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1. Introduction. Zolezzi [1) was interested in tie

following problem : How fto perturbe the coefficlents of a plant
“in order %o the corresponding solutions converge to the solution
of the initial problem. He solved this problem and gave many
characterizations((4) ~ (K) in our paper). Some of *this charac-
%erizations are given in terms of convergence of sets and
------ functions in the sense of Moscb, or G-convergence., After
that Lucchetti and Mignanego [2] and Bennati [3] were interested
1! generalizing the resulits of Zollezzi., So, ILmcchetti and
.Mignanego obteined that (C) &> (D) for strongly smooth E-spaces
and F(x,y) = (HXHP + [v12) /o, p>71 (instead of p=2as in [11),
while Bennati showed some eguivalences from [1] femain valid,
in Hilbert spaces, for a larger class of functions. In this
paper'it is shown that all the equivalences established by -
Zolezzi remaiﬁ valid for more general spaces and functions. Qur
results do:. not cover the ones in [2] (see also Remark 4), but
show that the egsgentially new implications proved by Bennati
are valid in a more general context. We also: give a chaﬁaat@fiQ

zation of the convergence of sete in the sense of NMosco which
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is just Theorem 1 in [4] for Hilbert spaces and also generalizes

the one of Sonntag [5).

2. Notations, Definitions. Preliminary. Results.

: P
Throughout this paper X, Y denote real Banach spaces, X , ¥

are their topological duals, L(X,Y) is the Banach space of con-
tinuous linear operators from X into ¥; if Le& L(X,Y), 1 denotes
the adjoint of L and géh L denotes the graph of I, i-e;,dph L=
m{(xLx)éXle ek f i xeX and x e X then <x,%>
denotes x (X) —> and —>  denote the gtrong and weak convergence,
respecti*‘«*elye"\ﬁe shall also use the following notafions ' 9lm ) =
‘= .{yEX 2 hy-xll < r} , S(%,p) = e N y-x1 < By Sy = {xe—X :
= | i

il

’SL} . The Banach space X is sirictly.convex iff )ij,yeSX,

XAy Wyl\< 2y,"X '1is locally uniformly convex iff V’}:GSX

Vs& 0 357 0 ’Ol"f Sgs ly=xll 7€ ¢ Nytxl do20-0%) X' 1g uniformly
~ convex 1ff \7[5‘ 0 }5-> G %x,y € Sy, ly-xlize : Wysx || ¢ 2(’1-4)\),

& i umoo‘ch if le €5y fx & Sy unique s <x,d= 1 {(<=> the
norm of X is Gateaux différentiable on X~ {03), and ¥ is

-s%rongz;ly smocth iff the norm of X is Préchet differentiable on

X {0} . where Me N = ’,xeM 2 x¢ Nj « X has property (h) if

X, —> Xy Gzl —> Ixll  then x — x, and X is an B-gpace .if X is

reflexive, strictly convex and has property (h). Ry, R, -f{;
- denote ihe reals, the nonnegative reals and R v} eod respecti-
vely,; while N and N*— denote the nonnegative and pos itive
integers, resEvectivelyO ,
Let £ : X —> RU{e} . The domain of £ is dom £ = )xeX ;
2(x) <o} , the epigraph of £ is the set epl f = A(x,x) & X xR
f(x){éo{} : ;' £ is proper if dom £ £ c}f: (‘?{: -~ the empty gnl\‘ The

T

proper fuaciion I is convex if

t

Az +(1-ADy) ¢ AL()+ (1= (y) Vs, ,y&dom £, 2 £ 7, Yae Tl



[ —

. ; *x
If £ : X—> RV{e0} is a proper function then f

-3 -

and £ 1e gtrictly convex if in the above inegnality < g

replaced by < . The subdifferential of the convex function £

‘at X €dom £ is the set -

: ’Bf('&:) = fe'Xl* ¥ iR=R, :{*>gf(x) - (%) VxeX
_ 3

while for E%dom £ DR =-~<]é « It is known (see [6] ) thet

e % x* 3 ! :
/b,f(x) 18 a W ~cloged convex subset of X which is nonempty
. .

and W' -compact if £ is continuous and finite at %. The conju~-
gate of the proper function f : X—> RV {0} is

3 *

T 1 X Rudel €% = sup iy MG T L

o9

£ Aiff P is g

i

lower gemicontinuous (l.s.c.) convex function, The indicator
of the set UC X is the funotion Iy : X — Rule}, I (x) -0
if xeU and I(x) =oe if x é.U. Iy i5 les.c. and convex iff
U‘is élosed and convex.,

Let \F : R+ —> '§+ 3 \f is non Geureasing if ti,’cze R+,

by €ty DY(4y) £ P(4,) and Y is increasing if ty,t, € dom'P,

by <ty B Y)(tl) < Y)(“Gz). For a nondecreasing function o

O.

i

— R_ we put () = Lim Y(T), P (t) = 1im W(t) and V(o)
Let

A= {X R+—-> R+ : Sis nondecreasing, X('h) =0 =% = O?.
Note that if t e Daand g(t‘k)—a O then ’sk——> 0,

Let now £ : X —> RU{e0} be a proper l.s.c. convex

functiony £ is uniformly convex at Tedam f if there exists O € &
’ %
S e Rl

such that

f(»«%ﬁ)'g —% Plx) + = £(y) =3 (Nx=yh) VZX;:Y €dom f ,



A

and £ is uniformly convex on the convex set Ve Gt et e Ig ig

uniformly conveX.

Let %’- R+-a,R+ a nondecrecasing function such that

¢

a = sup { ¥ : \f(x)@“ﬁ 7 0. : ()
We assgociate to Y the following mappings :
: S %
pe R Ry P =l e s, (2)
O
P X-->"£3C+ . 2l e V\J(w\\), | (2] .
: S
%D: =3 & w blay = | Lex : Cx, % > =
N ETREL IS dL D EA B AEIVE® (4)

It is known (see [7] ) that WY &s a l.s.c. convex function, W

. 2 . & 2 i O s’ . N — A\ 3 —— £,
ig increasing iff */(u) = 0 4—>‘t==-)((~>f(ﬁ) = 0= = 0);
) - ? _
therefore £ is l.s.c. convex function. ¢ is the duality mapping

—

associated to %> . The conjugate of *’\is Tﬁ} R,—> Ry
w (x) = sup{ tx ~p(t) + te R i

Concerning the above maopwn“s we have the following
results we shall need in the sequel.

- Theorem A. Let X be a Banach space and\f,#J,'f? %; as

above., Then s

(1) the right hand side derivative of \tf* ie given by
X (1) = max [ T30 ¢ Y_(T) < %] |

0 <w>1; = 0] e=fP(t) =0 =t = 0] &Y

e

ﬁ &

: (ii) r&;(+)

\[Ij‘mfo) =0 3
(iii) lim KL oo &S 1im \Q(t)»w&?}f"(t) <<>°V't ER,
§-dob 4 't —voo

(=7 domfﬁh R+ 5
/

o S ; ®l .
(iv) ‘P is increasing&=>\, 1is contiauous ;
. =

(v) Ve(x) = $(x) Fxex ;

LY r??' "{h N % “%
(vi) ) = YU YaTe 27y
(vii) £ is Gateaux differentiable on int&dom f) elo,aj=>

b is single-valued on 8lo,a)&>

&
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¥ is continuous on [o,al and X is smooth é=>
(if X is reflexive) A |
w is continuous on [o,al and X is strictly convex ¢
If X is reflexive and one of the above conditions is verified
then '
Ry xeS(osa), Ry X =2 %D(xn) — %(:x),
go that, if X%'is<an Li-gpace then % is continuous on S(o,a);
(viii) £ is strictly convex&>
‘ f’is strictly convex and X is sﬁriétly convex &>
_ %’is increasing and X is strictly convex;
) %:is gnto &> %iﬁbtf(t) éoo and X is reflexive ;
(x) f is vniformly convex at any x €5(o,a)&>
P is increasing aﬁd X is locally uniformly convex;
(xi) £ is uniformly convex on S(o,M), Ywe Jo,al &2
Y is increasing and X is uniformly convex ;
‘Sxii) suppose ‘f i i incregsing with %iﬁm\f(t) =
=00 s dhen
%?”1 is single-~valued and uniformly continuous cn
bounded gets ¢=> ; |
' X is uniformly convex.
(xiii) Let g ¢ X —> RV{e®}  be uniformly B o ke
convex set UC X, then there exists Se A such that .
2(y) 2 2(x) + cy-%,X% "+ Why-xh) Yxsye U, €02(x),
For the proof of #hig theorem sece [8].

Consider now X,Y Banach spaces, LE€L(X,¥), F ¢+ X x ¥ —»

5 RUI®Y g 1,8.c. convex functions and the following optimiza-

tion problems

(P) migr. ABCx, L x)
' x€ X :
%71
D) ax =0 (L5, ),

m
e v®
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called the primal and dual problem, respectively. Denote the
value 6£ problem (P) by inf P, and, when it is attalned, by
min P. Analogously for (D).

Pssazha

F(XQ, .) is continuous at L x . Then

inf P = max D. (5)

¥

Moreover, % is a solution for (P) and ¥ is 8 solution for (D)

i
*_s Sy e e :
(LY, F)e 2 F(F,L ) (6)
In the case F{x,y) = 2lx) + gly), Lo being 1,9, 0, coivex

: S g * : % . :
functions (therefore F (x*,y") = £ (x*) + g°(y9)), if there exists

xoeédom £ such that g is finite and continuous at L Xy then

X

(5) is valid and ¥ is solution for (P) and § is solution for
oy 189 :

I¥j*e 9£(%) and -§* € Og(L X). (7
For the proof see [9] , even in a more general setiing.

We remember that £f(X) & f£(x) Vx e X 4 Oe’af(i).

Let now Snc;X, nel; we say that(Sh ) o converges in
i L a ﬁ o 2 L
the senge of Ncace at SO, written mn_*ﬁm@ bo, it
* 4 :
[ T "y Q s
‘leéuo )Vl'né N Jane Qn H Xn——} X, (8)
and v
Tea 8 o g ey A% SO. : (9)

Ciaae o RUi®Y |, nelN, we gay that G
' - ne &
converges in the sense of Mosco at fo’ written

o . M. = e .
£ LD el fACHT fn"“$?ﬁ%r This one turns to be equivalent to
the followings :

’!7£’<}‘ A oin ;* i A dom R | i)
vjfecmmxfo 'fné hif ;{1n@ dom £, : ¢ﬂ\xm)_m9 g (20)
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X, € dom Ty s By x = 1im it 1 (xn e fo(x), (23

k e K—>oo g
: . 0 - G
We say thgt (fn)ne.Nﬁio G-convergent at £ , written £, — f,
if ~
in:f(fh + 4»,%))“’) inf(fo + Lo ,X%‘> ) /leﬁ‘&é- X% (1)
For these definitions see [1]
3. _Resultg. Throughout this section (L,) < L(X,))
: el :
is a sequence satisfying
HL g © n e, ' (13)

‘?i R = R $1i9 an increasing function ﬂuch that %ﬂ (n ) =00
where.ai = sup(dom%&), and \PZ f R &> R _lsa nopdecressing
function. In establishing the results we shall also use other
assumptions on X,¥, Yiﬁ Yég which will be made later. To \Pl
and \?2 we assgciate \F&,\fz, £y i;¥-9 R, and £, s Ros
b, 1 X = 2X and $, ¥ — 2%, defined by (2), (3), (&)

Y —>

respectively. Let define for every (%,9) €X» ¥

s A N %
Bps =P s X x ¥ R, Bx,y) = £,(x-3) + L(y-7); (14)
and : 7
Lo o=t B, I,(x) = P(x, Lsx), (15)

2 ; P SR .
For the pair (%,¥) we candider the problems

(Py) G vl 6 )
5 wen o .
(Dg) max ~Jﬂ(y*),
yeﬁé ‘.{36
vihere
ol e e T Sl e blnd TU RN ok
dn(y ) = B (Ln s =y Y = ‘fi(Ln v ) o+ f2 (et & <Lnx~y, ¥y (16

uuppOoO X is. strlof‘y convex and rdflexive; then (P,) has an

unigque solution % =3 (x,y) \,\lhlcl.L ig characterized bJ

g

pe boe -m w00 (s — ), (17)

10k
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(For this one take into account that Sin ig solufilon iff
Oéﬂblﬂ(i‘in)_ and the rules for the calculus of subdifferentials
in [9) « From Theorem B we know that (D,) has at least one solu-
Lion. 1T Y i3 strictly convex and \?2 is cpﬁtinuousa (so that
\{’1%2.; is strictly convex) then (D) has an unigue golution

¥ ¥ AN :
Yo = Iy (%,¥) glven by

- ) S A
e = o 5 P
Tn folly Ty = ) (18)
With the above notations consider the following possible condi-

tions upon GLn) aad'(ln) -
ne N newy

: s :
(4) gph L —> goh L, 3
(E\ I_'nanaa:f;oz ’V(x eX and X X =) Lnxn - Lox :
{0) 1ny — L X YxeX and L Y — I3 v Y Fe v

) Fyemd, TVED 6

(E) .“iﬁb—-—»_lv-z-} s (T I
e 4 = A4
(F_) In(xn). min In--> 0 >xn-—> X, \Y/!(X,J, :

(@) 'F(xn,yn) = fin L, >0, yi = L% = 0 Xn 3&0 V{(X,y) :
(H) In""% I, an

~

| In(x)-—» Io(x) "fxe“, Vi(z,y) 3

= G o _— s A A ;
L) L I and In(}‘o> -2 IO(XO) V(x,y) :

(J) 1im inf min I 3 min I, 1lim sup In(:_c'g) < IO(":?O_),'V((?{\,?);

(K} % o 370, Ln i ' LO':EO and lim sup min I,

&min IO k;(fs, s

(L) 7’*% m% V[(x y) ;

Jn
(M) I _,_9.;,1 T il ‘blx-ﬁ-}i %Z(" )
110 i 0! T —> by s Xy ¥ )
() min Ir“’""’ 11805 G R L X S Vogeal "C‘L(fv:f\‘r :
3 . N

AN i = N f 0 . .
For (z,y) fixed we denote by (D') the condition

{
’
)2
My

% _
t,v). Analogously for conditions CRE i (N ),
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(§,§) being the same in all these conditions.

Before seeing‘the verious implications between conditions
(A = (W), let us give a characterization of.the canvergence of
sets in the sense of Mosco.

Theorem 4. Let S, CX, n €N be closed convex setis and
~ suppose X and X* are E~SF&O@S° Then the following conditions
are equivalent :

) pn(x)«~+ pc(x) '%& e X,
oy Taisble, §,) > aietlx,8]) Vxe x,

‘where pn(x) € Sn is the element of best approximation for x by
elements of Sn (which exists and is unique in our case) and
distgx, Sn) = ||x - pn(x)ﬁ.

Proof. Consider <§ the duality mapping corresponding-
o W(ﬁ) ="k, By Theorem A, in the present conditions, %
and ? are single-valued and continuous. Then for x €X, pﬂ(x)

is characterized by
¢p (2) - 3, dx - p ()70 Vyes, (29)

(i1) = (i), Take x €3 ; then 8,2 pn(x)f-—? po(x) = X, Therefore

(8) is verified. Let now 8 5 X, —> x,. Then, from 1905

k 3
<p, (Xb) oo %(XO =t Dy (xo))>;p B ﬁ{.
k k e
Bub %, ~ pnk(xo) — X4~ po(xo), so that @(xh - pnk(xo)) 3

”>%3(Xo - po(xo)) and pnl(xo) - X, = ‘po(xO) e Therefore
; 19

kK
. : 2
&b o Yo il pelzghinue —l\xo-—pq(:{o)\\ a0,

which shows that x_ = p {x ) € B3_ aud {9) is verifisd.
0 Po "0 o
c

2

: ; : OEL ERE b s
(Note wé used only that X is strictly convex and X ig an

E~gpace).
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(1) => (iii). Let x eX and fake X eSﬂ, w -
= dighlix, 35 ), ne N, Prom (8) there exist y & Sn, neN such

that y, «»xo. Therefore

diﬁﬁ(ngo) = limby,-x{ 7 lin suplx ~xl = 1lim sup dist(x, Sn),

Take \ly ~ xW{—> A; we can suppose X, — ¥ € SOQ‘Then p:¢ - X

S k o
Ty ge Hhat
A = lim Xnk - %4y Ny - %0 7 dlstlx, S F
Therefore dist(x, S,) — dist(x, 5,) ¥xex .
(Note we used only the reflexivity of X).
& -m‘ 7k o i Tl o =\ . = .
(iii) =y (ii). &) x & 5, 3 then 5, 3 pn(x) =3 po(}),

N e v G pl %{‘J fe]
Therefore - VxeS_ Vne N ané S, ¢ %y - X
Mo lee I ) D ‘hete 6X1is
, b) Take x#SO. Por p(x) €S, there exist
¥ : i 3
x.é Snﬁ. ne N -, such that x> po(x), Then, taking into account

(19), we ha.ve
= n gf%(zwp (x)) ¥ = —pn(x)u =(dist(x,S % foen .
‘qu«:e %(xmpnk(x))“@ x" . Then, taking the limit in the above
inequalities, we get

£x = p (x), TS my- |2 - pyla (ol 2 (20)
so that HXW 2»,..‘123«1 - po(x)\i .+ On the other hand \ixﬁﬂé

< Tim in? ) gf(x:gaargfs{\)u = lim inf |\x - pnk(x)\\ =

= x - po(xji\ , g0 thal }{‘X*(i = flx - pO(}:)li. ,Hehce, in (20)
we have just equality. Therefore = = é’(x o (x)) and
%(x - pp(x)) -—f—*»%(*c - po{x)). Since 5(#( (x)il{"‘?

ﬁ%)\x - (x)\ﬁ we obtain 'thm; %)(}’ - pn(x))my %(*{ . po( %))
But {?"ﬁ is.continuous, so that x - pn(x) —» X =~ P, )9

Coy

2
x,;\
L

]

O

Remark 1. If X is a Hilbert space, Theorem 1 ig just
v J

Rl A DA SR TN ANAR
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[4 , Theorem 1] . For X and X* uniformly convex the equiva~
lence of (1) and (ii) is proved in [5] . R. Lucchetti communi-
cated me that Zolezzi had shown the implication (iii) =¥ (ii)
if X (and therefore X ) is a strongly smooth E~spaoe;

Let us study the various implications between (A) - (N);
Pirstly we have.
‘ Remark 2, It is obvious that we always have : (Mf)-ﬁ?(Nf)
=(J) 5 (M) => (E') = (L') =» (J'); (F')=>(D') and
(¢r) = (D'). i

Theorem 2. Suppose X,Y are reflexive and X*.has propexrty
(h). Thea (H) <> (Bh&>(0), '

ggggi..(A) => (B). Let x €X; (x, L x)€& gph L, so that
thereexists (x,) C X such that (Zay Hex®, derdoe 3, Lgx).Vi

Therefore an>k and Lnx — Lox, so that, taking into account

n
(13), L,x—> L %, Let now X, %; then (x,) is bounded so that,

:by (g (Lnxn) is bounded. Take‘Ln ( %, )~A‘y.; hence (x

I 2
k k k

iank{ xnk))~> (=, ) so that &z, y).e gph Lyy Lseey ¥ = L% o

Therefore Loz L% : =
M - -
- (B) => (C). Ve must show Lhyf;a-Loy for f#é Yorsaa
We have LX43:'y57 = <Lnx,y*> —%»éLOx,§*> = LX ﬁghywy far

e e % o " : i
every. & X, Therefore L; y%3~a Lcyﬂ . Oince X is reflsxive

; ’ * e
there exigt X, € S’X’ ne N such that {!Ln f{l =, &Xh, Ln Yo =

= L% y?> « Take A = lim sup I\Lz jkk and (:xn ) such that
& k
HLﬁ’.yﬁ:«>A; we can suppoge X, — x €3(0,1) By hypothesis
k 5
e ¥ %
L = e amno hate II° vl =<¢x. , L ¥ 5 =
ny oy 0 ny R

e o Ee

S, S - & R *L‘ = - J
oy Xnk’ ¥y 7 h=dLLox, y2L UL y ¥ . Since the noym

*

> 3 ; X
ig W~ 1.8,0. We have lim inf 1!L§'3%HZ;H£% v I . Therefore
3 Ak 7

5

“Ln v — ﬁﬁ: vl . Since Loyt
S S L*
¥y = L

* .
and X  has

¥yre v°

-x—‘¥‘

o ¥
#* ;

Yy € I

A

property (h) it follows that L v

o
i

(¢
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(¢)y = (4). Let (% Lox) ¢ gph L, 5 then gph Lnfa(x, Lnx)

e
ik om

—% (X,LOX)a Let now ixﬁ :

)"“h (ng), j—oeeg Bl G
Py
. i ¥
oo oy Mhen for v € X
e
J e o
. i Tl K 3
(AT sy o o 16 ) T, @Rl 2 s i Ly e =t Xy Y 7
2 g i) n o) 0
o k k ' 4
Therefore L X, - L %, so that y = L. X, l.€e, (x,y)e gph L_.
n}‘r i.i]:‘,, 0 G 0
S 49 2 .
The proof is complete
Theorem 3. Suppoge X is an E-space.

(1) (B) =» (D), (B), (H) - (K), (m), (M),
(1Y (gt = ),

o]

s s e 2 A ¢ + °
(iii) Purthermore, if ¥  is an E-space and ?2 is
continuous, then (B) =» (IL).
X B : B g i
Pio ort (1R (B) « = (D) BERA(RATL AT S gk obtote that

5 N

ACHEE IDIE AT ERARES (R W o+

‘ + \//2( I, = - ) fire : (2L

so that :
Yo E, = 30) + Yp(hD X, - (L - TV, ey

Therefore (ﬁn)-is bounded, Let in«A Xye Thern, from (B),

k

Lﬂk Xnkﬂx Lox0¢ Since fl, fz are wi - l.8.C., taking the lower

1imit {n EoL)XEepnng= 0 gk PR, e get :
o ' A L
\fi(“xomxn) + YE(HLO?O~§H)ISY%(NXMXH) +‘f2(HLoxm§ﬂ) gXQrX,

o

ﬁd. Therefore Et

#

G0 k. .~z SR o o et =N -}?‘ ‘:’1 3 2 :
) %%aﬁ - X, and Lﬂzn LO o° iriting

(21) for %

1

il

go’ we have

AR NPT E R VS 2 EFS ¢ IL%,-5 N,

so that, taking the upper limit, wWe getw
1im sup U.(IE -211C  WUZ. D + V(UL E -0 - Poliin, = SR
S A Eﬁ'..,‘- o i -~ '1 LO {42 i cvo ¢ !2., 0 0 . v

- . “w e & e A s , AL S At s -
Thus we obtained 1im \fa(uxn~xn} = fh(fﬂowxﬂ)wmbuﬂ \Vi ig
g L : !
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. ; A e :
increasing and continuous, so that ﬁxn~x“ —> “XO~XU , Wwhich

_ A SN F o .
C G o e = : :
together Xy=k X=X | ;mpiy X, 7 Xge
(B) =» (B), (K). We just obtained SEH —> ¥, vihich
implies Lnxn —3 LOXO, so that by the continuity of fi and fgg
"we have min In-9 min IO.
Tn the same way, if olace I, I s ST
.n. e same way, if we replace 1, Dby In + Lo, y X€X,
we obtain that min(In il ) =3 min(Io bd s,
g :

I, — I,. So we have (B) => (M). Thus, taking into account.

Remark 2, we must only show (B) => (E). So, let x € X; then
(g B 2f s (%,L,%), so that,by the continuity oy W oy TR )eim

=1 & Leﬁ meli X s %3 then 'L % N L x, do-shat

Iy = ny 0
Tim due 1% (x 8 5 1 (x). Therefors 1z «EL Ioe
1,— nk o : ;
(¢1) (K') = (D'), Since X, X, Lnxn__; L ,%,» We have

lim ing I (%) = lim in( \%’1( 7 =%+ P (L F =T 1)

7 Lin inf \h({zin-%\!) + lim inf \Fz(ﬁLn‘gﬂjﬂf\\ )
AL DI AR VNS e
But, by hypotheses, lim sup In(§n) < I (X,), so that
1 (§ ), = 1 (55')° Therefore lim inf \fl(HEh"QWD =W¥K(H§B~%“)
apd lim-dnt ﬁld(!L 5 ~y\ \fz iL To ~-$1) . On the other hand

lim sup \.lui(ﬂin-x ) = lim 5ap Tz R E3r, e \yz(l\x. x -y ] =

= 1 (%) — UL % -«yu) = \%/i(-nxo..xs\) o

P

so that’ Y&ﬁu\ Z0) > %%(ﬂx 50 , and, as above, y —> Xy
(1ii) Suppose T an E-space and \{2 ig continuous..
Then, as noted at the beginning of -the .section, (Dn) has an

s - s "";é"___ B = S = A T T S "._. Vo oy
unique solution Vi T %E(Lnxn v). But Xy Xys 80 that

Lr e 1% ., 8ince Y* is an B-space, by Theorem 4, 6@2 is
4L (9 F5w

continuwous. Thercfore



SO

Theorem 4. Suppose X 18 uniformly convex. Then (E')-—>(D'),
(g*) = (D"); (E') =) (F'),., Furthermore, if Y ig an E-space
and \?2 ig continuous, th@n (B) = (&).

Proof. (E') =» (D'). Let (E') be verified for (%,§).
Paking into account (22) and (13) we have that *ﬁﬂuin-ﬁu) &

£ M, for some ﬁi? 0. Therefore, there exists M » O such that

1

17 =524 N W &w (23)

1 = Gy,

. '!
Since I, L5 T there existis (x )C:A, %5 X, such that

09

G I_& mplies - § o i (R
In\zn) }»lo(zg), which 1&91199 1im sup I (Xn) & *o(Xo)'
can suppose (x,) also gsatisfies (23). Let now §h£> ¥y Then
" @ - s {4’(}! 2o
im ant 1 ‘( i) b L (x, )% 2 7 I,(%,). Therefore x, = X,s X, b
and I.(% ) wa I (%), Since X is uniformly convex, f1 18

5

G
X

uniformly convex on 3(o,M) so that Tn, nell are equi-uniformly

. R : i ‘
convex on S(%,M). Lherefore there exists oe s such that

oo R R TS Ty A (e, e c20)

But lim in(xn)'m 1lim In(iﬁ) = Io(§§)9 so that ‘3\“1 -X U) =0

__-':-' 3 (5.0 “_‘> — '“‘ -« : S s
An'm9 0. Since x,—2 X, 1% follows Xn > X e

0

which' implies X,

Tt v_:_-. vy v,,—& s & 25 TG
(E') =5 (F'). We saw above at X, —» X, and ;n\xn) >

I,(%,). Since i) - In(ﬁh) —» 0, it follows that I (x )—>

'10(§5)° There exists M € Jo,a,[ such that
o A
{\xﬂ—»%\\ £ M, llxnm:s:}\ ST “fq eN.

Thus, for some Ye A we have (24). Therefore xnmin = U

B

which mog®ther with X 7 Xo imply kh-4? Ky

Cat )=, *(Dr], Dince T (F ) ey (X)), it follows,

from the hypotheses, that In(§n) = d (% ) and I (y el Qx )

Ag gbove, for gome ae A we have
I (R) y I(E) + 8 E-F,0), foe
which implics X ¥ X .
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Suppose, furthermore, that 7 1w E-gpace and Y, is
continuous, and show (B) =7 (G). PFix '(:Qﬁ) and take S'c'n the
(unique) solution of (Pn) and '37: the (unique) solution of (Dn)‘
Prom Theorem 3 we have X —» X and yz — 57;". It is ebviouse that
(I,(%,)) is bounded which implies (F(ayyn)) is so. But

), so that there exists M€ Jo,ayl,

Z e S < W~
Os & \{Jﬁ_(ﬂxn zi) < 1(xﬂ,ym
such that
.llin-':\‘:us M, Ix,-&l € u,fnew.

Then, taking into account Theorem A (xiii), there exists de 4
gsuch that

e

WA
f_,l(xnmx) £gE AR

-~

il
TE Y
fl X,-X) 7

¥ il

vk T D +9 (!{xn—-xnu),%n EN,

) . r L =y ,;) & A 4

since, by-Theorem B, L vy, [ fi(zn—x)a On the other hand,

o ..—"*‘ T, % __’; s

gince ¥ E’}fz(nnzn,s), we have _

A = A — —r
-4 A 2 2 A

Lolyy=9) 7 Lp(Lp%-¥) + <y = Dp¥pe =¥y 7

Adding the above inequalities, we geft

F(xn,yn) P In(ﬁn)_ﬂ- 4BoR =y '37: 5 +g(llxn—-§nu),*fn61\'f.

. . ; —% oo
Taking into account that L % -y, -~ 0, ¥y, —> Vo Eea
-In(§n) ~> O we obtain, as above, xnuafiog The proof is
complete.
iR s e . . R
Theorem 5. (1) Suppose X ig strictly convex, L. dg an
; e e : :
E-space, Y has property (h), ¥ is uniformly convex, ‘{i,‘fg
are continuous, lim P (t) =eo and \Y,(t) = 0 &=>1 = 0.
t—2oo : ;
Then (D) =7 (C). .
*—
(ii) Suppose X is uniformly convex, X hae property:
) ; il s bt
(h); ¥ is an E-space,Y is strictly coavex, \fi+(o) =0, Y,

ig increasing and lim ? (%) =00 o Then (L) => (C

o0 1€ !
Proof. (i) Note that in our conditions éﬁ}<%2 are

L4
single-valued mappings, <$ﬁ ig continuous on dom C?itz Sco,ai);f
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and onto and c%q is onto and uniformly continuous on bounded
subgets of Y (seeTheorem A). So, by €17, fox ih = in(§,§), we
have :

Py(F,-8) + T Po(1,F =) = 0. (25)
Let us show that |
¥ b (1L x+y) > IF $ (L nvy) VxeX, yev. (26)

Since X -» X% _and ‘%i ig.continuous, from (25), it follows that

i SN = s K '_, e
Ln‘%z(bnxn"y) i “’%ﬁ.(“n"’x)‘73 "‘%1(X0"X) -
X AN '
A HCAE e OF | (21)
- but :
s &3 % B =
o fo(LF -5 - T §, (L E - ¢ clp (L, 7 - -
s L o _,_*"r " - \
¢, (1, % - S5y | (28)
{n the other hand (ern~§) . and (Ln§0~§) are bounded and
=k ; ne N ‘ nel .
{ & ; o y N =7
}(L,1 L -5 (L7 -9l ¢ Cchx =N (29)

Since xn-@-zq and %ﬁ is uniformly continuous on bounded sets,

S\

it Poilowa fren (28)eand.(29) that

¥ R R % : :
Ln %2(menmy) - Lﬂ% (LnXO~V) —» O ag n-»oe. (30)

" From (27) and (30) we get

H e LB &
Ly {%(L my) ==y b C‘{)-S(Loxo-«y) :

#

= ~ 4 e .
But ﬁﬁezn, yré ¥ :&x € X such that x = XO(§,§)@ Indeed take

: A o A . : . :
such ﬁha'b %%_(x»x) + Ly (%) (LOx ~¥) 0, which exists since Cbi

it

e 2

is onto, So we obtained thet-(26) is true. Taking now x = O in
(26). we have Ln C%)?(y) — L é’ (J) biy € Y. But ’%2 is onto, so
that

s

¥ o LM e = He :
Liy & Loy Vy% Y. _ (31)

Let now % &€ X and take yu= O in (26). Then



et

3 X = A A
It 13 obvious that V4 €X, y€ ¥ J% € Y such that 7,(X,¥) = ¥ »

Th"' £rom (3)) we get

i e

* ' %
Ly %%(Lnx) G %Z(Léx)?
so that

i
i

<L, Po(lyx) e = Ll UL~

<x, Z(L x) 7 ¢L %, 4»2(1,0:;)7

it
i

HLOxﬁ¥é(HLOXK),

Since the function 0 &t —>14 p,(t) is continuous and increasing,

if follows that “inxu-wéﬂLoxﬂ . On the other hand
& 2 : : ‘ s
<LHX',y7 = ‘X,LZ Y>> <x, Lty*> = e;LOx,y%";» ,‘Vy%é'- Ya s
so that LnX —> L %. Since Y has property (h), we get L x —L X,
which together with (31) shéw that (C) is valid.
(11) In our COﬂthlOnw- taking into account Theorem A,
-1 ¥
<§2 $ - Y is & single-valued continuous mapping, %W s 2R

a single-valued mapping, uniformly continuous on bounded

; N —R A A ; :
gets and <Dn) has an unilque solution y, x,yz'(x,y) characterized

L = = et -
A X -4 [ & oy
L (f+ §y (T, TN+ P, Gr)-F =0 (32)
It follows easily that for (Q,?) fixed, (?gi) is bounded. Ag in
(i) we obtain that
L (% 43’%1‘* 7)) — 1 (% o 7 (33)
R o 1++n Yo gt 41 0,00 % . 3

P

8¢ -1 *A.;i—' ?1 P ;
L, (x + %51(11{1 ¥ = Lolx o+ §UI, 7)) FxeX, yex. ()

i

Taking y'If 0 in (34) we obtain Lnx-§LOx #%eEX, while, taking

in (80) x
: -1 L
it (Tf s b, %& (Li' v, ¥y'e Sl

ra

0, we get

it

- £ ¥ C R R VIR
As in the proof of part (i) we obtain that L) ¥y — L, ¥ Vyey

g0 that (C) is verified

ci-

‘he results of Theorems 2+5 we have

ot (3850

SummBrizing



Theoxem 6.

e

Supposge the following conditions gre verified

s i 5 X 5
X,Y are uniformly convex, X ,¥ are E-spaces, Yi,‘f? are

continuous and incre

asing,

Then the conditions (4)
conventions Y, (o) = Y, (o)

Remark 3.

obtained by Zolezzi [ 1] for X,Y Hilbert

V(%)

Remaxk 4.

We obtained that (C

: .
E~-spaces, Y has property (h) and ¥
p ) £ 3

fin Theorem 6 and

\fg(t)

l”m
0.4 s

LZ] obtained the same emuLv lence when X,Y are

\h

E-spaces and Tﬁ(t}

: R ———p R

0 and l.LQ Y?( Q‘)

= Pplt) = 57

1

fiata e

o

B0

The equivalence of condift

)

ig uniformly convex,

conti

= 00

$ t) > 1 @ 1;’?’ e

tlhark

= S
=P (T S B X

1lim

r('t) = QO ¢

() are pairwise equivalent. (By our

= 0)

i

)
LLo)

(A) -

spaces and VY, (%)

?2+(O)

ions (K) was

are

Y, e

nuous, nondecreasing,

. Lucchetti and Mignanego
strongly smooth

are not convinced

: ¥
that condition ¥ - uniformly convex can be weakened, even for

such \f,_,”,i Voo
Let us obs

following form

D) =) — F(®) ¥re¥,

e
it ol = 4 ®
where 9; {P§9§ H

may be written in a

_gpaces and taking instead

z

in the case \fi(t; =

in generalizing the

functions and keeping

considered the clags

gatlsfy the

B ig convex and continuous,

erve that condi

fex, § eyl

gimilar way.

results of

gf of

following

bies

a
20

The conditions (E)
ag we pointed in Remark

70lezzi proved the equivalences of (4)

Zolezzi taking a

funchieons R

eond il

tion (D) can be written in the

()
35

CR) for X, ¥ Hiluert

of g%_the ¢class &; obtained from 5@

o : -
t™. Bennati [3] was interested

larger class of

X,Y Hidbert upaces, More exactly, Bennati

: XxY —» R which

(25

@
®



= 1o

qitss 3’1+3’2) ’
$ -~

1 1 o
P( = F(Xp070) + = F(X5,7,) =
o 5 5 dted o o 2,
: ; : ~(36)
.ﬁdqﬂbeing the same for all P& ¥ s and
% F is Fréchet differentiable with respect %o y and )
: 37

XxY?(x,;y)w% Vy BF(x,y) is continuous.
Remark 5. Bennati showed the equivalences (4) £{=> (C)
&>(D) = (E)&> (L) where ihé conditions (D), (E), (L) are
taken for all Fé gr; Since §§<3§rthe essentially néw implications
PR SRR T TR G e
In what follows we consider X a reflexive Banach gpace
and ¥ a Banach space, F : X ¥ Y = R a continuous convex.funcﬁiOH,
airicily econvex wWilh Tespect ™o Xy i.e.

p‘<2*{’<§_*vv/1) e (ﬁ_uﬂ.)(}{?,yg)) <- l I“(Xi,y;jﬂ)‘%‘(i”l) F(Xzsyz) ( )
38

- : #Xﬁ_,xzéx, Xy £ Xo yli,_yééﬁf, ./\.ﬂo,‘l[,
For such a function we want to see what kind of assumptions we
must impose such that'(B) implies some of conditions (D') & (L),
where (Ln)C: I(X,Y) satisfies ({3) and In(x) = F(X,Ln x); Remaxrk
that (38) assures that I,» n€l are strictly convex. We shall
deal with one or many of the following conditions.

Pirstly consider the following generalization of (36)

3 Y en i Eigw)m = oo such that
=500 '
Xyt Ynty - | i
q2 N aid a i &
F(— ) & = B, 74 )+ 2 (% 70) ~
7 s E

(39

_or, less weslzdciive,



i on s

+Xs Yat¥
0 8 1o A : 5
( | Y2 L F(Re,¥n) ¥ = F(xyy¥0). = 0CH=, -2 ).
. 5 1 5 o TL4k 5 o aERT

We also consider the following coer03V1ty conditions :

Talem s e i L F(x,y) = ©0 (41)

X0 yE S(o,chxl)

and
e P(x,y) =09, (42)
1 ll-5e0 izl yeS(o,chxi)

where ¢ 70 is the congtant from (33)e
Ag in ET]'W@ can show that if I satisfies (39) then there

RN ;
exists 5@;& m DR S o
: i e :
¢ e ¥ < A
P (x 7) y FET) + ¢x-F, x> + Ly-F,y» +0Ux-Xl)

(x5™) € 08(F,F), (43)

o o

v'xﬁx e, y?y €Y,
and, if F satisfies (40) then
V’Mﬁ; g}%e& ,ffl:x;;‘{ €s(o,M), yv¥ €Y, (Xw,y’#‘»e?l?‘(i,f\}): :
Byl F(Z.y) 45{-35,:?:*? S 4y-—?j,y*> +E‘(l\x~7%ii).(4f>

making in (43) (%,7) = (o0,0) and (Xﬁ,ﬁi)é"a ¥(o,0) we

iR Prestiaites (42)7 Vow, (takingsie Lxi¥)vand Tz

F(x,L x), if P satisfies (39), then

I(x) 3 T(R) + xR, -%'E\uxw A) ¥x,T ex, Fe01(z),  (45)
and, if FAAdu;sfiCu Lo
&*’VLM*; o ‘\&[3 "2;‘,», % & S(0, m), b eré = ). ( ‘)
A 46)
2 =) 2 (%) + <%~ e Ekﬁx )

We can now formulate the following result,
Theorem 7. Let X be o reflexive Banach space, Y a Banach

P+ Xx¥->R a continuous convex function satisfying

T s + =
£ (3 .L \:X,) = .5.'\ 4 .(uil }%}.

(38), (L)) C L(X;{), satisf

Sz

<P Tl
ying



e
R

e e,

w 21 -

(L1ECB) =5 (BY)
€i1) 40 E smtiefios (W) Bhen (B) =>(J0'), (K98}
(i) f B satiefies (42) then (B) => (H'J, (1t), (WM"]
(iv) if F satisfies (40) and (41) then (BE') => (D'), (P') ;
(v) if F satisfies (37), (40), (41) taen (B) => (L').
Fartherm@re,’if (41) holds with ¢ replaced by some « % ¢ then
B) = (g .

Progf. (i) By the continuity of F we have lim In(x) =

- - - l ~
= 1lim P(x, Ln x) = F(X,Lo X) = Io(x) ¥xe %. Take now X, —> ¥;
: k
then, Creme(Bly we haxe L X = Lox? which, by the w~lower

nk’nl

A
semicontinuity of P implies lim inf (I, (Xn ) o= Lim And F(Xn 5
e I e B g Xele
F S ; = .L ¢ I sy B - i‘wl_
Lﬂkxnk> y B=x,1L x) o{%x). Therefore I, —» I, »

ity Yl S . AT % I g I . v ~ 5 -
Sy e obv;ouu that F(X , L, Xn) = In(xn) < Ingu) =

= F(o,0) ., 80, that, from (41), we get that (§n) is bounded. By

3 ) - s (e bt s Erph S % o, ' g ue
(1) we have I (¥ )~> I (X)) so that lim sup L (X ) < ;o(ko>‘«

n
= = s > SN T >, 7 2
Take zném& Xy Then lim ipf }nk(xnk) 2 IO\AO) > Io(xo).
m o = - s = e o e
Therefore x = X , X, = X, lin In(nn) io(xo)..Onoe again,

by (B) it follows LAEh mA&L6§6e Hence (B) => (J'), (}’J)3 (.,
(i¢); (B8') => (D!). From (41) we have that (X,) is bounded.

b
i‘/[J?

Since In'””* IO, ?here exisgts \xn)c; X such thatﬂxh-“» X5 and

In(xn) R Io(xo)° As in Cid) 14 follovis that In(xn)‘w% Io(xo)

and X, = .¥_. Taking M/2 Téuxn""ﬁgn“ gn.e Ny £rom (40) it

n -0
Pollows that (46) holds for very né€lN, i.e.

I(x) 3 I(E) + 8k, E 0, nen, (47)

Taking the limit it follows that Xn"ﬁh“@ 0 which- shows that

5

n & .Oi‘
(v =) (B'), Zn our CQﬂditiOnS?En—% §5. On %the other

hand, (47) is true, so that x ~% -» O, which implies xnjaﬁzw



—

Seoc

(v) (B) = (L'). We saw in part (iv) that X — Ty The

golutions ?gﬂ of the dual problems (Dn)(which exists by Theorem
B) verify

T T e R B

Ly %p
go that’ Yrom (37), we have that

e Vy,i(xn, L Xn)'

This one shows that (Dn) has unique solution. From (B) it

follows that Ln§n-9 Loio, so that, by the continuity of V&F,

we get
s S

_¥ = _‘_ A5, m :‘—;' o =
Ui = = V (A ern) *Vy;(AO,LOxO) = Fo

(D) => (G'). Take P(x - I(%,) —» 0 8o that

n’Jn

~ Jox - Q. 8ince L (X ) lg.boudded, 16 follows tha
o Since Ln(yn) ounded, it follows that

(F(Xn’yn)) ne¥W ig bounded. Suppose (xn) is not bounded. Taking

a subsequence, if necessary, we can suppose that Hxnu’ﬂcm'

‘Since y. - L X - O there exists M > O such that |y, - L, x <N
n nn n non >

so that Ny, Il €M + clx| < o |zallfor n sufficiently large.

Therefore F(xn,yn) > anf F(x,,y) vhich implies that
: : ye S(o,dlix 1) :
1im F(xq,yn) =0, g COﬂtradlLtlLu. Therefore (x ) is bounded.

From (40) . there exisits ‘XE'A such that (44) holds. Since
¥ . s i |
Chy y;‘z “Y§>€*?)B(xn, Lnxn)9 from (44), we get

'\;1‘ ' . M4\‘ﬂ B -_f i e m“ I T‘—%\ 4 w%
L(%n’yn) &,ikxn’Ln}n> QR % by Iy 7 <y Ln e A
Yz ~% 1) = ™z ; :
+ (Ran ¥n5) - Pz, B <L %, ~Tp» yn >+ Ekux th)
Taking the limit and uSing the'hypoﬁheses and §§3ma ﬁgk,
proved above, we obtain X~ =0 Since x 3 z we get
oy —D Xo’ The proof is complete,
' ity e IR g o \ A
(i4i) For x¢€ "X %ake FlE,v) = Pl,y) ¥ anmp o s

vy
satisfies (42) then F also satisfies (42), and therefore (41).

N «
Applying (11) for B we obtain that (H'), (I}, (M') hold.
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