cx) and (CX¥) are satisfied.
Let %=max{2°,gk,
I1f the following sinequalities hold

g ey —
(52) Q _H(2m+l)vo 2¢, 20,

i . ¥ 2 p X ' ° '
(53) D = Q“-12H(E;+&,v +&, (yf—ez))y_.O,

(54) $ . 8400,

#* - o
6H =‘[“——/M°)
-v "‘k
then the iterative procedure (2) is well defined "and Sthe follpwing‘

- \
estimates

(55) - [|3-sd)jeed 5 )




Sy

are satisfied for all neN and j=0,1,...,m, where

m-1 m . _m-1 SEmEim—
t =t =0, =(1+ : = 42 L Q. o_.m

o o e L h-oqo)/(?ho)’so o qo’.wm 1 qo’Wm Tor®n™%n-1
bl ok omid Sl L pESe . - e Ik K8

S o Sacil e l) ((Sn) = wk—sn_sn :

o_ k+1 m-4_m =

tn" gkl n ¢ f (%4 b t ) t +(2H(w iy +W§_1)+W$—1+52>tk+

+ Hw (tm e )+£ i (7-5 5)
19 1 2 k ts 2507

~1

PROOF. The inequalities (55) arelérivially satisfied
for n=0 and j=m—l;m. Cansider an izl and suppose that they are sa-
tisfied for n=i-1 and j=m—lnnIn this qasé, accofding.to (54)., the
‘points §l—§T , and l—im it béléng ﬁo u¥. Condition-(c**) and
Lemma 3 imply then the dnvertibility of the liﬁeér_operator .

Jf(?i,gi)+Ei . ‘and the fact that

N g+ T L g7t

. are
"We shall prove now that inequalities (55)!vefified

for n=i and 3=0,1,..« ;M Because X l—xz and €:4=ti we may consider

formally that they are verified for n=i and j=0 also. Suppose they

are satisfied for n=i and j=0,1,...,k, where Ofk¢m-1l. Denote

‘Diégf(yi,x{) and Si=gf(§i'££)' From (1) and (2) we deduce the e-

quality
kel kel 1 WKy Nk ek, -1 ...k
(56) =(8,+E,) [f £ (5% -8, (K-8 +B;-p D7t £0x)
"l k A k Nk T
+B; D} F (x7) =By (7K ) ey (] *ay -
From the proofs 'of Lemma 2 and Theorem 1 it follows
thatI!Dflf(xk)“zﬂxk+l—xkl‘$w}, - > 'ygsing (50) ‘we obtain the
1 1u W 1 Jut = k - 4

inequalities:



=g

1 )-8 ) -5 6E-%Dl<n( (-5 1u+n“k ol |[>llx -5k

£H(t l+t. o =

: 3:
-1 R m_l+2(wo+.

1
k 1t i

‘wm“l+ m-1

o -1 k = ~
N(B,-p;) Dy " £ eI Ler (% ) Sy K E ]

Now, (56) implies

oy ] _hi ‘ 1 3
)55 l<x§+l“gx¢—gz) (R vty l+t?)t§+(zg(yé+...+w;_l)+
+ Bt (& m—l+ R k+£ ($-2,)) t ik

ko=l gl

))t r

m o m-1,
=it gy 1) Wy (SRR

k

m
gLy IM s

d=1

l+£ )t

‘Let us denote B= H(2m+l)y, and C= g4 Cp Vot €3 (¢—EZ)

Because wg;v For alls i and § it -Eollows tha+'

e g(¢—Q)'l(3H52+BS+C)=:§ .

Thus inequalities (55) are satisfied for n=i and j=k+1

so that they will be satisfied for all nelN and j:O,l,...;m.QB

The error analysis made above for the iterative proce-

dure (2) is similar to the error analysis made for Newton'’s method

by Lancaster [6],Rokne [17] and Miel 7] . For the case m=1 more pre-

cise results have been obtained in [12].
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