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WEIGHTED PROJECTIVE SPACES AS AMPLE DIVISORS

Alexandru Buium

Lo ilptrodiiction, - Copataor a sequence YO & Yl c.:VY2 &

of projective Varieties"over a field K such that Yo‘is
a projective space of dimension at least 3 and Yi—l
is an ample Cartier divisor on Yi tor each: wi=1 "¢

all Yi's are assumed to be smooth, itfollows by [1@]

that every Yi must be isomorphlc to a projective space

and each -Y;_l is contained in Yi as a hyperplane. Now

if we allow Yi to nhave normal singylarities ‘it follows
by [i] that Y .Must be isomorphic with the prOJec-
tive cone .over some Veronese emberdlng of Yo ‘and that.
Yo 15 coq}alﬁed in ‘Yl as._the hyperplane Section at din-

fiindty in that.cone. By [3] such a Yl may be idenfified

with the welghted projective space P(l,.., 1,9) fof some -

; -, ! natural 9. The aim of this paper is to prove that in the
f. : .. . above context, every’ Y, must be isomorphiévto a weigh;’
ted projective Space, more precisely that there exists

a sequence of natural numhers 91 +954 . - 8lCh thaflgach

Yi is.isomorphic:to P(l,..,l,ql,..,q.) and each Y.

ol
is contained in Yi in a natural ey, ( see Corollary 4.2 s
There are two facts Wthh lead to Ehie. . first a certain

oroperty of the singularities of weighted projective spaces




( see Lorollary 2 5 ) and seccnd @ GrotHendieckeLefschet;-
type result ( see Proposition 3 2.5 ‘where such 51ngula-
rities appear. In fact, the results we prove in §22 a-
bout the divisor class group of weighted projectlve va-
rieties are stronger than we need for our purnose however
they have some interest in themselves.

‘Throughout this paper we will use the. following no-
tatiohs'for.a noetherian scheme W. Coth) will mean
the class of coherent sheaves on W, LF(W) will mean the
class of coherent ldcally free sheaves ¢on W,_P(W) will
mean the class of invertible sheaves on ,W"and-if; W is
integral and normal, C(W) will mean the class of coherent
‘reflective sheéves of rank one on W.vRecéll that Pic{W)
andb C1(W) .ére the groups of isomorphism classes of
p(W) and “C{W) respectively. »

Given a natural k. we wild say that . F é;CoH(W) has
the property (§k)- it for_anyb x €W we have

prof Fx> inf(k,dim FX) 5

F will be called Cohen-Macaulay if it has'(Sk) fér any
natural k. e

‘A1l varieties will be supposed to be irreducible,
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2.Reflective sheaves and property. (S Yo et W beia

‘noetherian integral normal scheme. It is known by [b]

that every member of C(W) has (S ). Let us make the

following definition which will reveal itself in §3

DEFINITION 2.1, W is said to be strongly (83) if any
member of . C(W) has (83). A noetherian normal domain

A is said to be strongly (83) P Spee AT 718 “stromgly (83).

REMARKS 25273 - 1% W' ¥e strongly (83)’it has (83).

Conversely,_;f' W  has (83) and-itfis locally factorial
then W is etrohgly“(83).
22,2, W ris strongly (83) if and only if for

any x & W, the local ring d? is strongly (S

4

X ,W A
Indeed if.we Suppose W is strongly (83) and if 3 is'a
divisorial 1deal in "Cpx W then the’surjection. CL(W) —>

~—>Cl( cpx W shows that there exists a sheaf Fec(w)
such that Fx % 2 and hence 3 has (S5).The converse is
obvious,

ol t ] X y
eaiiS A noetherian normal domain A is stron--

gly (S ) if and only Gdedit has (S ) and no’priﬁe of height
2 3ids a53001ated to an ideal generated by two elements
This comes from the fect that any divisorial ideal a "in
A ds dsomerplidc as. an A=module  to an ideal or the form
fAA gA with f,g & A, hence one may considef ah exact

sequence

0 —> a —» fAPgA —>A —3 A/(fA+gA) —= 0
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-and our assértion follows from the local Cohomology‘sé-
duence;' ; |

224, Lot cusW . = Bern fodthfully flat
morphism of noethefian integral'normal schehes.-lf w
'is.strongly (83), the same holds for Ve
' indeéd, by Remark 2:2.2 We may assume that W=Spec B
and V=5Spec A, wheﬁé A and: B ale noetherlan normal
domains.'Now if there existed a prime ,E.EESPGC A with
height p 2 3 and elemept; f,g € A such that é &
& AssA(A/(fA+gA)), théh taking 3 min;mal prime Qg g{
. .& Spec B containing pB we would get by flatness tha

height g » 3 and _gé Assg (B/(fB+gB)) (see [7] ) ‘which

is a contradiction.

We will give now & class of strongly (83) sihgularitieé
(i.e, non-regular local rings) which are not generaily
factorial. —

.L?t & be'asfield, q = (qo,..,qr) and d-= (dl""ds)
systems of natural numbers, S = K [TO,..jTr] the graded
polynomial algebra over K - with deg T, =0, for 1=0,.,F,
) A =-S((F1;.,FS).
: ' T i
and let to,..,tr be the images of To"".r in A_. The
scheme X = Proj A will be called a weighted projective

‘Fl""Fs & S homogenous“polynomialS'

scheme, Following [3] the scheme P(q I Y= PEog.S will
be called the weighted projective space of type (Q9).

Fl,.,Fs fprm a regular sequence in S, we say after [3]
that X is a weighted complete intersection of type (q,d)

T£ A is a regular ring cuteide the maximal irrelevant
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ideal m we say after [3] that X isfquési-smpoth,
Now let N+1 be_the'm;nimﬁm number of members in
2t0,.,tr} generating the 'K-algebra; A. We say that
A is normalized (or X is normalized) if any N mem-
bers of tha set {qo"'qr} have no common prime divi-
sors, For any integer n .consicder the sheaf CQx(n) =

A
= A(n) . These sheaves are coherent on X since

d?P(n).'are coherent .on P ='Pk§d,.,qr) by [2] ,

PROPOSITION 2.3. Suppose X = Proj A is a weigﬁted
brojective scheme such that A is normalized and fac-
torial .,  Then

1 a:Fon an? integer n, C7x(ﬁ) is reflecfive, of
raﬁk one,

- 2) For any integers nsmathe: restrdction of the

> ng(n+m)

canonical morphism &X(n)® ng(m)
to the régular locus of X is an isomorphism,
If smsaddition soX  «is smormal., then
3) C1(X) 1is cyclic . generated by d?x(l).
4) Pic(X) is cyélic generated by d?k(k) for

some k.

REMARKS 1) A is factorial .for instance when X ié‘
a quasi-smooth weighted complete intersection with dim X223
(see[37])

2yeIf sPewdssnormalized and each qj is

less than any - di; then X itself is normalized,

&) 1n thescase X = P the prohosition fo-
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llowé by carefully combining several facts from
[2] LB} e Y wever durtgeferall case e

quires qnother approach

Proof of the proposition. Fix two integers n,m

and denote by 69 Cn) c7x(m) the image of the mor-
phism 69 (n) Q@ (9;(m) —_ Cf7 (n+m) Suprose

o N
gebra A, with minimal N, and let ' be one of

Bt is a system of generators for ‘the K-al-

, ‘ 5 S5k : < Joi
these generators. put B Af, | («ry >0 Ai) joi
opd L= H"lA_ We proCeed in several steps

Step 1. to""tN

Indeed it Would be' sufficzept to prove that- they are

are prime elements 1 A

jrreducible. Now if for instance
C G o ,..,t )G(t ,..,tN) i

E and ~6 ‘being homogenou: polynomials jipt (1S piithien

by .the minddaiity: of N, e get that 'To_ must occur

in at least oneé of the polynomials F: Aor 296 J THERON

of £ gr G oslOngs Lo K, we get that deg(FG) )>deg(To)

- e | 13 1 y

'and since TO FG éi(Fl""Fs) it follows that T (-
é,(Fl,.., ). hence. £ =0 which contradicts again

the mlnlmcllty of N. Hence E soF -G gsuan K and we

are done.

t 2 W

ep_2 S have B joa ;y é L—n ml yB B, C B, }
The inclusion e " Tis obvious. To prove Qe , suppese
for instance s té,take y' = a/b&'L . with
yBHBmC B, such that a,bé& A and fix an index 1

="

between 1 and N, Since A lsnornes




s

ise g re exi i eqe e F=Ie sy
lised, the exist ;nt gers L e 1 €1 en

such that
N e
;E : ; eig:. = -l
o i
iFi
Now there exist integers ho'hl"’hi~l’ iel? ,hN such
that
N
EZ Lhh q = 0
353
j=0

JF i
and ho+ e, < 6% hjf ej'> a, j=1,.:i—1,i+l,..N. Put

ky= hy+ 84~ fof §=0,..N, j#i. It.follows that the

élement' Pt g
' P tkl tki-ltki+l tkN 7 t'ko
: S Sl e T G o]
belongs'to Bl' Hence (a/b)zn+m é-BO and if we write
r r : ‘
b= too;.tNNc where t. does not divide ¢ “for any

: 2 r. ; ;
=008 N, it follows that til divides ' a = and ¢ di=
vides a too . in the ring’ A.Since this reasoning

. e ' [ - , r.
works: for every 4=1,.,N, we get that b’ idivides atoo

in A, hence a/b & L NBi= B “and we are done,
i : ,-n-m - =M

Step. 3, There:.is a-candnical-isomorphism
: : - C - 5 . :
\F : {y € B lanBm < BO‘S >HomBo(Bn»Bm'Bo)
Clearly; ‘f is injective., To prove that ' is surjec-
“tive, take u & HomB'(Ban,BO) ; since L0 is the field:

(o}

of quotients of B and B B QDBOLO oL WE. My

consider the induced map U €,HomL (L ,LO). But since
: o)

n+m
Loem- 18 @an L -vector space of dimension one, u must
be the multiplication with an element y &L e

we are done,



gzgp__ﬁ. There is a canonical isomorphism
Iy(-n-m) — ton @ I, Dyim) . 4

In particular, d7 (n) are reflective.

Thls comes from the steps 2 and 3 . the reflecti-
'-vity follows from the above formula, putting m=0.

wlgp_é; Proof of assertion . 2). i :

" The canonical map & (n)@& m)lReg - fj—'7 Cﬂ (n;m')lReg X

is injective because it is nonzero and its source and

-

adress are inver 1nié.ao prave the surjectivity, it
would be sufficipnt to prove that CQX(n) d? (m)lReg X :1

d? (n+m)lre X But the sheaves above are both ifver-
tible and have the same dual by step 4. Hence they are‘
equal and we are done.

Step. 6., Proof of assertions 3) and 4),

Note first that 4) 1mmed1ately follows from 3) since
PichX) € CL(X)« Jo prove 3) it is sufficient to prove
:that pPic(Reg X) 1is eyelkic’,  and it TS generated

byA ch(l),Reg & ponsider the morphisms

Spec A\{_@‘S-—i Spec(@nﬂL@x(n)) >

ol PRI @X(n))—-—> X
where m is the irrelevant ideal of A, Put (Reg X)
and W=u'1(V).vBy i) ahd 2y 4t fledliowiss Ehat -V is an
/\£4bundle over Reg X, hence Pic(Reg X) & Pic(V).
On the pfher hand the morphism W ——5 V' is the open

immersion which corresponds to the excizion of the support




of the zero section O=s ETHO(Reg X, d?x(l)). Since
CI@W) = Cl(A) =0 we get that CI(V)  is generatéd

by the support of s and the assertion 3) is proven,

PROPOSITION 2,4, If X is a quasi-smooth integral

weighted complete intersection), then cCQ(n) are

Cohen-Macaulay,

Proof. According to [3] it s sufficient to prove-
that for any closed point x € X,. prof Cﬁ;(n)x=p=dim X,
Now by [2]”there exists a multiple- k of Qg 40,
such thqt.'dyp(k) .is a‘'very ample.invertible sheaf
(o} pligie =R P(qo,.,qr) and such that @P(n) @ @P(mk) =
= d?P(n¥mk) for ‘any integers n,m. Let i : X = T
be the immersion of X into a smooth projective
space ‘JT  corresponding to the very ample sheaf dzx(k).
'Tﬁen for any .j'? 0 we have : '

CHUT s, D@ G (-m) -

= WG 1, (D y(me @y (-nk))) = H(x, Oy (n=mk))
The last group vénishes for j=1;.,p—l and m3®0 by

[3} . 0On the other hand .é7x(n)‘ are torsioﬁ free,
hence. b‘rof i*CQX(ri)y} 1 for any closed point 'y'&jlw.'
Now by [4',Exp_@_]we gets thaty wpnof ixch(n)y 2.0 - fer.
any closed point ye& I nence prof Ox_(n)x Z p for
any élosed point x& X vand we are done.

COROLLARY 2.5, Let X be a weighted'complete_inter;
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“gection of dimension 2 3, which is normalized, qua-
gi-smooth and normal. Then all its singularities are:

strongly (83).

As it is shown in LS] there are many interesting.
'singulaéities which appear on such verlet;es. on the
other hand, even the simplest ones Ffail “to" be factoe
rial (look for instance at the vertex.of the projec-
tive cone over a Veronese embedding of a projective

. space) .

>, Grothendieck-Lefschetzn(eparation. The main iaea
in proving the result announced in the 1ntroductioh.
(see also §zi) is to extend every 67 (n) (where Yy
is supposed to be a weighted pfojectlie space) po a
vkeflective rank one d’? -module. To do this, we
need the preparation belga%

We will make use, several times of the following:

LEMMA 3.1, If W is-a noetherian scheme, W is an
open subset in Wit angheZ s NI, andiits: FE Coh(W)
with prosz'Z,n+2 for some positive integer n, then

U7 g ks )
HY(W,F) = H (W,F) fors A=@ N

where F = F,W'

The proof of the lemma -is standard, using the Leray

spectral sequence and the local cohomology sequence.
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Now we state the main ingredient of the proof of the

result in § 4

PROPOSITION 3.2, Let Y be an integral K- projec-

tive scheme which is an ample Cartief divisor on a
normal integral K-projective scheme ‘y. Put Y=Reg Y
and let .3 Be the sheaf of ideals of Y on s Suppose
that

L) T - e ot del, 2 and L,

o

Y has‘(Rs) and (84)
Then

a) Eof'any open neighbourhood U of Y in X,
cod;m(-i\u,-i) 7 4 ; in particular, X has ('R3).

b) There is an injective mofphism 6:Cl(§) ——9C1(73
and any class in Cl(?) which has (83) belongs to thé

image of 8 .

Proof. We proceed in several steps.
Step. 1, "Proof of “a),
PUt =iz = YN Y-; the singular locus of Y,

Let x be a generic point of an irreducible compo-

Com— emmr—

nent of e ;\U. It {X.SAZ = % then %x},C_ X\-\;'

which is affine, hence X = must be ‘a‘closed point  in

——
n—y

X and then dim ng'x 2 4. If there exist.s a yé'{x}r'\z
put A = <9y’§ 'aﬁd‘let po.ia and: €A ithe idealls
A corFeSponding to i;g, zZ and .Y respectively. S;qde
{;:Sf\-?g Z: we dget height((p+tA) 2 height a and sinl:é
prof (A/tA)g} 4 for any g & Spec A with g2 a we

get height a2 5, Now since we ‘have - height(p+tA) =



e

& height p + 1 it follows that dim &x ==

= Héiggt p 74 and we are.done.

Pt Xi= XNz, let . J 2 YecoytY " be the ca-
A , :
nonical immersion and let X be the formal completion

-

of X Wlong Y-

A : ; ) ® e
. Sitep. 2. Plc(X) —=—? pic(Y) disan isomorphism.

By Lemma 3.1 we have uiy, 3|Y/ 3”*1 Yeh (Y 3 /3”*1)

Step. 5. For any F & LF(X) we have an isomorphism

: A A
HO(X ,F) ———> HE(X, F) o

Since we have an exact sequence of the form

B F —7hix —_— E2|X with é,LF(X) and

ll
since H® 4is left exact, we may Suppose that Fate
self is the restriction of a sheaf F € LF(?). For any
; : 2 o " m
_integer m define F(mY) = F@[@X(mY)lx} and Fm-F/DlYF

We get an exact sequence

HO (X ,F(-mY)) — HO(X, F) = H° (x F )-——9H (X,F(-mY))

Now by Lemma 3.1 we get H* (X,F( -mY) )= H.(f F(- 7))=0
A A
for. d=d ;2 ‘and mP) 0, hence HO (X ; F) <lim HO(X,Fm)=

o) ' i
= H (X,F).

68}

tep_4. VWle have Befilx X st particular, by r4,Exp.XI]




Sl

Pic(U) — Pic{Y) is injective for any neighbour-

Bl Uil e vt

The proof is standard if we use the preceding

steps (see [6] Yoo

Step. 5. IfEvEIEOEEEY) then 3j,F & Coh(Y) L
in addition _le“F L0 ‘then
finitely dimensional over K for i=0,1
wiiy,F(mv)) ={ 0 for i=0,1 and m&KO

0 for i=1 and m»O

The fact that F = j*F'é»Coh(Y) follows from [4,

1,

-Exp.VIII] . Now if R 3

F =0 we.get by lemma 3,1
chat « L0, EpmYoE) ot (FIBETR 5 fore 153,2 and
we are done sincél prof F; 7 2 - for any cloéed point

x & ;:

Step 6y It Fiawr(x); Fe-F.&0y—and rYj, F=0

LA
then H}(X, 35)- has finite dimension over K for i=0,1,

m : :

Put Fm= 95/ J,Yﬂf for m > 1 and consider the
exact sequence 0O — F(-mY)—>F__, —F, —=> 0 which
gives an exact:sequence q
= : . ; u . : -

3 T B L R Sl
H¥Y ,F(-mY)) Y (XF ) >HY (X,F ) 2
: — it ey B tanYd
).

By Step 5,.u; is bijective for mY»@O0 and wugy is

; A 2
injective for ‘m7 0. Hence H(X, Ty = 1im HO(X,F )=
= = :
O . o} -
— (Xmeo) »fqr some m_. - Slnce' %H (X,Fm)} ¥ iég
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Sfies the Mittag-Lefflér condition, it follows by

5 153 1] that

H(X g e lm‘H(XF) /\m?mlHl(x,Fm)g

_C_ Hl(X,Fm ) . For some my -
1

would be sufficient to prove that Hl(XLFﬁ) have .
nite dimension over K for, i=0,1 and m » 1. We
oceed by induction on m, If m=1 this fcllows

L3

Fam - Step: 5. The 1nduct10n step follows from the

(')

waet senuence ebov

(4]

Shepi 7, If ,?e LF(?)., F=Fod, and R} 3 F =0
hen 33 is algebraisable (i.e, there exists G é
2 Coh(X) such that 3‘:’33). Consequently (by a
tandard trick ~'see [b] ) + e Gxdsts a neighbour-

o A AL
cod U of WE i bel andd? E € EF(U) ¢ sieh fgnat ES & .

To prove this, it is sufficient to prove that there
. ’ -

xists an exact uenuence in - LELX)

(%) 0

ith E € LF(X) and le*M =metwhere £ TM =7T’\pd9(yy.

A
>M, — E — d‘-——~> 0

leed, since My satisfies again the hypothesis of
A A e

tep 7, one finds an exact sequence L —E—>J—0
iith L & LF(X) and we may conclude by a standard
:riék (see [E ] Yo

To prove the existence of the exact séquence (%)
:onéider the exact sequence

6 —5 F((r-1)Y) —» F(nY) —> F(nY) —> 0

Feo [@X(pY)A] for any 1n.teger o

f tho lcnn exact Sequence

-
D
()
=
0]

R

=

_<
p—
1
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AT

BT

5.

A

u A
HO (X, F (mY)) o letun® i R )) __anleg Felp-100))=—2

\V A o~ 1
Vm o wl(X, F(av)) —oH (Y F(Y))

By Step 5, Hl_(Y,F(m‘()) - 0 for mS>»0, hence Vg is
surjectiye for m 0. By the adgunction formula,
le*(F(mY)) = (le*F)(mY) =0, hence we may apply

Step 6 to ét(mY) and we get that foriondd 04, the
sequence %dimK H (X J-(mY))} is a descending se€-=
quence of natural numbers, so it must become constant
for large m. Consequently, Un becomes surjective for

my M, for a certaln moe Sinee by Stepy 5, T = JuF

is coherent, there exists a m M, suehe that  FmY)

s generated by a finite number of global sections

Sy 6 H (Y F(mY)) giving an exact sequence
: :

_O -‘-—'"")N """“‘“""@'\7 -——-J;F(mY) sty (O

since profz_ ?(m.;(') and nrof (.9-—- 2B we get—

by the.local.cohomology sequence that *RlﬁAN,M/QT;fM»J—MT

-where N = N IY' Selecting tl,.,tl (=3 H (X j-(mY))

such the@ Um(ti) = si’ v forati=1, .5k We obtain
a morphism ¢
Sk
@ gre—rr T ()
. ; E
such that ‘(@@Y =]y By Nakayama S lemma, @

nust ‘be surjective and if we set dJﬁs ker ¥, we ob-

- viously get OPQCQY _ N. Now we are done by putting

Mo = i Sty cangds & = @;(fmv)«.

Finally, if we look at the steps_Z,A and 7 we get



Gles

an injective morphism

C1(X) = lim , Pic(U) —> Pic(Y) = C1(Y)

s U
(where U runs through the set of all open neighbour-
hoods of Y in Reg X \ Z) whose image contains every
class in jCl(?) which has (83). The prepesition is

proven,

‘COROLLARY 3.3, Under the hypothesis éf Propocsition
8.2, ifjwe assume that Y has only strrongly (53)
singularities, then thére is an ispmorphism

’ G GL(RY —Z0 2 CU(Y)

~ REMARK 3,4, The morphism € from (3.2) and (3.3)

is a "natural” one since it comes from the restric-

tion ‘morphism Pic(keg X) —> Pic(keg Y).

4.Main result., We will prove now the following

ey

'THEOREM 4.1, Suppose Y is an ample Cartier divi-

sor on a normal projective variety X over a field K.

if Ay

n

P(qo"’qr) = Rroj K[To”'Tr] with deg Ti= q

for i=0,.,r and if ‘Y is normalised with codim(Sing'?,

i

Gy such that

7)7/ 4, then there exists a natural
X isisomorphic to P(qo"'qr'qr+l)=9roj K[&o'”'Tr'Tr;l]

with deg E_: qi foin o A0 . ot X is normalised‘and
- i <:. A

codim(Sing X, X) 2 4. Furthermore the inclusion Y& X
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corresponds to the natural surjection K[T~'~'TrLl] —5
w [
o 3 V,T] . < i
> K[TO, s which sends Tr+l ‘into zero and

leaves Ti (i<ir): fixed,

COROLLARY 4.2, Suppose Y_ &Y, €Y, & is -

sequence of normal projective varieties gver a field K

such that YO is a smooth projective space of dimen-
sion d 23 and each "Yi 1 is an ample Cartier di=-

visor on Yi for @2 1, Then there exists iaise-

quence of natural numbers SRR PR such that each
Y. with #2771 "isfiSememphie 'to
i ;

P(l""l'ql"'qi) — PI"OJ I<[TO'.'Td-'Td'*'l'.,Td‘ki]

where deg T, =..= deg Td='l and. deg T q.  afor

_ def 73
2l Furthermore ,for i 2'1 the inclusion Yi_lti

C Y, corresponds to the natural surjection

K[To"’T8+iJ ——ﬁ', K[+o"’Td+i-1i} which sends Td+i

into zerg and leaves Tk (lbLrddi-17) pbiked,

— 5 Lad

Proof of the theorem, Let f : Y &= X be the cano-

nical immersion, 'Y = Reg.?, Z+=iSihg Yo, X = X\ Z and
Je bessthe bpen immefsion Y <5 P=Y, By [3]‘ we get that .
Pic(Y)~ Z. and is generated by some () (s) Hence
f”'é)y(q) = Cop(t) for some t Z 1l.wWe get: by CS}. that
L&, Do-ni)) = wip, @ (-nt)) =0 for i=1,2 and
‘m &/ , hence the condition 1) i 4n: Proposition 3.2'
ié fulfilled; The condition_-Z) in Proposition 3.2
“follows from the fact that P is Cohen-Macaulay. Since
67 (l) is reflectlve of rank one(by Proposition 2. 3)

and since it has (83) (by Proposition 2.4) we get. by
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Proposition 3.2 that the

bouhood U Biof 55 ind v Re

a sheaf L & P(U) —such t

Proposition.3.2 we also h

-and

Indeed,

Plc(L) e Pic(Y)
is the canonlcal immersio
S

= h*(L, L By'rZ,Ex

& Coh(X)*thane
statements hold: :
1y A @P-(m)

o st U

since

Hae pbeti 2. piht 27 0n

also for (9P(m). Since
in order to ch
prove that F(m)/'Y = C9

= G st Gl
2) F(mt) d)ﬂ mY)

Since these sheaves are C

coherent,

in XS 4t isteuf Ricie

trictions at U are equa

= F(p)® F(qt),

tions at? Uoaire dnvertib

injectives it 4's sufficie

C9—>~<(m7) { &3 wBur ¢S,

position 2.3,

3) Lf ‘mig o oraretan

then F(m)=
This follows

fromi=2)

lDro’cx ~ U

and from the equality

re exists an open neigh-

g XN, Za&sand ;therne exists

hat L]y = (O (1 [ 2 BY

ave codim(s(. il UL ;(.) = 4

i's Wngectivers B hliS=n X
mE:

F(m)

gleaiol Ui for any 1nteger
p.VIII] we get that

. : \
FU“);a 2. The® following
m °

_for any integer

/
it follows that F\m)] v

the other hand fhis holds
F(m)[ 5 and dyp(m) are

eck- 1) at 3s sufficient to

@m
Lty

I v by Propoéition >

5(m) [y But F_(‘"‘)].

for any integer m.

prof 2

oherent and have 72

nt to prove that their res--

1. But since their restric-

le and Pic(U) —> Pic(Y)

® mt
L]y

follows immediately by Pro-

is

nt to prove that

tegers such that m=qt+p,

F(p-) ® O ;Z(q-Y-)

~(m)_

which is valid since it is valsisd Son U g

: ' : B
In particular, exactly as in rlj we get that




PSR —————

= lige

Hl(F(m)) =D er ‘m<< O. Now the exact ééquence
sl 5 ..~ vy —
0 — Dz(-Y) C9x <9Y > 0

o € HO(;(., C9~(\7)), yelds an exact sequence
F(m)Q @?(-?)= F(m_t) -—-.—3 F(m ) Co (m)—0

Since in any point x € X:,: the morphlsm F (m t) —_ F (m)
may be identified with the multlpllcatlon with 0” a‘()
ime=F ) and 51ncev F( ) are torsion free, we get

that F(m 8D i F(m) is injective. Hence we Cet

an exact sequence 0 —> F(m k) —> F(m) —_— d7 (m) )y—> 0,
Taking the long cohomology sequence and taking into
acCounf that Hl( 67P(m)) = 0. for me Z (see [3] )

we get that_.Hl(F(m't)) ~——>H1(F(m))v is surjective
for'any m &/ . \Vle obtain an exact sequence of gra~ :
decd algebrés |

O —>» B

3B e @h;o Ho (e, C9P(m))—->lo
where ; ! @
| o B=-@m>/OHO(X,F(m)) = D A
By [3] vwe'have ‘

&

with deg T,=q, .for i=O,.,r. Now it is a standard

m> 0 )

H (P © (m) = K[T ,.,T]: S

m=20

fact that this situation implies that B is isomor-
phic as a gfaded algebra with S[TJ , deg T = t, Since

XZ Proj B, the theorem is proven,
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