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HAMILTON~JACOBL EQUATiONS AND SYNTHESIS OF
NONLINEAR CONTROL PROCESSES IN HILBERT SPACES

Ve.Barbu and . | GsDa Prato

Faculty of Mathematics - : -Scuola Normale Superiore
University of Iagi 56100 Pisd,Italy

Iagi 6600, Romania

Local exigtence for é cléss qf Hamilton=Jacobi eqﬁations in Hile~
bért space is studied.The existence resultsare ugsed to prove that
cértain confrol-problemg with nonlinear'smooth'stgté eéuations havé
gynthesized controllers on sufficiently small inéervals.

1;Introduction‘v

Thig paper is concerned w;th exis tenco for the Ham11ton~Jacobl
equéuion
Gl tg,g(t x) + -g\j’x(t Ol + (ax + Px, P (4,x)) = 8(5,%);3
. té[OT],XE D(A)
with initial value condition
(1.2) Y(0,x) = ‘f(x) x €H

and with its relevance in synthesis of optlmal controllexrs for the

constrained control process in a Hilbert space H,

selh + Sl ik i = : t € [o,T)
(1:3) ~ |
x(0) = x, slx(e)ler for t € [0,T]
and with cost . . ‘ _
(Red) [ (g (hx()) + B lutel Bas +fGe(m))
0

: Here ~A is the infinitegimal generator éf semigroup of class Cé oh iy
P is a nonlinear smooth éradient'mappi?g from H'intq itgelf aﬁd;g,go,
%Z are real vélued functions defined on [O,T]‘X.Hl and H,respecti~-
velyo | |

The main result,Theorem 1,gives existence of a local solution to
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,r(l.l),(l.2) under the main asgumption that F,g and Sfo are suffi-
éienxlyAregular (see also Theorem 2 below).This resuit is used in

Theorem 3 to show that for F}gb,‘fo sufficiently regular and T small

enough, there exists an optimal feedback law for problem'(l.B),(1.4)
given by ; :

(1.5)&=nj°x(ﬁ?.-tx)- tE[OTJ =€ &

where %’13 a solutlon %o (L.1), (1. 2) where g(t) = go(th); % E[D.T]
This result completely solves the syntheQLs problem o the class of
control problems considered here and the constructlve approach uqed
to prove Theorem 1 oould'lead to a numerical scheme %o comptiting the
.synth631zed optzmal controller. -

In the special cagse F = 0,Equation (L.1) has beon studled in the
class of convex f“nhtlohg in [:3] gInI:13 has benn obtained by ng-
ferent methods a local existéncé result for a related operator equa-

tion (see also [:2} Yo

2. Notation and preliminary results

f Throughout this paper H will be a real Hilbert space with norm l.\
and inner product (eye)e :

Given a Frechet differentiable mapping E from H'to.another Banach
space X we shall denote either the symbol E'(x) or Ex(x) for the gra-
dient of E at x € H:, ‘ v :

» The following spaces will be frequently used in the sequel

5

E:H —>H endowed with the norm

e(H) is the space- of all continuous and bounded operators

(2.1) '\Eiéo 5 spap {‘Exl ; X € H}

‘Lip (H) is the space of all Lipschitzian‘operators from E into

iﬁself, endowed with the norm
(2.2) NE\ = sup {IEX ~ Byl/Ix-y1 5 x5 € H}

2% We ghall denote by Cl(H) the space of all Fréchet differentiaw

A A AT



ble functions E € C(H‘) guch that Et is continuous and bounded as a

- function from - H to the space L(H, H) of all continuous operators on He

The notm i n C (H) is defined by

(2'3), Pl s hllecg FEY .,
where
.(204)' |E"® = sup{'E (x) l L(H, H) i X€ H}

. and,‘ ‘L(H y) is the operator norm of L(H H)

Tet oy, H) ve the space {E € cl(m); Il BN L o} wheze
(2.'_5) &l = sup {!E'(x) ~ E' O g, )/ =15 %07 € gl

'3‘0. P(H) is the space of all continuous Operxat-ors“E: H~»H which
are of the form E = \f)! where‘f is some Fréchet d‘ifferen‘ti'able"real
valued _Lu.ncmon on He | : :

4° If X is one of the spaces C(H),Lip (H) ; -C (H)or c (H) and

[0 'I.‘] a clased interval we shall uenoce oy c( EO 7] ;X) the space
of all continuous mappings E: [O TJX H -—->H such that E(t,.) G X
for every t € [0,T] Emd\E]T ¥ = sup U L(t)!X, t€lo T]} Lo
where l-1; is one of the above norms. ;

5 C( [O T])’ rI R) is the gspace of all real valued contlnuous fun-
ctiono ‘f [0,7]X H—> R.If 2. is the ‘cloged ball of center 0 and
rad us r then C( [O T])( Zr’ R) is the space of all real valued con=- -
'tlnuous functions on [O T])(Z

6° For r > 0O . (E ) is the space of all Frdéchet differentia-

LJ.p
ble mappings E: Zr == Haiasuch that

|l Bll, = sup {IE'(X? = BYD] g, o, my/ 1571 57,7 € Zr5 G

By clLlp 1oo(H) we shall denote the space of all Préchet differen-
tiable mappings E on H such that ” E’,!,F £ 66 [sBopnallir20 . |
= : = 1 |
The spaces C{E",Tj ; \,*Lip(‘zr)) and. C(EO,TJ 3 CLipgloc(H')) are

defined as above.
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For a given function ¥ 3 [O,.T]XH —> R - we shall denote by
&ft(t,x) the partial derivative with respect foit ~and by ‘f;(t,x)
the Fréchet derivative with respect to X. | e '
Finally,we shall denote by ¢( [0,71;H) the space of all H-valued
continuous on [O,T] et E € Lip (H) be fixed and let fjé :
H—>H and B, : H—>H be the mappings defin:éd by :

' R
(2.7) j& 2 (I+;E) p dgelE = 8 & Ue)-
Clearly Da and Eg are well defined for O“Z:E_C\\Elrl..

The next lemma gathers for later use some elementﬂry'properties of

ij& and Ee; ¢

- e 5;4 . .'
ain 1,504 B € o(H) () Tip(H) be given Then for 0L E & W EN"% the follo-

.o 1T ) & a-eimi ™
2,9) Mg e el @ -l )% Eel g ¢ 1Bl

. = S i _sBheed (il agmi Yo
@ Vn -l o | o _ :

Itk G;C%ip(H) then for all sufficiently small €20 ofi¢ has
| . ! '
(2.11) By (x) = BN x)(T + EE(Tex)) b g3 B EE

and the following estimates hold

(2.02) Bl & 1B g @ -2 T

(eaan el gle'l @ -l - elB )
| s Bl (it T

gy g Rl £ 1B - Bel (ureesi )7t
St ELE g T L B et

~ - b e -1 g
+ B - Bl ABW @ -elBd ) e alish ) )r e

g

b

voof. Inequalities (2.8), (2.9) and (2.10) are immediaie.As re-

gard (2.12) and (2,13) they are implied by.(2.1l) and the following

chyvicug inequalities

¢
E——— )
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sy 1@+ enu(Tan ™y uf @ - €l )7 m e
(2.16) 1@+ eB(Tn™ - (T + eE"<j_y))“1'\L(Ii,H)

£(1 - Elzd ) Neell @ -elzih™
Tnequality (2.14) follows from {2.11) by an elementary oalculation.-'

3, Local existence for the Hamilton»Jacobi equatlon

Consgider the Cauchy problem (l.1),(1.2) where g E C([O T])(H R)

and ‘fo: H ->R are given functlons satlsfyinw :

(3.3) Py € Gyl s gy € 00 [0, 5 i @)

and the mapping:F:Hh—>H- satisfies the conéitioﬁs

(3.2) PF,F' € C}Jip(H) et

As regards.the linear operator-A,as isfexplicitly'stated in Intro=
duqtion,%e shall assume that -~ A ig the infinifesimal generatoi of
a strongly continuous semigroup of linear bvounded operators on H

‘denoted e At. ' : E $9%

By a solution to problem (1.1),(1l. 2) we mean a functlon.‘f :[0,7]
= H—>R which is differentiable in t for every X & D(A) (the
domaln of A) is Fréchet differentiable .in x for every t €LO, T] and .

satlsfles equation (1.1) along with initial condition (hod s

i THEOREM 1 Let g,‘f ,F, A gatisfy the above aasumnt:ons Then for
p=S g sufficiently‘small,probLem (1.1),(1.2) has at least one solu-~.
Tion™ jo € c([0,T]% H; R) satisfying

- %3,3) £ o([o,7]sc(H) N Lip(d) .

Moreover there exists C >0 dependxng only on Pfo o,‘P\ 1,00 and
such that :

Tgxl p,c(y) SUen as el g

(3e4) b i, & ¢ for 't'ELG,TJ.

Now we shall derlve a variant of‘Thedrem 1'which geems to be

more nnproprlate for the applicatlons we have in mlnd.
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THEOREM 2. Let Y .8 € c(f0,7IX H;R) and F: H—>H satisfy the

= followznfr conditions

(3.5) e € cLlp DDy e el 1] Llp 100 (H))

(3 6) PP € CLlp lOC(H) s o e'P(H)
Then for nvex;; r >0 there exists T €] o,7] and YI‘ E g( [o,m j
K H;R) which is a Qolutwn to- (L l)~(1.2) on EO i ]XZ and satis-

_fieg the condlt ion

(3.7 - (Y € oCLo,2.] 3 cH)NLip(H).

' Proof of Theorem 2  Let r %0 be arbitrary but fixed.Then we

may choose an infinitely differentiable real fanotlon o( such that

A Lu) =1 for \ul-ﬁ-r and c((u) for: lu|>r+l.

Since T € P(H) there exisgts a Frechet dlfferentmble funr-t:s.o*lx HeS

R such that F',«x”.

Now we apply ’i‘heorem 1 where . 50 »& and T are taken as

(3:8) P ) = Pl el llxl)s e lhen) - s, eyl fi)

and j : S

Gl y dabis L Ldebela( b)Y, L e,

regpectively. : .A

It is clear that the corresponding solution Sfr boall el Yal(le2)
(which exists on some interval' [O,Tr]) satisfies equation (l.1l) on
. [o,Tr'Jx Zr 5 thereby completing the proof.

Remark 1 It is tempting to hope that under the assumptions of
Theorem 2 the solution ‘fr to problem (1.1),(1.2) is unique,but we
failed to prove this.Howéver,we shall see later that by variationai
arguments one can derive the following partial uni@ueness result:

for every r~> O there exists T,2>0 arid 'b/\(r) Z Y TEueh et

problem (1.1),(1.2) hasg a solution jor on [O Tz]X Zt which .ig
uniguely defined on [or ]XZ‘\N? 3

On the other hand,there € xist§an approximating convergent proccess

(gee equation (4.1)below) which uniquely defines a solution ‘)9 to

pogrrynnis

A
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(101),>(102) and is lécally Lipschitzian és'a function on 3’0 and
g( see Remark 2).

4, Proof. of Theorem 1.

'We shall prove Theorem 1 in several steps.To begin with,we con-

sider for & > 0 the Cauchy problem

By (t,%) + AT E(t,x) + E_(%, x)Ax Ve msleg e D, (t,x)) =
(4.1) . e B(t x); tefo,13 ,xeH -

E(0,x) = E_(x) xe H . '
where A' is the adjoint of 4, Dg = D(I+¢ D)t and
(402) E, = Y15 B :Vgx + PR

(443)5°8 =& &%

We shall study the following "mild" form of Eq .(4.1)

" = =
- —=ap -] = ; )
(Ad) Elt, =) =@ =(E +A)tE (e A%y S e +A)(-t"S)B(s,e"A(t"S)x)ds-r
-] * :
& é—l S o-(& +A)(tfs)[D£(s’e~A(tfs)x) £ F(e—A(t“S)zjds;

+ef0,0] o 7 H,

LEMMA 2 Let Kf 1 &9 A and.F satiéfy assumptions of Theorem l.Then

there exists T independent of & such that Eq.(4.4) has on [0,7] &

unique solution E8 = C([O,TJ : Llp(H)) satisfying
@5 BURE) € BUD) V tée [o,m'.\
e Bl o+ ey len e [ oo

where M is independent of £ .

Proof. Let K be the closed subset of C{ [0,T] CLlp(H)) defined by
K :{E 3 |E(t)ll S Ne)p + W B ()& My B(t)EP(H), t€ Eo ]_}
2 i \ : e

Here M is a pogitive number such that
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. hand side of Eq. (4.4).For the sake of simplicity and-without no loss :

of generality we shall assume from now on that
-At 2z i

. For any E.€ KX we have (by dlrect oalculatlon)
t
(4.8) {I;_b(ﬁ)\ ~t/€|Eo\ %50 ¥ S t“s)kls(s)\

e g (t"s)/ﬁlDﬁ(s) - F}OOQS s t €fo,r

-1 , =
(4.9 N eo)l ¢ e"*/ﬁnE e §em & na) as

(o]
-1 S - & (t~s) “ (s).~'F | ds; ¢ EfEO,Tj;

Recalling that

(4.10) By, B eeBlIl+ £ pegeen £ DythySar

and o : ' i _ ‘

(4.10) F(I + D)7 Mx) - Px = =g § B (AT £ D) x4 (1-2)x0Dx oy
, . 5 _

we see by Lemma 1 that

(4.22) o, - Pl & Bl +el?l ||

(4.13) Np, - rlelel @ -enom™ ezt Nl (o ~elom)™

3
sl hel ca-ellol)™ + 1)),

On the other hand, we have

o ~EE" -1, *)t

(aaan) (e B () - By (o™hbx)e™At

i ~(&7Len*) ($-9) e e
+ S e i T B_ Ga,es " 3 Az oh T s
o] t :
¢ gtk oW )(t"“)((De)x(S) <lovyi | -
0 Lo e Blt=s) g silben) -

while by (2.12)

(4.15) Dé (x) -~ P*(x) = D' ((I + € D) X)(l+ &D'((I+&D) X)) L
- Pz

This yieldé
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PUECRETEE P e =€ Bel 5 g(l_—'e.\n'loo> :

\\F\\ Bl \Fl ol
Now using G4 11) and (4. 15) we get after some oalculation that
(4.17)1\ pt -rlle @ _ n BB + Bx)e

for all B € G o() satistying| Bl oo+ NEBN + ] Bl & 1.
Here r is a certaln real continuous and positive function Whosé eX—
pression 1is to complluated $o be written hmre. “

‘ Inserting (4.12),(4.13), (4. 16) ang (4 17) into (4.8),(4. 9) ‘and-
(4.14) respectmvely we conclude that there ex1sts t EJ 0 T] sach that

a8y Ik E>-et>tl@+ ¢ Ty mmn + H( By (t)l\ e[O,t&)

for all-E € K, :

Now we recall that a mapping E €-C (H) belongs %o P(H) if and only

if E' is a self~adjoint linear operator on ﬁe¢nasmuei as EO,P and.

B(s) belong to P(H) while by (4.15) Eé—éiw}ﬂ for any E &—P(H),it

follows from (4.14) that E |
(L BX(8) € 4R, for ali™it>0, welfeyn] |, RE K,

Thus for T = t£)11 maps K into itself.On the other hand,for any'pair

El’Eze K,by (2.14) and (4.14) we have

t
: b P &"l -,.,n
LCE B0 ~ (R By ¢ €8 5e 5 &9 nter gl
: : =
(0 0y = 0B ) £ chmemt Peupl ) -

- B (s){l ) 0E [O tE]

Hence for 1 = t& gufficiently small T is a contrdctlon\/J([O 1],
C (H)) and therefore Eq.(4.4) has a unique solution h € K.Moreover,
by a standard extension argument we may infer that exists a maximal
: intérval DD,TE] such that Eq,(4.4)mhas a unique solution g€ € x .,
£

Using BEqs(4.4) where B = E- along with lIne Jlltles (412},
(4913),(4916) and (4.17) one obtains for ¢ sufficiently small the

following estimatese.
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(4.18) | Ee(t)[cD e _ EO\OO+ &l .f ‘e"r&» (t"snEE(sxoods+_‘
<3 : On ' :
T e'- & t) 3 (s [O,T]
4 o . e (t
(4.19) NES (Ol ce™® FhEN + & L1 - iie)” S ~8 e (s)ips

-
W a HEE tEEOTJ

| i :
(4.20) |uE(u)) & e wBELE ) i Me) -1 f el (- 3}1@3)[ ds

(o]
e
T L e eg e e e
ol sEwlle o syl et e e T8 (e (0] 0
. 4 »
S + CE(1l~ e ) + t€ [o,7] .
where ﬁi: M o+ l‘ 1 a) + I,Pﬂ \F’ﬂ amd C is independent of £ .
Setting ja(t) = (t)}., oot L el +ﬁE§(t)ﬂwe ha¥e by (s,

(419, (4 20) emd (4521) i
: o) = 1 : o~ = = -] ¢ .
Jowe 27m ei- Y e AETE e € (t-s)f&(s)ds s

o]

e =
OEL SeC 9 Pre g 3

and by Gronwall's lemma

Jg b Oet
j(t) & oli=e j+ 2 Iy e © s tefo.n)
where 6— (aM + & M“) (1 - Nl&)z.

Thus there is T > O independent of € such'that

\f&(t) L /4 for 04t & inf  (T,T,).

'~ The latter clearly implies that Tg > fer alla thereby completing .

the proof of Lemma Ao

LEMMA 3, Let El and B, be two solutions Lo Bigpe: ubtl) correspom-

ding to Eo,g’gl and b ’52 respectively.ihgn on the common inter?al

052
of existence [0,T] one has : ' _ , e

(4022) | Eq{t) = By(t)]

h]
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where C is independent of &

Proof, We have

4,23) \h () - B

E 5 Ca
: (t)"o@ée | \Eo:l B0,2\1;,0 2
o - 2
ootk T i) il el e
(@]
+ § et “"S’hg ) (6) - (gz)x(s)l 3 e,
o .
where D Di ([4.&_3 ) Di s E& = l -

Using once again inequallty (2 10) and cstimate (4.6) we get
(4.22) by a slmple-calculatlon lnvolv1ng Cronwall s lemmas

Proof of Theoremll (continued) Let E be the solutlon to“Eq.

(4.4) provided by Lemma 2, For any B € C%ip(H) and €50 define. the
- mapping R (B); H—>H: by : = .
: 1 , -

(4o24) R (B)x = E7(Ex = Bgx) = B'GBx = § @' 0x +Q-0 (L
| ' o Lo :

+ &E)"lx) E¢x - EY(x)Ex)d N,

‘We have, < :
©(4.25) IR, EH, stlel  Chmliee] o« WEh ey ),

. Then by (4.6) it follows that for all £,) > O one has
(4.26) B, BM(EN), & C € ¥ % € Lo,1)
and by (4.,16),(4.17) we have _ .
(4+27) \Ra(’aE (t)l,, & CE& ¥ + e Lo, 7

where C is seme positive constant 1ndependent of ¢ and )\)‘
e
On the other hand,as i§ easily verified,

i : = =
(4.28) S @8, y) ¢ (BE(E0yAR) + (BT AY) +
“"1 £ i £ 2 ; he < N N
+ & KDty = DE(JC’K):Y) = (1-5<35:’U=y}

for all x,y€D(A) and t €[0,T]

To prove (4.28) we have used Eqs(4.4) along with the obvious rela
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' A ~As ~Ag_ _~As
i o = e .A. ek
(429) = (e Tr)e amg)= = (B, (1,67 xm)he™xye ¥)
Let'? [o T)x[:o 7]->R be the function

Ve8] = (®F (e “huyy,emhay ),
By (4.28) and (4.29) it follows that

(4. 31) MR (Binse oy T8 1(9 (t, eASX) £ D’(t e~h8xy e fs

= s Y)s.

ak tetoml.

A ".A e
Inteé,ratmg equa"blon (4,31) we obtain since wz (0y48) = (E e = y)

and y,x are arbltrary, % " _
: wilis (s A L= .
(4 32) E(t x) = € 'ﬁ’"‘ (9 tx + S gehh S)B(s,e.a(t S)x)d}s
. 't. : 0 ‘ :': : :
& i_—l g -A (t= S’(Dt(« > A(t-—s)’x) 5 D'L(s,e-A(-’c-s)X))ds..A
0

for all x % H ana t e‘o,r].
: .
b

Conversely,ihe same argument we deduce that every solution to Eq. (4.32)

is é solution to Eq.(4.4).This shows that for every A > 0O, E)‘ ls a
solution to (4.4) where B has been replaoed by B +. R (D> )- R, (D).

Then Lemma 3 along with estimate (4.27) y:l.elds
33 1BE () - Bl & ¢ s (IR 0M NG +IR DN 3

s €021 €00 e ) Tox & RO, D15

Hence there exists E = lim "*‘Ein c(fo,T]; C(H)) and by Lemma grii tels

lows theat B(t) € T(If)ﬂi-iip(x) for all tefO ) and |
supil\ B(t)ll ;5 telo, T]Z} &iicoo

Let \fg a nd \f be the real vilued functions defined by

if&(t,x)

i

(8€ (t,rx),x)dA; t€fo,1] , x€ H

and.

N\ el e
s AX) KGR 3

it}

(E(t

o
e re SEE AL

it

‘{’ (%) m

? ¥

O O

Bince (\f.):& = Et ana \f:: = B we conclude that
el

e

i [y 3 :
(4.38) 1im Y,x) =0{%,x) uniformly on [ oy J X Zw,

£E>0 g

g
TN
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for'any >0, and : , _
S ffx i o¢ [0, se(H)) |

£>0

e

Next in (4.28) we replace x by )X, y by x and integrate in A over
[ 0,1l get ' '

(4. 36) (f )5(tam) + P, )5 (b0, 43) ¢ & Y(t e g(t,x) 45 \m\z

* for all t € [0,T] and % E D(A)g
Here \r is the fqnction defined by

(4.37) , (6ex) = f (0% ~ DY) (t, AxIxdX

On the other hand, it followo from (4 27) and 644 37) ﬁhat
l

\Y(‘c x) - f D (i: Ax)pt (4, Ax)d)\dcy(&)\x\ : te[o i z€~H

'where 1im: é ( -0 JKeeping in mind that
R D& € 1 2
i ) ol asran : !‘ )i
x ¢ 1 !x

we conglude that

e e = FIstm + mxl®le d@lxt, teb,rl, x €

The latter inequality,ﬁhen added~{o (4.36) and 1o (4¢34),(4.36) shows
'that<f ig a solution to (lel),(1.2)s As regards estimate (3.4) it fol=~
-lows by (4.18) via Gronwall's lemma thereby:completing the proof of
Theorem 1 . : .

Remark 2 Let Qf(t,EO,G); B xﬁi', G = g, be the solution to (lfl)
(1.2) obtained by the above convergent process.By Lemma 3 it follows
that the map (B_,&)—>(t,E,,G) is locally Lipschitzian from C(H) X

G(10,T) o CUHOE Hop @6 0, T1X H;R). ’ :
Moreover arguing as in the proof of Lemma 3 we see that also the

map P~>f is locally Lipschitzian from CL p(h) to ¢([0,T]XH;R).These

facts could be used to prove that Theorem 1 remaing true if instead

of (3.1) and (3.2) one mevely assumes that 'f €~”(H)/7 Lip(H)

By € c(fo, T1 ;C(H))1ip (H)) and F € . % (H), However,in order to

avoid & tedious and lengthy argument we did not put Theoremiinto this
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general forme

‘5, Synthesis of optimal control

Consider here the control problem (1.3),(l.4); minimize

S
(5.1) § (gelyx(8)) + Liuce Zra + Y =0
(o] ] '

in u E&LE(O,T;H) and x e-C([O,T3;H), gubject to tﬁe constraints
) il aiR=W ;. teloaml '

(53) xle) = %, |

(5.4) | z(E)l & for t € L0, ’l‘]

Here %QGEH, and r)l.“ \ are arbitrary but fixed while’ ‘fo are con-

tinuous real valued,functlons on H and LO ij,AI{ 3 respectlveLy,gathi_

fying
£ e t .."i"“' B
(J‘5) f; e LlD Loc‘ 5 ‘go)xe'c(£;’iJ ’“Lip,lac( )
As regard the operators A and F we shall agsume thet they satisfy &as-

sunptions of Theorem 2,ice4,~A is the lnflnlteslmal generator of a

semigroup of class ¢, and
e e 5 |
(5.6) P.€ Bl . B, P E CLip,loc(H) g

Alsé we ahall assume that there exists some real w such that

(5.7) | (V_(A + F)X,z;:-)m}, -wixlz for all x & D(A).

(Condﬁtlon (5.7) is not absolutely necessary but it simplifies
problem avoiding some nedxou argumcnr~)
Tt is well known that undex these assumptions,the Cauchy problem

(5;2),(5.3)'has a unique ;mild" solutibn “xE C([O,T];H), ey s

G Bl ¢ e (e REEET T

O

Morcover,one has the following estimate . g
: f;

LEET

G s

w4 ( O(t-s
S & et e T )| u(s)lds 5 O
we associate with control problem {(5.1) the equation

<o A

PR, S

VA, A

i ep T o8 e A
|



satigfieu

B
(5.10) Yt(t,ﬁc) - %\'\f/x(t,x*')\z - ,(“)”X(t,x),Ax SERg). gé(t,x)' = 0
| for t € [-O,Tj_, X € ’D(A);\xléZr,
with final value condition ' '
G- Wlsade e ;. Ixitiown,

By substitution \f(t,x) :\;/(T - t,x) , problem (5,10),(5.11) re-.-
duces to (l¢l),(l.2) where g(t,x) = gO(T-t,x).Theﬁ by Theorem 2 we
may»infer that there exists T > 0 such that for any 0414 T

‘problem (5410),(5.,11) has at least one solutlon denoted "T’T which

(\]"Tg{‘ € ¢ [o,ﬂ ; cmm Lip (H)_)
and '

tsamie DYOEL )G e =

I‘

where C ig a poq1f1ve constant which depends only on lkfo 2“|0ﬁ

21,1, and Lt |, (see (3.8) and (3.9)).
Now consider the closed loop system
((5+13) -y’+AX+(Y) (‘c x) =0 wopiealofs

'X(O) =X,

Simee {|'p), € CCIGLT Lip(H)) it follows by (5.7) and (5.9)

thaet (5.13) haz a unique "mild" solution x = xﬁt) which satisfies

the estiﬁéte :

|

(5.14) bl el + G e - 1) 3 v e To,0]
Ye nmay therefore conclude that for every 1 satisfying - T~

A A inf (T, o

e ,,,,1

. PCT ln(Cr.+wr)(.Cr +cu\xol)

the solution x* to (5.13) remains in the closed ball z:?\,i.e.,
bz %Ekdr for tele T]8

The main result of this seétion Theorem 3 below,simply says

Foud

(5e

J...
7~ tw ——
m-} u( .t (’\j{ )



is optimal in problem (5.1),
PHEOREM 3.let \1 p be @ solution to (5 10),(5.11) where T satig~

fies condltlon (5.15) and let x¥ be the solution to (5.13),Then &

is an thmmal arc to problem (541) correspondlng to optimal control "

u = u* given by : .
‘ W () = e () (E5XT(8)) t € Lo,1].
ﬁoreover,there exXists 0: & X%xﬁ ¢ r guch that for all- € [O T] and

l;ﬁ szﬁr) one has

: T '
(5.17) Yalt) = int | § (géu,z(S)) ; \u<s>\ )as + \f()(xm');
: t

x(t) h;x' + Ax + Fx -n and \x(s)\¢ r for s€elt T}}

Proof. Letbu € I?(t T,d) be arbitrary and let % be the corres-

ponding "m$1d" ”ogutxon to (5.13) on tiie 1nterval § o 7] with ini-

tial value gondition x(t) = h and such tmut \x(s)\ & ivafier geec
[t;7] .Let { uas Cﬁclf[t 7] H) and ‘{b.} C:D(A) be two sequences.
strongly convergent for = €—>0 to u and h in L (t T;H) and H res-—

pectively.Then the corregponding solutlons Xg are ‘differentiable on
[t T] and Xy —> % uniformly on [t,T].In'partioular,it follows
’that |x. (s)\é.Zr for s € [0,T] and all & sufficiently small.

On the- other hand , we have by (5. 10) and (5. 13)

—g‘g“ﬁ(s};755")"“ T (mx (8)) 4 ((w@x(s,x&(s)),x; =
' |

|

il

#

~g,(s,%¢ (8)) + }2'“ NG (YMER (s))\ ° - (ug(e),
(V) (8y2g(5))) 3 ~Bolosxelad) = 5 lugle)l®,
Integrating on Et,T] we get : 4

YTm,h)é é (g (50xe(8)) + 3 ‘_ue<S>‘2>dS +Y, (xg (D)

and letting € tend to zero,
i

_ (5.18) TT(t,h)é + (EO(SQK{S)) " "J’é‘ fu(s) ’ )ds ! ja R

A AR S YR o 2

. SR,

<ahoto

A ARSI wo



pfoblem

. Let us denote by S(t,h) the optimal value of préhlem (5,1) en in-

terval [t,T] ,i.e,the right hand side of relation (5.17).By (5.18)

(5,19) \)’T(t,h)é S (t,n) for all t€ [0,1) ,mel_,
Now we fix'h in‘z%p(r) where
80 W) = o0 e o oWt

Then by (5.14) we see that the gsolution x = y(s§~to the Cauchy

T S (YT)y(S_”.Y) =0, t£ge®
y(t) = h '

S

remains in Ejr.Proceeding as above we may assume that y ils differen

‘tiable on [%,T] so that using once again equation (5.10) we have

(3.. e . . N » ~ . . | : & ; oo
a's T\S',Y(S)) = ( {/T)S(S’y(s)) o (YT)X(S’:{’CS)) $ y'(s)) S

= g,(s,y(8)) ~ %\(YT)y (8,7(s)) ? for selt,d,

Then integrating on [ t,7] we get

Yoteh) = f (golayxls)) + %\(YT)y(a,y(smz yas +f, (v ()

Aldhg with (5.19) the latter yields (5.17).In particular for t = O,
h = x, and y = x* it follows by (5.17) that the pair (x;u) is opti-
mal in problem (5.1).This completes the proof.
Remark 3. By (5.17) it follows that any solution \VT to the -

Hamilton Jacobi equation (5.10) is uniquely determined on [TO,T])(

Y (r) where Y (r) is given.by formnula (5.20),.4As8 mentioned.equier
this fact could be viewed as a uniqueness result for the Hamiltone
Jacobi equation (1l.1). -
Remark 4. In particular,it follows by Theorem 3 that fof a.suf«
jently small T the optimal contrél problem (5.1) has at least

= % C SR
one optimal pair (x,u ).

A 4 ﬂ 5



ol O
-~ Theorem 3 admith a dual formulation in the sense that if T is
ngen then for F,g and. \f "suiflclently small" there exists an
optimal feedback law of the form (5 16) for. the problem (5 1).10
be more gpecific we consider the followxng optimal control problem:

minimize.
o :
(5.21)- S (@ gc(t )+ _é (u(t)\z)dt +A§f (x(T))

in u € L“(O,T,u) and x € C(L0,T);H) subject to the constralntu

X‘-fo-vAFx==u sy GFOsTl
(5°22) X(O) = Xo !
[ WMEE o omp cam BvE L0320

where 7> x\ is arbitrary but fixed, A is a positiﬁe.paramé$gr
and. ¥, Y »8 satisfy conditions (5.5),(5.6).In addition we shall
strengthen condition (5.7) to '
(5423) (Ax + Fx,x)>0 YV x €& D(a) .

_COROLLARY 1.222_ [O,T]be an arbitrary bounded interval.Then

there exists )\ > 0 such that for every O ijlko.thé conclugions

of Tneorem 3 remein valid for problem (5. l),(5.225,

.Proof. "By (5.14) and (5.23) we see that Theorem 3 is applica-
ble to problem (5.1) for all T = To satisfying the condition

1 1 ¥ - ' ~1
0 £m & inf (T,(r - lxl) €7 ),

Since by substitution t—> X 1t problem (5.1) reduces %o (5.21),(5.22) 

where T = A"&TO_,We may infer that all the conclusions of Theorem

3 are valid for the latter problem if
~1. ~1
L o L)
0L X &x =T Timf (T, (r-1x) ) bt
Thus the proof of Corollary 1 is complete.
Theoren 3 and Corollary 1 are in particular applicable in the

sy A

A AN L

/

1rr
LA

"'\

(o

cage of disitributed control problems gl r gemilinear paras-
i & % x

C

bolic equaticna with smooth nonlinearities.A typical example is
1

the Following problem: minimize




(5.24)2 S (.h(t,'}:) \y(t.x) ~ ¥4(t, X)\2_+\’ u(t,x)\¥)dxdt +
= oL
() | 3(0,x} ~ yl(x)\ ax.

in el (Q) and y eL (0, T;H (_(L)[\H (ﬁ,)), yt(_ - (Q) subaect
to the constraints ;

‘]0,_.’l‘f?< AL

(5:.25) Yo o Ay +\rf(y) =0 in Q =
-y =0 ssid 107 S MET R
(5026) y(O’X) 2= yO(X) : 8.8. X G _(z-

2

( Ly, N2 ax ¢ tor t €10,1]
g

Here (0 is a bounded and open subset of the Buolndean space R r isg
the boundary o:ffZ_ II @, e (L) are usua 1 Sobolev gspaces on (1 and
\9 ig a monotone function on real axis. The functions yO,le L (ﬁ-) :
sud b€ T2U0), Le Loo(ﬂ) are given. E :
In this case H = ’_(L,,A ==A ; DAY = H (Q3[) u}l) and
(Fy) (x \F(j(f)) BeCe xéﬂ Y€ L (_Q).Condl‘tlons (5.6) are sa-
tlpfmd lf J@ is of class 'C and Jg(l) ii= 0;1,2 are of lineax
. g)rowth o
More general control problems of the form ()024) {525 w1th
nondifferentiable or even multlvalued maAlmal monotone graphs
can be treated as follows (For a direct traa‘bmen’c gee [4] , [53
[6] Y.Consider the control problem with performance criterion

(5‘,24), constraint (5.26) and state equation -

¢
Tl G - in Q
Gaggr - 5
y(0,x) = y (%) e L
where s & _ :
oo § J§£<r~ec}>§(&)de e
\ ‘-w ” = >
~ e ~ a9 \"'-L\ s = OO
and ?E e “:\,P ) iy Here \f g g C 6V Runetiion on I such
. : = =
that \,)?) 0 on :‘~1°,°? E,JD =50 or ale b ik, \)V(r) - J’}(wr) for
511 re r ‘dI' = 10
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it is'easily verified thaf control problem (524)y(5426)4(5.27) has
at least one optimal pair (yt ;ut ) eMoreover,by Lemma 5 in U477 we
have for € = 0 ‘ 5
(5.28) ug->u® strongly in L2(Q)
and . :
(5.29) ¥ — yv” gtrongly in C([D,Tj;LZQIL)i.and weakly in

' 'Le(o,fc;ﬁz‘*m) AESGR))
ﬁheré:(yﬁd) is an optimal pair of préblem ().a4) (5.25)3(5.26),""
Let Sa.:[O,T]X H—>R and S: L0,TIX H-> R be the'optimal'value;
functions of problem (5 24) ~ (5,26) and (5. 24) (5 25) (5% 27) reg-
peo+1ve]y,BV (5.28) and (5 29) it follows that

(5.80)  Lim Og(t,h) = S(t,h)
- £20 '

for all ¥ é [O,T] and all h in the closed ball ?: ug(IZ).
Thus 1f'1’ is the solution to the corresponding Hamilton-Jacobi

equation asb001dted with pioblem e ZA),\5.27) we may regarde

= e ('\{,6) (t»Y)

as ab approximating optimal feedback law for problem 5% 24)Az()°26)
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