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HERMITIAN GEOMETRY AND INVOLUTIVE ALGEBRAS

Mircea MARTIN

Let M be a connected complex manifold and let ¥#(M) denote
thescategorytof eli Hermitian holomorphic vector bundles over
M, with real-analytic metrics.

A classical problem in Hermitian geometry, the so called
equivalence problem, is to determine when twu objects in 2 (M)
are locally or globally eguivalent.

Certain recent sresults obtained by M.J.Cowen ‘and R.G.Douglas
[4], pointed out relevant connections hetween the equivalence
problem, and some important problems in the thsory of hclomorphaic
curves and in operator theory} Cowen and Douglas related the
study of a class of bounded linear operators on a separable
infinite dimensional Hilbert space, which possess -an open
connected set (2 of eigenvalués, and the study of holomorphic
curves defined on an open connected subset (! of the complex
line,.to'the'equivalence problen in H(R2), and they aiso formu-
lated and proved a notable answer to ﬁhe equivalence problem in
4 (R). More precisely, if 2 is an open connected subset of the
complex line, Cowen‘and;Douglas defined the relation Qf points
wise equivalence in EQLQ) and showed that two objects in 3ELQ)
arevloeally eguivalent if and only if they are pointwise equiva-

ient.



The purpose of this paper is to.prove that, with an appro-
piate definitidn of pointwise equivalence, an analoéous result
holds in general.

| Many of the ideas in our paper are derived from [l],

In Section 1 we state the main technical result of the
paper, Theorem A, and in Section 2 we prove Theorem A using some
elementary facts of the theofy of finite dimensional C%~algebras.
The proof is strongly influenced by [1].

In Section 3 we deal.wich linear connections on Héfmitian
vector bundles. '

In Section 4 we give the definition of pointwise equivalence
and we show, in Theorem B, that two pointwise equivalent éxidif—
ferentiable Hermitian vectcr bundle over a complex manifold M
are loéally equivelent on an open dense subset MO ofaMs

Finally, a discussion of some applicatione of fheorem Bads
carried out iﬁ Section 5.

I am very grateful to Professor C;Apostol for numerous
discussions on the subjectiofothisipdper, sinparticular for
suggestino that the results of Cowen and Douglas might generalize

to arbitrary complex manifolds.



1. INVOLUTIVE ALGEBRAS AND HERMITIAN VECTOR BUNDLES

Throughout this section, M will denote a finite-dimensional

Coie ok
C —differentiable connected r

0}
o)
et

. . manifold, without boundary.

(o3

D

= - : : :
For each C -differentiable Hermitian vector bundle E over
M, of finite rank, we define an unital involutive algebra, deno-
00 s - e ; > : ; :
ted by € (M,L(E)). The main body of this section is a discussion
I3 . 1 el y oo -y

of involutive subalgebras of a such algebra C (M,L(E)).

In order to staté the main result of this section, Theorem
A, we need some remarks recarding involutive unital algebras and

Hermitian vector bundles.

l.1. Let A be an unital complex algebra.
A complex linear map 4 from A to A is called a derivation

on A i f
(1) dlaa’)=(da)a'+a(da’) (a,a’e B),

The space X (A) of all derivations on A is a complex Lie algebra,

with.the following bracket operation
G2 [3,0']= 03"~ %7 (3,3’ X(A))

Eor eachoa In A we will denote by @(a) the inner éerivation

defined by a as follows -
(1.3) O(a)a'=aa’'~a'a - a’e B)
For all a in A and 0 in 2J(2) we have

(. 4) [a.)@(é)]: B(9 al

)

An element a in A is called central, "1t 6 (a)=0. The set
€ of all central elements in A is a commutative subalgebra

Gf b mE g he an 2(a) and a is a central element) then fxom



(1.4) we infer that D a is also a central element, therefore

we can define the complex—~linear map

i s

=(1.5) res: F(a) — E(C), (res d)a=da (de ¥(n), aef)
We remark that
(156) 'res[a,'a'j ={resd, res '] (3, 0'€ L&)

Tt is immediate that X (A) and A are modules over { ~and
the map res is C -linear. For a derivation © in SF(A) we have

res d =0 if and only if D is C -lineaxr. Note that all inner

derivations are ( -linear.

1.2. Suppose that A is @n unital involutive algebra. For
each derivation 9 on A we define a map r&# from A to A by the

“aguations
(L) 9 a={(0 e : (ag A)
It is plain that 0 is a derivation on A, the map

s a“ﬂ’? ‘ : : ’ ;
= * is conjugate-linear and, moreover, for all [5; 2 o' 9n

% (A) and a in A we have

by Tt

-

fioy .. (dNE= g
(2,16 6 (a):ﬂ: == G(aﬁ)_
(lall1) res(b aztj‘:)r-(res_a)ﬁ

1.3. Let M be a C ~differentiable real manifolids The sct
o0 : : /-‘Do - . : . Q s
C (M) of all complex-valued C -differentiable functions on M 1is

an unital commutative involutive algebra, using complex conjuga-

A b i

s e




‘bundle over M, constructed such that

tion of functions as inveolution.
: y o0
The space of derivations £ (CT (M) .is exactly the complex

Lie algebra (M) of all complex vector fields on M.

o0
1.4. Suppose .that M is as above and let E be a. C -differen-
tiable complex vector bundle over M, with the projection ﬁTE:E —> M.

As usual, for each point p in M we denote by Ep the fiber

‘JTgl(p) over p.

: oo
2 section of the bundle E over M is a C -differentiable

map .. fromaM te Bjisuchsthat; GlpleEp;iforzallyp insMq.,The

space CCC(M,E) of all sections of the bundle E over M has a

natural structure of CCﬂ(M)-module,

Let L(E) denote the c®“-differentiable complex vector

(2129 L(E) =L (E,) |

for all p in M, where by L(Ep) we denote the complex algebra of
all linear bper¥atons from Ep to Ep.

If T:M —>» L(E) is a scction of the bundle L(E), there
T(p)sEp —>Ep ls a linear operator, for all p in-M.

The scetion T dn € (M,L(B)) induces a € (M)-linear map

from c“°(M.E), which we also denote by T, Jefined by

(1.13) T:COQ(M,E)—écM(M,E) ¢ ABG) tp)=T (p) (T(p)) HGE Cwu-"i.\E) /PE M)

It is a standard facﬁ that the space of all sections CwiM,L(E))

is isomorphic as a CU?M)—module to the space of all c®® (M)-linear

maps from'CG%M,E) to CaﬁM,E); therefore dXYM,L(E)) is in a natural
manner an unital complex algebra, with the identity demoted by T.

(o3=]
m
o

¢ s 1 Lo, ] DO‘. 2
Tdentifying each A In C (M) with AT in M,LE(E)) we



obtain that COO(M) is a subalgebra of CO%M,L(E)). We clearly
have that CQO(M) coincide with the center of CO@(M,L(E)).

In the following, we denote the space of derivations

% (c®(M,L(E))) simply by %€ (M,E). From 1.1 we have that X (M,E)

oo : : ot ;
a C (M)-module and we obtain the C (M)-linear map

joe
10}

(e res: £(M,E) — X (M), (res o Sihr= DgE) (AeC (M),

o0
1.5. In order that C (M,L(E)) becomes 8n involutive
algebra in a canonical manner, we assume that the bundle-E is a

Hermitian vector bundle, with a specified Hermitian structure
- s : oo : oo' o0 :
(1.15) Mo :C(M,EYxCT(M,E) = C (M,E), /(,L(O‘,T:)-:(O';'E>’.

Each fiber Ep is an inner product space, and the ‘inner
; : 0 5 :
products vary in a C fashion for p in M.

&

For each T in CCL(M,L(E)) we define Tﬁ in ML,E(E)) by

the implicitiequations
= % S e )
. 16) (T8 By = {5, 0 ) 48 (00, TeC (ME)

[o2e)
The map T ~@>Tﬁ is ag_involution of the complex algebra C (1i,L(E)),
called the involution associated with the Hermitian structure. 5
Note that for each d in R (M,E) and T inACOO(M,L(E))

we have
o0
@1 Ce0T1E 1) -l0, ey e EeC Gl E)
1.6. In what follows we are interested in subalgebras of

oo : Bt ; : :
C (M,L(E)), where E is, as above, a Hermitian vector bundle

over the manifold M.



S R

Let ¥ be a fixed subset of C®°(M,L(E)) and let &£ be a
fixad subset of F(M,E). '

Using the notations

(1.18) 3350={88:sc—:35, de ¥}
oy~ e ATl i o

we define two collections of subsets of c®°m,L(E)), (‘Sﬁk)k and

T

(Tk)k , where 0£k is dn integer

P Y
“ Tk:fpku}\ykuﬁyk s a9sa40Seb)
S U %Bﬁﬁku C#fffk (0L k
- Lét Ak and ; B B denote the involutive subalgebras of

c™(M;L(E)) generated in CT(M,L(E)) by the sets &, U c™M) and,

respectively, {Tku CM(M),’k=O,1,2,... « Thesunien A .= U Ak
‘ : n<k

; %)
is obviously dn involutive algebra and a C (M)-module. We remark

(= ]
that A oo 1s the smallest involutive sublagebra of C (M,L(E))

such that
Y ucTm g a
(1218
L oo CA
We have
A UZXA U’f‘Eﬁ c B

: k k k=Yk

(2999

s
By UXE A UR L NS Ay



If M is an open subset of M, we shall denote by E/Mo
i (e 2)
the restriction of the bundle E to MO. For @llsyrrin sCy (M, Li(E) ) 2and
9 in S @,E), there exist the well-defined restriction (/M.
3 e 3 M i (M L E b v s he
in-€ " (M_,L(E{M )) and O|M_ in ¥ M _,EJM)). We shall use the

notations
XM =10, BeF)

A M ={TlM sTen, §

k‘ O %
By |M_ = { Tl :TeR, 1

ziooimoz { ;I‘SE"AO:TGAOO Y

Now, we can state the main result of this section.

oo
. 1,7. THEOREM A. Suppose that E is a C -differentiable
Hermitian vector bundle over M of rank n, and let ¥ and ¥ pe
as above. Then there exist an open nonempty subset MO of M and

dn integer 1{k¢max (1,n-1), with the properties

O ol

Y A (e M

(ii) if A is an unital involutive algebra and

'\3{3 :Ak\MQ =&, gk u%#lMo == @)

are, respectively, a morphism of unital complex. algebras and

a map, such that
Y (0 T]MO)= q)(amo) W(T | M.O)\, \i)(a#T\MO)= cp( Bf‘ﬁmo) \V(Tlr.qo)
o ( da T (m))= (p(@lmo)cp( 8’#‘!1«40) (T [ M)

(¥ ezl )= g DF () @O M) YTl M)




for.

~for

all @ o in %X ana 7 in'Ak_1 » then we have
Y3 T, )= (T (M Py, o oo B%T[rxio)z (Q(G#IMO) W (T|M)
all @ in ¥ and T in Ago



2. THE PROOF OF THEOREM “A

ThEeughout { this ‘section we continue with the notations

of the previous section.

For each p in M let us consider the finite dimensional
Cx~alqebras-defined by
(p)={T (p): Teny) | (04R)

=
By (p)=iT(p): T€Byp} (0<E) .

2.1. We first review some elementary facts about the

structure of finite dimensional C -algebras. For more details

~

the reader is advised to consult g Ch.T-11].
Let A be a finite dimensional Ck—alqebra. Then there

exist an uniquely determined sequence of positive integers,

{nl,nz....,ﬁm} ;
and a system of orthogonal selfadjoint central projections in A,
such that A is decomposed into the direct sum
(2.1? ‘ A=Aql-®Aq2@ @Aqm

and each Aqi is isomerphic ta the algebra of all'ni X Ny matrices,
1< i< m.
Bor each I, 1<im, we can find a system of orthogenal

selfadjoint minimal projections in Aq, ,

N
D
2

%p;: 14



and a system of elements of Aqi

{ui‘c[&: lﬁO(,@) < ni}

satisfying the conditions

22 z; P, =d;

‘(2‘. 3‘) ucixcx:p%x

(2.4) ua‘lf:u:ém

o Sap e Bpp Wad

for all 13@,@,{}é§‘ﬁi , Where Dy means the Kronecker symbol.

If a is anfelement ofodjathenh therehexistsydn undeuedy

deteruwined collection of complex numbers

o e GG o il
Sy (el 1Gisan 1__&,P < ni}

such that

(2.6 Py, 2P %‘qﬁ(a)ud@ (L€ B < n.)
We remark that
I,
L = 3t
Crn) a5 B Ad@(a)ud\l%

2.2+ The next result is a restatement of [Q] , Lemma
LEMMA. Let T be a selfadjoint element of C (M,L(E)).
Then there exist dn open nonempty subset M_eof M, a positive

integer m and two collections



% s ; ; oo
. ¢ :
{PO(. 1§o(_m}cc (M, L(E(M,))
o0
:1 <ol € =~
AAtdadmycc i)
with the properties

¢1) E Po,\"PO,Pd (1< o€ m)

G e T
ol
. TR =
where I is the identity of C (M,L(E)).
CULREER v e Ui
m.
(iv) each P, , 1¢éot{m, is an element of the subalgebra

generated in C (M s IR \MO)) by C“%MO)LJ{TlMOE.

53, LEMMA Let (Ak) A andsdibe. as din 46 & Tf Mo s

Jit o0

an open subset of M and k is dn integer such that

(2.8) : %AK‘MOC Ak{MO

" then we have

AR‘MO:%wlMo

PROOF. From (2.8) we obtain

:,r*i- m #‘]\ 71
A UXA UX'A U FEAU i £a, { e Ak[MO
hénce
e 5o
and'éimilarly we get
- ’ i <
(2. 10) Ak+£{1.v10 A My (0 £8)

Therefore, it euffices to remark that

- [l
A M = A
t\i O O\()Q k+.n(1.lo



2.4. LEMMA. Let A be dn involutive algebra and let VW

in A be given such that vwv=v. Then for each derivation Cg on A

we have

Sl 5'v=v((§f)+((§e)va((5w)v

—
]

_where f=wv and e=vw.
PROOF. Since vf=ev=v we obtain

V(CS\f)+((ge)v=v(c§w)v+vw(é\v)+(f:5\e)v=
=v(c§W)v+e(d\v)+(cfe)v=

=vU§w)v+§v.

2.5. Our proof of Theorem A divides natulally into ok
parts.

STEP 1. For each p in M we clearly have

(2.12) Ap(PIS Bp(p)C Apr1 (PIE B (P)C L(E,) (0< )

Ffém (22 applyihq 2.1 and by a repeated use of Lemma 2.2,
we can- find:
- (i) Sn open nonempty subset M_ of M
(ii) 8n integer k with 14¢k<¢max (1,n-1)

(1ii) a sequence of positive integers

{nl,n2,...,nm'}

and a system of orthogonal selfadjoint central projections in

B

¢
such LhHat,  fdr icach pain MO . .the algebra. B, l(p) is decomposed

into the direct sum



e e

(2.13) Bk_l(p)ﬁBkwl(p)Ql(D) @ B, _;.(P)Q, (P) @i o)

and each Bk~1(p>Qi(p) is isomorphic to the algebra of all n, X n,
matrices, 1£ifm.

(iv) moreover, for each i, 1¢i¢m, there exist a system of

orthogonal'selfadjoint projections in Ak_l]MOQi ,

e
< oy} .
(}L o BR j. j

AN

i <
{Rx' 1
and a system of elements of Bk~1‘MoQi ;

{ : 14 R

&
o
sueli-that, alk Rﬁ(p)'are minimal projections in Ak(p)Qi(p) FoE

CL L BB B 2 légiéﬁi , and the following conditions are satisfied

v o —

(2 1a) TP,

) o

‘ s

(2.15) UL =P
o

. 16 . Udﬁ =Ulq

(2:37) e
AP §d By od

STEP 2. We clearly have, from (2.14), that all.projections

: ¢ i< -
Q, , 1¢i¢m are elements of Ak_I{MO

Let gvbe a derivation inffuﬁﬁ 5o Siimce Qi-is central in

By_q|M, + we obtain : = e
= = i =
(2.18) B 0,= 0(0;0;)=(D0;)0;+0; (2 0;)=2Q; (0 2;)0;=0

From the last eguality it is easy to check that
Q, T=TQy

T W st TRl SR R
k-1 k=1 el O

In porticular, it follows that-the projections Q. 1§i§m,-are’



= Toee
centralSprefiections dn Ak MO
Since the projectiOHS'Ei(p) are minimal in Ak(p)Qi(p)
ek all piiin M, and lﬁcﬁfﬁi r We obtain that for each T in AkiMO

there exists an uniquely determined collection of functions

1 o0
N e ol paa s
{'\Céﬂ(T)' 161 m., 18 ,@ nigu,c (MO)
such that
i s i
2.19 P TR = 9
e =BT Mg (T0qp
m = 5 :
(2:2200) =2 i (o o
i=l of,p=1 P |

STEP 3. To conclude the proof of Theorem A it sufficies

to' prove that we have

B g
2z 3 Uocﬁe 2 \M
' i i
(222 waU%):@g(awm@ )
i

LACH TR @ () (p )
for-all G ity 14 Ol,ﬂf M, and 9 in Sﬁgét"fo-
Indeed, (i) of our theorem will follow by Lemma 2.3 from
(221 and (2.20), whence (ii) will be a consequencé'of (2.22)
and==(2. 200 .

Let us consider the subsets of Bk_l\MO defined by

il o i, g% T Sy ¥
Gisfp, r(D S)TBy :1%,P< my, R,S,ven (M, D e HuX }

where 1<i<m.

s

\
fﬁ (p/

product of elements belonging to f?i 7eveluated at p. Therefore,

B e A podint in M.+ then each U is a finite

: : 1 ;
eventually decreasing MO ; We may suppose that any UJﬁ S



s
finite product of Uxﬁ-

o prove (Z.21) and (2.22) assuring Chat Ut is an element of f?i.

o
STEP 4. We first assume that

(2.23) U *P R( Q3 s)Tpt

a@ o o} g

whore R, S and T awe in Ak-lsM dnd- ¢ = is din X.

Let J be a derivation in %1 We derive easily that

ﬁ#? ot 1k \
e Usi ' o9 el
\ .
i 1 i i
i (0 p>~cp<u>«ym;&)

"y (OU;‘?; =@ Q) [J\Uw« )

Putting in Lemma 2.4

- . ey g g L
d=9 . v—qua ; w—qu5 2 e~PoF : f—PB
Wérhave
ST i e dige it
(2.26) a-”ags Ut (an )+(5PO( )UC‘?) Uo(_p (60(1(5 )UO{[3

If we put in Lemma 2.4

0= (3) . v=y (U ), v=WILE ), e=y (B, £= W)

thien, since (P(a)e &(A), we obtiin

L i

(2.27) " p@)pugy) =iy )(@(8)%{/(%)>+<alo<a)w(po(i))«,u<ud&

i

~Y(U5) (ap(a)\,uu g) YT d@

Prom (2.26). and (2.24) it follows that

o
o
[02]
e’
Q2
(i
it
™M
0>
gy
>

O thie 'other hand, from- (2.27), (2.25) and (2:526), under our

's belonging to g:i‘ Thus we are: allowed



assumptions we have

2
>
s

2

(2.29) @ @ )=y 3 Uty

-
el
€

8

3
el

i

oL
103
§

Therequalities (2.21) and (2.22)

are contained in

(2280 (2. 290 and the ‘fivst ‘part of (2.25).

For the second case, when

. . 44 0

e e s i

250 qdﬁ—gxﬂ(cgo B
1

we proceed analogously.

The proof of Theorem A is complete.

Sl s
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3. LINEAR CONNECTIOCNS

In this section we shall be concerned with linear con-
o0 e At
nactions on C -differentiabls vector bundles.

o0 OB o . 1 - ° .
3.1. et B be a.C —~differentiable Hermitian vector

o0
bundle over the C -differsntiable manifold M, with the Hermitian
Structure ﬁL .
By a linnear connectionfon the bundle E we mean ‘a“com—

plex bilinear map

T a0y = ¢ (5] =5 C M)

(25 1) = (Ax,f\?):?xr(x,@)
(2.2) STEAT =R NG AP

3 s S N < w
for all X in X)), Gin © (M,E) and A in € (@) .
Ve say that the linear connsction | preserves the

lermitian structure A, on-E, if we have

/

(2.3) X (O 'C) Pl 8 s ((:’,F(X#,‘D')>

for all X in X() and 6, T in COC(M,E).

In genaial,'there exist many linear connections on the
Hermitian bundle E which preserve the metric /M .

In what follows we fixe a such linaar connection e

ne
and for sach X in X(M) letw.[(X) be the ‘complex linear map defined

by
(3.4 TEse ™ onEac T 0LEY, - FEI6 = TE6 )

Let us denote by K the map



) 19 o
255 K:%(M) x%(M) — COQV(M,L(E)‘V)
(3.6 KX, ¥)= [(X)e (¥}~ [(Y)e [(X)- T([X,¥]) x,veX (1))

It is plain that K is a well-defined CQC(M)—bilinear map and,

moreover, we have

(3.7) R(X,¥)=-K(Y,X)

(3.8) R (x,v) %ox (v, xE)

for all X,Y in X(M).
The map K will be called ths curvaturs of the linecar

connection [ .

3.2, Let [ bs as above. Thsa connection { can bs

used to construct a linear connection on the bundle L(E),
V X0 %™, L(E) ) —> (M, L(E))
as -follows
e V(x,fr)= [ (X)oT~T o F'(x) ‘ (xeX (M) ,‘ TeCc™(M,L(E)) ).

It is easy to check that V is a linear connection on L(E).
More important is the fact that for sach X in .f(M) ,

the map V(X) dafined by

(3.10) V(X):E (M,L(E)) —> g°°(m,L(E)), ¥ (X)T= T(X,T)

fo ]
is a derivation on the involutive algebra C (M,L(E)) and, there-

OO Pl 'S 4
fore, V induces a C (M)-linsar map from X (M) to )f([‘»’”x,E).

-

A
.~ e SO 1 v < b 8 ~ ¥ TN
NOt tllat LOL C‘Ll..L A Jv(r‘> we nave

h

(3115 res YV (X)=X



(3:12) V(X)_{t V«X#")

We also obtain
(3.13) [ V&), Y]~ V(XY= 8(&KEX,Y))

for all X,Y in %(M), where by 0 (K(X,Y)) we denote, as in 1.1,

o0
the inner derivation on C (M,L(E)). defined by K(X,Y).

3.3. Let E and [ be as above and let M_ be an open
subset of M. The linear connection [’ induces a metric-pressrving
linear connection F}MO on the bundle E\MO.

Assﬁne that {d&hzlf(XE n} {s an orthonormal frams of

E onM_ , that is

»

(1) (£, :1¢c¢dn} is a subsst of C (M, Bl
{8y ¥ feiBnanate cars Uhes SRR
Gy for each point p in M_ the values { 6L (D)l ded ot

faym an orthonormal basis for the fiber Ep.
Then there exists a collection of differential one-forms

on M
(o]

J"rluﬁ :lio(,{?)_{ n}
such that |
@iy r\'zvxo'(x,sg3 )= T, Mg O (1<p<n)
- (63

Por all X im0 ).
From (3.14) ws obtain that there exists a collection

of - differentidl two-forms<on MO

PR
S'\
&~ 9
R
=
Pa
52
%ﬁ)
I~
=)
IS



such that

]

(3. 15) K\MO(X'Y)G@ wa CeNaTlon (1¢B ¢ n)

%P

fon ald e Vidn }(MO), where by KINO we denote the curvature of

the linear connection F]MO.

Each two form que can be obtained from the one-forms

.{q}dﬁ :15<x,§£11§ using the exterior dsrivative d and extsrior

‘products. For example, if we have

e @ 15 Mg = Aa(ﬂ? s (14 &, £n)

where n is an one-form on Mo and Zxdﬁ are the Kronecker symbols,

then w=a find
BT U)dp= Adgdﬂ

«4. The nexc lemnma is a convarse : s a: remark.
Bid . Eh e 1t is nvarse of this last k

The wesult is a simple extension of [4], Lemma 3.2.

LEMMA. If [ is a metric-preserving linear connection

‘'on E and the curvature K is of the form

(3.18) K(X,Y)=W(X,¥)I (x,veX (1))

whers W is a two-form on M, then for sach point p in M there

exist

. (1) an open neighborhood MO o p

(ii) a differential one-form 0] on MO

(iii) dn orthonormal frame {eﬂx:flfdéxlg of . FE on MO such
that

(3.19) M m, X, 65)=7 (X) 6 ' - A6zt on)



Cor all X in 3€(MO).

Moreover, the choice of ﬂ depends only on ) .

PROOF. Let \V be the linear connection on L(E) defined

by the ‘eguations (3:9).

Using (3.9) and  (3.6) we have in %RM,E)

(3.20) @[V &, 6(KE,2)[=66K([X,Y],2))

for @ll <X, ¥ 2 inf%(m), wheres (5 denotss the cyclic sum with

respect to X ,Y -and Z,

Eyeom (3:20) and (3.08) w=s obtain - that @) ic a closcd
two-form. .
Since (U{X,Y)¥=¥(D(X%)Y#3 For taisl X sy inf%(M), we havs

that locally there exists an one-form T} such that

(3.21) ag=w

(3.22) ™ (x) *=- q}ﬁ)

The rest of the proof is a consegquence of the Frobenius
theorem and is similar to the proof of [4] , Lemma 3.2.
3.5. Let. N be a positive integer and let ,}€%QSM) denote
; Lok B : oo - ;
tlie ‘collection of all pairs (E,I Jiwhere E dis-a C —differcntiable
Hermitian vector bundle over M.of rank:n .and [ is a metric-pre-

serving linear connection on E.

€2
DEFINITION. (i) Two.objects (E,f) and (£,[) :n 'L'.‘f’;ﬂ(m)"
are called equivalent in W F(N) if ‘and only if there exists
SRS ;
a C (M)-linear map
.. oo . &0 o
U:C (M,E) — C (M,E)




sueh that

.23 (6, Y=Aus, S

(3.24) Uie B Py

for all &, G un oBINBY andier i K
Each map U with thie: properties (3.23) and (3.24)
will be called dn equivalence between (E,[') and (E;F).
(ii) Two objects (E,F) and (E,F) in 55%}“H) are call=sd
locally equivalent in Hﬁﬁn(M) if and only if thers exists an
5pen covering (M.) of M such that (E\Mi,[“\Mi) and (E{Mi ?\M )

i

5 o e (D :
are equivalent in dt Gn(M{) for each open subset M
- £

(O

(93
+3
5
il

following lemma is a direct consequence of

Lerma 3.4.

LEMMA. Let (E,I’) and (E,l ) two elements of &E(g
and let () be a differential two- form on M such that
(3.25) K(X,Y)=w(X, V)T, K(X,¥)=wx,nT
for all X v in ¥ ().

Then (E,) and E ") are locally equivalent in €.

7 (10

. PROOF. From Lemma 3.4 we have that for each point p

therse axist:

(£) an op=n neighborhood MO of p

(i) a differzntial one-~form T om M
- fe)

i <ﬁ\, :- - .
sy #1¢lin } . of Eson M

.
C
a
fod
1A
v
AN
=
[SSg

™~
@R o MO



such that

(3.26) P, 6,)=T (06,
e B9 o b e :
(3:27) Bl &, 1= N EG,

for all 1{«<n and X in‘%(MO).

; : oo
It issnow easy to check that the C (MO)»linaar map
o0 2 D ~
® '{W 3 A B "’L ;
u:C (“O,E{LO) 2 C (0 )
destimed by

(3.28) g 6

is an equivalasnce betwaen'(ElNo,C‘Mo) and (ElNO,F(MO).

~
3.7. Let U be an equivalence betwezn (E,[ ) and (E,[).

s - : - w 0
___.__We_ denotse by_Ux the C (M)=linear map

oo oo ~
U 2C (M, L(EY) = 6 (N La(E )

1

(2.29) Uk(T)--:UTU~ (Tec®(M,L (E)))

-We clezrly have that Uy is an isomorphism of involutive
algsbras. From (3.24) and (3.6) we have

o~

(3.30) U, (K(X,Y))=K (X,Y) (X,Y X (1))
§ o 3 .
where K and K are the curvatures of [ and ( , and also, from

(-
\

5

24) e A3 et ang

S

®

~

(3.31) Uy e T(X)=¥ (X)e v, (xeX (M) )




A

- 25 -

a™) ~S
where V and V are the linear connections on L(E) and L(E)

associated with [C and f’, respectively.

By a repeated use of (3.30) and (3.31) it follows that
(832 U, (V(Z2;)... \/ (2, )K(X,Y))= Viz)... V(2 )K(X,Y)

for all X,Y and Zy,...,7, in ).
3.8. Assume now that thepaires (E,[') and (E,') are
locally equivalent. Arguing as abova we obtain that for sach

point p in M there exists an isometry

(3.:33) U :E. —> E
‘ P P p
with the properties
(132 34) UpK(XIY) (P)=K(X,Y) (P)Up

(3.35) UL (V(z))... VEIRE,Y)) ()=(T z)) ... Tz )Kx,v)) (p)

%]
for-ald % « ¥ and Zl"“’zk in %HM).

We use this last remark in the next section.

P



4, POINTWISE-EQUIVALENCE

| N
H

Throughouts this ect"on werwill suppesesthat M is a
connécted complex manifold with its natural c™ structure.

2s 4n' the presvious ‘ssction, let 5 u(r) denote the
collection Qf all C “Laiffarentiable lsrmitian vector bundles
over M of rank n, endowed with mstric-preserving linsar connec-
Eieons.

We know what means that &wo objects in Qfﬁn(m> are
locally squivlaent.

In this saction we defins the pointwise squivalence

»

betwzen the elaments of éf{;(h,, usinc#a slidghtily restrictive

- (oitd

wersion of the definitior

=

proposed by Cowzsn and Douglas [4]

Ll.

s

the case when M is an open subset of the complex line.

e

i o We need a strhgthened definition because we consider

(L

a corplex Hanﬂfolo oF an arbitrary dimsnsi ion and the main result

of this section, Theorem B, is proved using Theorem A.

4.1, Let M be 'a complex manifold anéd let O(M) denote

the comrplex algebra of all corplex-valued holororphic functions

en M,
The spacs‘%(ﬁ) is decorposad into the direct sum
Ly « ’V‘
Xan=%t%an @X° 1
where by definition ‘ .

(4.1) ¥L0

il

{xe?{(iw):x(?\* )=0, A& o(M)}

ai) e { 1] o e L LA
(4.2) X en=ixeX ) :xA)=0, € 00 ]
] 0 :'f;t e |
We eclearly have X ' (M) =X~ (1)



~ NS

4.2. DEFINITION. Let (E,F) and (E,[0iike stws objects
in E?QH(M), Let K and K be the cllrvatiines sof ([T SanddR 4.

We say that (E,[") and (E,I ) are pointwise eaquivalant

if and only if for szach point P in M there exists an isomstry

> re
WE ok e b
PP |2

such that

(4.3) UK (X,¥) (@)%(x,y) (p) U,

_ - |
o Tz e 9@ @,y @i

t Lkl t4s
= T T Vet ¥ o
e e TR RGE T DL T TR (x 880 6 W

Boralii wan M on, 06t oS nn aSkas mmd
1,0
S el

1"“'Zt+s in

4.3. From 3.8 we clearly obtain that two locally equi-
valent objects in gf%nuq) are pointwiss equivalent.

As a partial convarse we hava the following

PROPOSITION. ‘Let (E,[' ) and' (E, ) be two pointwise
equivalant’ eslements ofgf%%UU; Then there esxists an open non-
) L
empty subset MO of M such th;t (E\Mo , F}Mo) and (E(Mo,f'lMO) are

equivalent in éeﬁémo).

PROOF. Ve consider separately the cases n=1 and n 2.

LW
(1) If n=1, then thers axist tha two-forrms ¢iand o) on

M osueh: that



K(X,¥)=W (X,¥)I
for all X,Y in X(M).
From (4.3) we obtain W= and from Lerma 3.6 we con-
: o) oL . 0
clude that (B, ) and (E, ) are locally sguivalaent :rlgeﬁnUU.

(i) Consider now the case np 2. Let us put

¥ ={1<(X,Y) :x,ve X} ¢ m,nE))

i

¥

R, v :x,veXm] ¢ M, L (B) )

X

{V(z):2e%" 0 o) Lok E)

g e g™ a0} € ¥or,E).

ﬁ%l

Using f? and.%‘we constuct, as in 1.6, ithe invelutive
subalgsbras AE and BE of COWM,L(E)), for each positive inteaqsr

P e = 10 .
o<k

Let Md and 1¢{k{n-1~be produced by Theorsm A.

Arguing as in 2.5 we may assume that in the involutive
gebra A _|M thers exist:
algebr olE r xSt

(1) a''system of" orthogonal selfadjont central projcctions

{Ql’QZ'..;'Qr‘.‘a}

(ii) for =sach i, 1¢idm, a system of orthogonal self-

adjoint minimal projections

QPi:léo{_{ ni} :

(1ii) for each i, 1<i{m, a system of elements of A ji

[ o

o \
-} U"{)ilﬁ A,

W

3< n

.
5
iy




such that

e
(4.5) i =0

oA
(4.6) U =P

Sk
47 Udg._uw
(4.8) W =AU

We define
A M LBl )y
Mt kl Sl Mot (L{Po”
.fu}fﬁrl M — X E \M \
R = 7o) o e
by the equations

(4.9) . WD (p)=uT(p)0] (peu

(4.10) Q@ (V(z)|m.)

2 V(z) |1 (zeX 0 myu¥0rl )

Using (4.3) and (4.4) we obtain that
3 2

(AL T t\\)(:\(x,y)}MO)=1\(>X,1)[MO

and morsover

Q + e i
(4 .12 c\s‘:‘(V‘(zl)...Y/(zt)\](z ft Vorsansso NGz A )K(x,y);r»xo):



- : % 2 —{# = # - Yl T
=N s (g N8 ) V( e K(X,'i) e
For all x,v in X0, 04t &¢n-1, 1St+s and ZyreeeiZyyg in

b SRR

Since A, [r~z- M, , from (4.11),. (4.12) and by a
repeated use of (3.13) we obtain that the map N is arwell
defined morphisﬁ of unital complex algebras and applying Theorem

- A ws have
(4.13) W (TR T) = T () (7)

fe all T in A \Mh and X in XK”O).

r~J oa ~n
Let Av p BQ and A be the subalgsbzas of C (M,L(E))
produced by ¥ and Eﬂ where 0€E is an intacer.

From (4.10) and (4.11) wz derive that Y induces an

: o
. isomorphism of unital involutive alcoebras from 2 iﬁ onto A Mo
: - o2 o) oo o)

Let us put

(4.14) Q.= (Q,) ' )
(415 P’"“ : ' (1<l m)
“) = I
4. . ¢ :
(4. 16) -o(g; =Y(typ ) _ (Lo, Bl ny)
"For vaeh 4, Wilm and each ol Idalton. letjE;
denote the subbundle of E\NO defined by
(4.17) (E&)p=2§(p){ﬂp) (?é;mo)_

- -

and let [ = denote the linear connection on B« Endueed by [



as follows
(4.18) f;f(X)ZP;,F(X)ai : - (xeX )

It is easy te check that n; is a metric-preserving lineariconnec—

tieon on L and.from'(4Q18), (3.6) we obtain that. the curvaturs

R e

K&. of_ths connaction (;f is of thes form:

(4.13) (‘< D= O{ K(X,Y) 0L+<>4 ‘(7(‘()13*) (V(V)D*)p =
'"POZ(V(Y)%:) (VB )Py, :

feorval l 25 Yawin X1 ), where by K we denote the curvature of [ .

o}

- o ,:" < o 2 n ’.\_1 o ©)
Sincs ﬁi is a minimal projection in taﬂho o Erom (il 1)

we have tihat

(4.20) (R e (x,veX (1))

0(

whers (U is a two-form on M .
(,UOL S O. o

In a similar fashion we construct thes subbundle E& of

ra & 4 o 2 e
B MO and the linsar connection Q; on E& whith the curvaturs K& s

such that
ama il
(4.231) : kdjx,Y)—(ua(A,&)Rx X

From (4.20) and (4.21), applying Lemma 3.6 and eventually decrea-

sing MO , W& may suppossa that each (g;, Qi) is. aquivalent to
GQ,IFL) as h:rn tian vactor bundles ovsr N """ endow with metricr
preserving linear connections.

For sach 1{if{m, lest Vi danots the isometric bundle map
from Ei into’Ei such that



(g )

(4.22) e ey

o a1l R in:f(Mo).

Ao I e ) i a 1 1_" = i o) T1 E
We .extend Vl to bundie. map Ul from B I to (ﬂo

sSuansthat
v"\‘-. &)

(4.23) LI“Plvlli

BEren (4.22) we obtain

(4324) 'PI r(x)uisuz F(X)Pi

For each i, 1{i{r and each «, Is olem & let U; denot2

: N
the bundle rar fronm E\MO to E(M_ defined by

”'“;j%.?S)V ; qx—t&lulbid

perond 4 o~
We remark that Uy mabps isemetrically Ey into Eo

Moreovar we can prove the following

LEMMA. Ve havsa:

s L

".]

(4.26) | r (‘()U =U(i;( )y

~no L

(4.27) g(‘ S =u, Mege,
for all X in XM ) and K ilm, 1<o,B4" n, , oL 2P .

PROOF. OF LEMMA. For all 1. 1< il and 14,3 & hi Ehere

2. "

xists an one-form on ﬁo denoted by

m

46 sSteh Hhat
{



bl 90 gl yte gt
TG g

X)b

7t

for all X in ﬁ(MO).

G*nce LUP Bd P | we obtain

(V(k b Ut +L op (V(x) U7 Oz)v = (W(x)g(‘“)zﬂd“ =0

«p pu p

hence

<

(4.28) My =

Erom -(4.25) and (4.24) w= have

AV [a¥4

P(X)U - pl (\7(~<>U<~y i lr(mm “m =

ou s
Id

n'A (z()U U blP X)Ll

ol o

rand also

QIP(X)%[ d 1o U"O{‘r"(‘{)ot L&lUl( (7Y)U [YX)Ul&)Pa =

gl e R
’Al&,(,)ud. U et

: G . 1 i 3
But ‘frem (4.28) we hav A == N, hence (4.23) is proved.
: oLl 10t _
Suppose now that lédwﬁ £ n, and o # % . Under our

assumptions we havs

B (k)"“"" WEP e <P = - s
Q lb (o4 \k G~ o & s

whera iiéd is an-one-form.on M s and also we find

c



oVl s
for all X ;ntx(Mo)o
The relation (4.27) is a consequence of the relations

Rxyut= g s vis (X) U= . U
)d]iW(LWd/u&d )31110(

@l" /‘1[301 (X)Up L’pd /1303 (X)UlglUl s

The proof of Lemma is complete.
Our aim is *to show that the peiys (E{NO ,{‘lMo)-and

squivalent in gf%ﬂ(uo),

wHe

Let us consider for sach i, KX

(4.29) =
and
(4.30) U Lot

= zach U induces an isometry from E; inkEerE o~

n~ne
M into -k
o

is straightforward - to check that U is an isometry of Ll

We claim that

(4.31) T () u=0T(x)

for all X in 3%3(51.0) :

It 1= sufficient to prove EHatt



Sitce each projection 03 is'¥a central projection in

o

.s a central projection in A“JMO ¢ Arguing

b

ns
@Nlho , and each Qi

as din 2 50 ihave

12
2

(4.33) Zx)0. =0 7 (X)Q,=0

hence we obtain, using 64326 )% enda (427

Q p.
fi

rf‘(X)UizF(x)Q;L‘~L=CJ:’(V’(x)u*-_z(): “f’;) AF‘J R
2 oL

=2%5‘?‘(X)Ui+ > 'F‘(K)U“:Z i(ﬂ(xp P Eegie
@ d d7@ r o ! &#ﬂﬁ

= (R4 M) (TR0 =v'r e, =vte, r =vir ) .
e = e

The proof“ef Propesition is complete

- e

4.4. We arz now in position to state and prove ths main

result of this. Section.,

THEOREM B. Let (E,[') and (E,[') be two pointwiss equi-

@]

2 7] 1 { ]
valant elements of é’( ). Then there exists an epen dense subset
- e o -
Mo of Mosuech that (EIF ’Plyq) and (E[MO ,PlM ) ars locaily
C ‘

O O

equivalent in %fgqﬁmo).

. PROOT. Let M be a maximal open subsst of M such that

M, ¢ ln

[\ ~ n
- b pe n - -~ AR % (”
- ) and (plﬁo,{“iMc) are locally squivalent in H' Y

e}
By Propesition 4.2 the subset B is nonerpty.

IEIE MO is not dense in M, then there exists an open
nonempty subsst Ml of M such that ”o and ”1 are disjoint.

S o Sl e S e Sty ot TR
But (L, P!Lﬁ) and (LM ,{‘gwl; are pointwiss equi-

valant in gffm(yl), henee by Propesitien 4.2, there exists an



2 amny : 6 = A F M = - 1 M 7[ 3
~open nonempty subset klO of rl uch that (L]Ilo, P(Plo) and

«©

> (492
(E\M1O,(“[M10) are squivalent in qu . It followstthat

(® |1, vy, r| M um, o) and (Ll[x Myge [ [MgUM o) are locally
T4 e 4 b ¢ o S ] 4
equivalent in {u“( 100, o) » @ contradiction.

llence MO ig a ' deng2isubset ‘of M.



5. SOME REMARKS

Let M bg a connected complex manifold and let %%(M) denote
the category ef all Hermitian holeomorphie vector bundles eover M
of rank n, with real-analytic metrics.

_Let E be an object in }ﬁn(M). Then thefe exists 6n E a
canonical connection FE with preserves both the Hermitian and -
holomorphic structures.

In Theorem C below we show that fwo elements E and E of
Eﬁn(M) anreislocally equivaient as Hermitian holomorphic vector
bqndles Bf sand ond y Ui £ . (K, T%) and (F, r%) are pointwise eguiva-
Lent dn Z{%H(M).

We end this section with a brief discussion of holemor-

phic maps into a Grassmann manifold.

5.1. Let E be a Hermitian holomorphic vector bundle over
the conpected eomplex manifold: M ofSrankn.

7 We denote by O(M) the complex algebra of all complex-—
=valued holemorphic functions on M and by O(M,E) the O(M)-module
of all holomorphic secticns of the bundle E.

As in the previous section, we consider the decomposi-

tion of X(M) into the direct sum

1420

B R ek

M X (M)

It is a standard fact that on E there exists a unigue

metric-preserving linear-connection FE such that

#

(e & \=0
b X EaE =0

—
(O]
.
[

for all X in X% @) and 6 in O E)-.



= g R

Using this canonical connection rg we obtain the element
@, B of RE W

The Hermitian metric ﬁL on B lg calilced real-analytic,
if for each 6 in O(M,E) the ceal-valued map £6,6 7 15 a real-

~analytic map on M.

5.2. DEFINITION. (1) . Two objects E and E in éﬁn(M) are
called equivalent in ﬁgn(M) if and only if there exists an iso-

metric holomorphic bundle map from E onte: ks

(ii) Two objecfs E and .E in Egn(M) are called locally
equivalent in*?{n(M) if and ondy if there exist an open covering
(Mi) of M such that.E\Mi are equivalent in?ﬁn(Mi) for each open
subset M. .

35

The next result is well-khown (see E41, Fehmas2.13) .

LEMMA. Let E and f be Hermitian holomorphic vector bundles
over M with the canonical connections FE and FE’ Then E and E
are equivalent (respectively locally equivalent) in ??n(M) £ and
onilys fifithe pales (Es FE) and (E, F%) are equivalent (respectively

locally eguivalent) in ?ffxlﬂﬂ.

PROOF

Let U be an isometric holomorphic bhundle map from E onto

E. For each & in O(M,E) and giin O(M,E) we have

TR S o Rt U
(5.2) (UG, & 556U "6
- i Il ! 175 P FR ;
Let Xt R (MY . Sinee Ug and U g “dric holomorphic

sections, from (5.2), from the fact ‘that FE and r% AYe meerics

-preserving and from (5.1) we obtain



hence

o~

FGL U=U X))

Since obviously we have

‘(V"(x#) = (X%:)

we conclude that U is an equivalence between (E, FE) and (%,lﬂﬁ)
2n 0y
in 'S’tiin M) .

The converse follows similarly.

5.3. The following lemma is a restatement of [4], Lemma

S5

LEMMA. Let E and E be two objecté in.W;(M). If there exists
an open nonempty subset Mo‘of M such that EKMO and %[MO are: el
valent in ﬁ;(MO), then E and E are locally equivalent in %?H(M).

The proof can be obtain arguing as in f4], therefore

we omit st
5.4. Using Theorem B, Lemma 5.2 and Lemma 5.3 we obtain

THEOREM C. Two elements E and E ofiﬂlﬂﬂ are locally
g [4V]
equivalent in?ﬁ;(M) 15E Fanidsiomidiy - IESSEES FE) and (E,I”E) are¥point-

. ' T
wise equivalent 1n<%%n(M).

5.5. We conclude this section with one geometrical
application of Theorem C.
- We need some preliminaries. For more details the reader
can consult [4],8 2.
2 <
Let H be a separable. complex Hilbert space and 1¢n a

t
positive integer.



Let Gr(n,H) denoterthe Grassmann manifold,>that is,
the set of all n-dimensional subépaces @ HE,

As before, let M be a connected complex manifold. A map
f:M—> 6r(n,H) is called holomorphic if for each point B
there exist an open neighbourhood MO of Ps and a collection
H{6&_:1$&§11} of holomorphic H-valued functions on Mo‘, such

that

'_h
o
1l

V{ 5&(p):1$d§11},

that is {g%(p):lédén} span: £(p), for all p inf M

holomorphic vector bundle E(f) over M of rank n, defined by
5. 3) E(£)_=1f(p) (p M)

DEFINITION. Two holomorphic maps f:M - &r(n,H) and

:M— Gr(n,H) are called congruent if and only if there exists

.

o

unEsearv.operator. U on H such that

(5. 4) _ Uhﬂpﬂ=§®) (pe M)

We note the'following important result

THEOREM (cf. [4], Thecrem 2.2). Let £:M—Gr(n,H) and

f:M— Gr(n,H) be two holomorphic maps such: that

H :v{f(p):ng}=V{fkp)=P5M}

~

Then ‘£ and f are congruent if and only if E(f) and E(g) are

equivalentvin 2¥n(M)'

—~

5.6 Leit <e.} be an orthonormal basis of H. For each
Ay 5
M . . o . 3
C -differentiable map 6 from M to H we have a decomposition of

the form



(5% 5) G

~

For each X"in X (Miswe. put

Biehd U X6= 5 X( & )e,
i

letmeoglil aitdefinieion Hei, [7l, [4])

DEFINITION. Let 0<k be an integer and f:M - Gr(n,H),

f:M— Gr(n,H) be two holomorphic maps.
We say that f and % have onder of ceontact k if for cach

.
&

point p in M there exist

(d)s e undtary U on H

(ii) two collections

{ 6 114t £ nh cOM,E())

l6,:1¢et < n}C 008,E())
such that
G £(p)=v] g (P):1¢ el 4 n}
(5.8) %(p)z{z{ gd(p):lgogg ny
(5.9) U 6, (p)= ¢, (p)
B 'U(xl...xj Q;)(p)=(xl...xj2; ) (p)

l“.join%wﬁzmdlédén.

The next result can be proved arguing as in f4j, Propo=

for all el k%

sition 2.18.

; = |
PROPOSITION. The holomorphic maps £ and £ have order of

contact m 1F and enly if the pairs (B(f), rE(f)) amd.  (BIE), FE(%



are pbintwise equivalent inéﬁﬁlwﬂ.

5.7. Now, using Theorem €, “frengs b and 5.6 we have

\l\/
PROPOSITION. Let f:M - Gr(n,H) and £ G v (n,H) beytwo

holomorphic maps such that
H =V{f(p):pg’M}=V&g(p):pGNI}.

~ i o
Then £ and £rare congruent 1if and only if £ and f have order of

contact n.
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