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NATURAL CONVECTION IN BOUNDED POROUS MEDIA

by
Dan A .POLISEVSCHI
e { e i

The governing equations ?f the macroscopié phenomenon
are obtained in §i with one of the methods exposed in [l] and
taking advantage of accepted approximations. The'e?fétencé of
the ste;dy solﬁtions and a regularity result are préﬁed in .§2,‘
wherebwe also give a uniqueness."criterion"; Because of the géé

neral non-uniqueness of the solutions, we study in §3 the asimp-

totic stability in the mean.

1. The fundamental equations -

pass through a pPorous medium have alwaYs come up against peculiar
difficulties, Thus the problem of the heat»transfer between the
fluid and the solid parts of the porous medium is still opened [2];
‘we shall use the hypothesis which Suppose that the two componeﬁt
parts have equal mean temperatures. -
| In order'to formulate the problem, we need a method to

cross the microscopic level and to obtain the Mmacroscopic behaviour
(see El] and [3]). 50, ek us’introduce a probability,dehsity

(*) and define the macroscopic value (am) of a microscopic magni-

tude (a) by means of the following convolution:




(1) _'am(;?)t) = (&% 'X)(.‘{', t) - where
0(()(,1‘) 0(( x --f)

However, we have to take care because not every macro- -

scopic value obtained as before has a physical signification in

filtration theory.
As the VelOClty of the fluid in the porous medium is far

smaller than the acoustic VelOClty, the motion induces little

changes of the pressure. That’s why we neglect the variations of
the thermodynamic quantities owing to pressure changes. Moreover,
we.assume that the temperature differences are small enough SO
as the BouSSinesq apprOXimation is applicable to our problem.

Thus the governing equations at the microscopic level are:

f2) dur T = O

Using.the index f for the fluid and the index S for the solid,

we have noted with C; T and Q, respectively, the specific heat

at constant volume, the temperature and the heat flux transmitted
by conduction. In the fluid part, G, p,,” /5 f and T stand for
the velocity, the pressure, the VlSCOSlty, the volumetric coef-
ficient of thermal expansion, the denSity and the temperature of
a reference state, respectively. Our solid.is immobile and not

deformable, the density Sé being constant.. As usual E%Hstand for

the gravitational acceleration.



On the fluid-solid interface the following conditions are
'imposed:
s e

(7) =7

Now, the Darcy’s ve1001ty, the temperature and the pressure

of the “flltratlon" fluid can be defined bys 4
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where m is the porosity Ll]. If the macrdsco?ic motion is conside-

red to be uniformly and slow, the equations (2)~-(5) together with

the conditions (6)=(7) give:
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where 553':(5V““&{))Zi§“ x X is' the heat flux on the fluid-
solid interface (f#- ~-the normal towrdq the fluid, 5 g~ =the unit
i
L
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1mpulse of the 1nterface) and K is the permeablllty
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The thermal conductivity /\ [2] can be introduced in

the ciassical- manner, SO that-by addiﬁg (11) .and (12) to get:

‘ -;’t
(13 <s=>*l":+6,-'»ficf«‘w a%), = NAT

where, ?C) = M CJ ;: P (/‘ h() % J;

We surpass the last difficulty by neglectlng

clw')‘(“"“- \[’f (T ]} in comparison with the other terms o5 3)e

Thus, the heat equation becomes.
(10) f%?+m3}'(77“ AT

where the number ¥ = (ff,(;@)
S g, & : S i
coefficient ' { :(F"Cf) A : are chara.cterlstlc to every porous
medium.
Further on the fundamental equations which describe the

present f)henomenon at the macroscopic level are (8), (9) and (X0)

2. The steady solutions

In thlS section we prove the existence of the weak solu-.
tions of the system (8)—(10) in the stationary case, with pres—
cribed temperature on the boundary. We also study the uniqueness
and the regularity of these solutions.

Let £ be a bounded open set of class 8 in K (n22) with
boundary I p det 5’-’6 ,_[_—_w(-a) be a given ‘vector fgnction and
Gc an)(_Q) (mpn) be a given scalar function. (Without loss of
-generality we can assume that.Q is included 1n a cube of edge

length 1). We are looking for a vector function ’T/::C?f)...) 7];;)

o SO
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and for two scalar functlons p -and T, which are defined in -Q

»satlsfylng the follow1ng equations and boundary condltlons

ey e T O s

AT LlesGony]s

(16) w7 177» )@4\7‘ I/

e en ey o

(18) ? '77'“—‘ O (o) 9] /’7 : (7?;- the ﬁ_ormal‘of /7)

Let y)be any scalar function such Ehat: -

(19) Weg 1/{'/”1(0(£) ndd ()U"*'Z_ 04/7

where G,,/,,{"é% K s £ //di// £/~/6(9‘“/)7 . Later on
we shall specify (more) the way in which // must be chosen.

Using
the notations (20)-(23):

e im0 - (Cavy s 1)

COREN G L

: L A ]
(22) L= M 75/’ K m/o
(23) S

el o e v - :
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the system (14)-(18) becomes:




28 divn = o G Q

(25) zz=i-Y%ﬁ7-%'S§§5-{9’§5.. &‘fQj
(26) ZZVS s RS AW ;;_2
(27)‘( S':r O an /7 |

'(28; M= 0 O”ﬁ—

In order to prove the existence of the weak solutions of

the problem (24)-(28) we use the following lemma [4]:

Lemma 1. Let B be a reflexive Banach space, A a‘dense
subspace (with his own separated locally convex topology) conti-
nously embedded in B, and A, 8’ the adequate dual spaces. Then

: o /
B’g_; G—(B) if @ is an weakly continuous operator GB%—* A

such that
. . G ’
/&m s >‘<> = OO
ixf—> oo I x
(xeA)

i‘et us make the correspondence with our problem. Taking
i1 acdount that the space H= { TE Lj@) } el ‘2?‘=_O) v 774_, 'ZOE*
is the closure in _ZjCQ) of the space ’&ngz,:eé_g_)(Q)Ic{Zb"z.*:Ojng
then B=H >(H; (2) - Hilbert space with the scalar product 4
[@s),(7,7] = (z,7), +(5 e oo (B3, (B,7)€ HXxH (L)
where CS)T)-HJ = iVs VTJ_Q)_-—and A = /L?—X )9(42) . The
gperator g B A’ is defined by: : :

<&(g,9),(%, ™ N =[G, NT + GF, 7)), +

.+‘é,(,z)34.w)“7> 5 ("J) (""-/7—/\’ 674)'

(29)
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where A(E)g) T) = 3 (a VS) Ta(.'.Q
Now we consider the following variational formulation of

the problem (24)-(28): fing (&',5)6“8 -éuch that
0 K€, )~ [(vowy, ] | ) 4

We have made this association because if 0,5 .and 75 are
smooth functions satisfying (24)-(28) then (& 8) is a solution
of (30). Conversely, o (&)3)58 satisfies (30) then choosing

~the test functions in a proiaer manner we_get:'
(31) (t?+3’5-+- s&q?) 7?;)2 HILD @) Fe -
(32) (~AS+Z’VS+L?V?’ﬂA¥’) 7‘): i) 7“6/9(@

As &+SF Y@ _éz(ﬁ) and the orthogonal ‘complement
of il ans L300 1 +/“‘~-={z&'e;@/z?:ix;o,,aej/‘/’(g)f [
- follows from (31) that (D7 e f/"(_z‘z) such that (25) it
satisfied in _l;(-«?) - Since ~AS+7ps . w s — A %’G-'f/*tﬁ)
from (32) results (26) in the distribution sense. Finally, because_
(&",S) e 8 ;the relations (24), (27) *anhd- (28) iare satisfieq
in the diétribution and the trace senses, resiaectively.

Here it is the existence result:

Theorem 1. The problem (30) has at least one solution
X R A ' :
(gs)e B8 , and there exists: 7 & # C2) . Such thae (24)=(28)

are satisfied. ’ SRR



= ~ Proof. Tet us notlce that C‘V’Q’ 2%) 66 becausé

| -N%PCPG [°(g) and AYE L (.Q) . Hence if we prove that W

bfrom (19) can be chosen such that G satisfy the hypothe51s of

Lemma 1, then (3)(&7,3) e 5 solution of the problem 120) .
Fifst of :all; G'is weakly -continuous: - ;

' Let a sequence (4, ) 4) ——A(u, ) weakly in B; then for

any (’7} T)G A : we have:

[<C(“ =) (2l <c;(u s) - 7)>/ z
< l[(an,so,(v;n]~1:<a,s>,@,~r>] ] |

i I(Q"_a /w+7-175)

.t]lb(f{;JSh-g)T)[ < 1=, Vflo'!ls =S+

+!<S;\”S,_¢’?)i gl

. (terms whlch tends.to zero). Butialso il S,-Sl, =0 as the

i 1 . :
enbedding H, (—’2) ~ L—(Q) is compact, and hence
G(LT,,'S;)AG(E,$§ weakly in »A’ .
Before showing the last property of G, we. will l_arove the

following lemma:.

Lemma 2. For any § >C ‘there exists some Wf satisfying
(19) with : - ; '
bz, %3] < Y @&y, @(Es)ed
proot of Temma 2. Let  fx)= O((X)P). =the distance
from x to I” . For any E >0 we consider —Z&_ = SKE-‘_Z I

' ) < 2 exp (_ ‘) ? and f% < ({2(5) the function

that has the following pr0pert1es [5]

Qg =] in csome nelghbourhood of f’ (which defpends ene )

b o N

5;..} S5 @ e L
X ;




~ Let us put (fé ztzg ; obviously Yg satisfy (19) and also

@) se H(2)

(33) - Il s V\Pé’ ]/ < [Zész(?;szﬁlz 5 E{"Z! Vg/z)pll—7?<
\F EVn~ / JS’”LZ(%) II.SIVGIIIL?@VV)/) < @E@ gg/lo}/%yz ‘f_ ?&)//?/»%j

. _ y
‘where ?@) (_é; Vé’[ C{J})  tends to zero —~ ) bécéuise
e = V(/;\(”(_Q) 3 8]50 as mdn it follows Z'H < oo |

Using thé well-known J.nequalltles:‘

H {S“ﬁ'

nsn% <<y Isl,,

from (33) we get:

¥ se #L'CQ)

NSV‘HZ < ¢ max 5&,("(&)f IISIIHO

Therefore () (‘( sled

the follow.Lng_relatlon is true:

6@ %) < & maxfepe] 1@s

Then, Lemma 2 is proved if & is sufficiently small such

~that :

Co maxbey@] < v

‘Now, let us return to the main proof. Taking advantage

of the following inequality [6 ]:

39) sy

L - g
) é“\/&‘ ”b//#: ; @J‘)-Sf}g(ﬁ) ,(OC:- 2\1{3 /72>

we have for any ((7,5) € 74



<@(‘a,sa),(a,g)>; [ (& >)# i (w a) wbile Ll;, S)
Y @9l £~ sl PF L, U, ~ ]A(u (/~-———~>/) //(‘s)//

Choosing

(35) XS _\/:. ' . (for example Y¥=09)

a

the last property of G 1s demonstrated and also Theorem 1.

For uniqueness we have only a poor result because of

some spe01f1c features of the problem.

Since the expression é)(d 3, T) " does not nec’essarily :
make sense for (45X B 5 T& ~-Hc (,Q) o We introduce the
. ' 2 17, o0 : i IS
Banach space 8 = H x[Hc(ﬁ)()L (.Q)] with the norm 1 (Q,S)“é" =

3'”(‘:)5)"8 = )(Sllx, . Some properties of b are given:
s ."N ’ -
G b(ET)-b(zs,n) 5 bEss) =0 5 @EIes , TeH ()

(37 b 1s trilinear and continuous, defined on ‘HXH:(Q) XD‘C(‘Q)HLW(—Q)]

Al

The properties (36) and (37) are Consequences‘ of the two

relations:

i’

H(uvs)c Jj_‘ hz, st 17l

§
N

Moreover, since A is dense in B , a continuity argument ensured

by (37) shows that every (&',S)G B . “golution of -(30); verify:

s S AR
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s <6@y), (5n "_~]—(\P<P V), (5T ] (V)(ri“T)c

Now we can state our uniqueness "criterion":

Propesition 1. Let (Z5) bo'a solutlon of the problem (30)

=
with sl <2 ~0ec® i glven at (34)). Then (TT,s) is unique

"in B among the vector functlons essentially bounded on the last

component
Proof As Asi D ‘*"-L ! the're exists ¥ SO ch tn £
_— 2Q o J : o) su 1 a
I S, + 2y, < 2 ~ \-/—1;(7 i let’s keep in mind that b’o . satisfy
also (35). :
— & m ! :
If (’-"4..3.4) S 6 is another solution of (30) ¥ then putlng

F:E*_T "and 'T=-S,-S (obv1ously (‘L"T)€8 ) from (38) we get:

O ~Silus) (v - EE ), 08T =
]]('VT)I +(T¢ 7), +1>(v T 7‘) * b(T s 557 ) >-
2 I 1 ~ i, iy, - % 165, r)/-~!/a( Izl livry, >
{
} (4...;\/_:{_ -y - __llsu ) Il (7, T)l[s
It follows tﬂ'(’f;T) ”2 <O that is | (‘( S) (“4 01) in B,

and Proposition 1 is proved.
ns :
As in general B is different from B, we cannot treat a less
restricted case even if we impose supplementary conditions on G

(respective \}3— o Einally we notlce the follow1ng a prlOI‘l " estima-

tion of the solutions (% S)E 8 af (30

V4+t+x? ' ;
4,3 ¢ el
ﬂ( Sl < 7= e I rfav//.Z ¥) x< :

About the regularity of the solutions we can obtain some

\/'“

informations if the dimension of the space is n 3. For example

we’ll show the following result:



Proposition 2. If .Q_C/R is of class 'g “and % ¢

are functions of class Fé:’: 1n,9. ' then any solutlon of (30)-ds

: =)
of class @ in .Q. %

Proof. Eliminating @& and definning 6=S+¥ , the systenf - E

(24)-(28) becomes:

('395 : Tz a(,uf(\TCF) th 1A

§’\‘2€

-(40)_ e e £ : (M -the exterior‘ normal on'r')

(42) ait on [

Now a simple technique can be used. As € “Ho (~Q) and
- («) sl : s iy Z \
e \/\/; (-2) , then e Wg }(.Q.) and 0&0“(6‘?) € L(.Q_) 3
since the following condition is satisfied : '

o ) tu(wp)a{.@ --§ T dl

58
theh (H)'TC W(zj(-ﬁ) satisfying (39)-(40) [5] it 1mp11es :
that (Vr-v- r&)c WM(\Q) < Le(f , and because VO € L (l) i

it follows that <V//'P'T'(P)l7(7'€ L 2(.9_) From the same classical

results [5‘] there exists 0 € W (—Q) which verify (41)-(42),
Z

from one of Sobolev embedding theorems [5’] (/3~ < = « - ? = O)
e :
results V&L (ﬁ) (v) ‘XE[( ”"} . AT Vi ¢ V(, (i) : recalllng
(5)
the regularlty result for the problem (39)—(40) we get )

and then Vire L (—l) (V)“€[4 %) . as Vi e U (.?)C L (Q) ﬁzGlZ |
(\—/rmi)vo“et(:z )2 <[—’<3} Tt follows 07€ V‘{A;ZJC-Q) and
vire Wle) @ pelX5®) e gof- 3£ ke

hence J Q’L“(.Q) 6")‘)(,)4 Therefore we obtain again an impro-



f | f ()
vement: . '7c W ) e Z‘ %) » that is 776 W f} (V/é(Cpx
' Now the follOW1ng pr0p0s1t10n can be easily proved by

.induction on K€N (K : : ; B
GQ) c'ZV?C(/ 7/76‘__11{7 Cﬁ) ) ece L4, =)

This proposition can be proved repeating, on the steb K, the last
part of the previous demonstration,'
Finally, recalling again the 'embeddiné theorems, we get

that ¥ and A77'".', together with any derivative are continous.

3. The stability in the mean

In this section we revert to the"unsteady case and deter-
mine under which conditions the quadratic mean of a perturbation
tends to zero when the time increases. _

We consider a basic phenonlmon("l}-,r/)) ; solul:ion of: (8)'—(1‘0)
with the boundary conditions (17)-(18), whlch can take place in
BG) . an open set of class €2 in R (7?,, 2) with boundary
P, included in a cube of edge length 0( Together with any other
altered state (’U T'*) /O*) » Which is also solution of
(8)-(10) and (17)-(18) + we introduce the perturbatlon quantities

TC = E - ’ 2-: T*-- T and their quadratic means:
A

4 S :
'W{S gwul]? Q| iods]?
2 ) 3 ‘
which are obviously in conneetion with the energy of the distur-—
" bance brought about by ( Z‘q‘*’ T *) .f* ) . Thus, a basic state
is .said to be stable in +he mean [6_] if the energy of any distur-

bance tends to zero as the time increases, that-is:



L oW - i g4 =a

Now, here it is our stability creterion::

Theorem 2. The basic state ('F'J s /O) 'is stable in the

mean ¢ f g4

.(45).( Rci < “""“'qn : ( o= "'-~2-—-~ //. :

o e ? . Ty i ,
where Re 1‘/“ b ’”3’!)00( I K/g IVTl  is the Rayleigh number

associated to the basic state.

© Proof. Let (??*, 7’*:)f*) be an altered state. With any
initial conditions, the perturbations quantities w 'and,q_ satis-
fy the following system:

(46) aéur i N S P

(47} :%T "g‘;*v‘f"/%-ﬁ:*V&)*‘/)) —;fjﬂzgf i 4
(48) X%—‘j;—-#mﬁl75+ M7 M TV ='/{IAZ w
.<49’.) ' 2 =0 on I’

B T mAOY L el

Multi?lying (47) and (48) with W, respectively g, and
using the well-known formula of the material derivative for \/\/z E

: 2
~and Q ( 2(E) being a material domain) we obtain:

2 ol ol o W "@/«’5 (f. 3f o )2

N




= i
m e i .
52 ¥ 5(—;‘- ==m bh(&75) ~ A2l

If g and V7 are supposed to be’ essentially bounded,
" then: l

,(5;)' | 6(%, 7, 8l < < 20vrl, | 2% Q_
(54) 1(22?: ), | <\'211§-ng

As the.i.nequality (34) im‘plAies:
(5.5) "2”3‘;' > %’QZ f

then”from.(Sl)—(SZ), via (53)-(54), we get: -

(56) ﬁ’ Z%LV 7ﬁ W+2f’/g/(0q// 7 52
(57) Y .‘ZL
o

< 2w bvrf W — 2x2 pF
oQ Aé{?_
Now (56) and (57) can be put in only one equation:

C =(W) _
w Flg) ) <o

-

where A is the following matrix
=1 =~ . -
- R I ~wp [Tl
o % 7__' - .~ 2
-w¥ fvrf R Y A

Integrating (58) from 0 to t we are -lead to



= 16 4

e
(59) L9 - €:X/>(*Aé) Q(")'_-_.

Qs
-,

Let us study the characteristic equation of the matrix A:

A a’@ o — m //VT/go //f/éo
(60) - P K Xdz

Obviously’i has distinct eigenvalues which are also strictly oosi?
.tive because‘of (45) . Thus Theorem 2 is broved, using classi-
cal results on spectral decomp051t10n.

Theorem 2 for the steady case becomes another unlqueness

"oriterion":

" proposition 3. Let (V,T) be a solution of (14)-(18) with

ﬂVTIf < _/'( 7€ = . Then .(¥,7) is unique in l:(ﬂ.) X LZCQ.) -
%14{3676 Kf” ” : :
Proof. From the hypothesis it follows that (¥V,T) is a
stableistete. Since W and Q are constant, from (44) results
”E"‘"z = "2"2 =(Q , which is the desired conclusion.
Finally we remark that the condition (45), in which the

porosity has its part, suits to certain situation revealed by

experiments [2].
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