INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

.1SSN 0250 3638

· COMPLETING MATRIX CONTRACTIONS

by

Gr.ARSENE and A.CHEONDEA
PREPRINT SERIES IN MATHEMATICS
No.14/1981

llcd (7437

BUCURESTI

COMPLETING MATRIX CONTRACTIONS

by

Gr. ARSENE*) and A. GHEONDEA*)

March 1981

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bdul Pacii, 220, 79622 Bucharest, Romania

COMPLETING MATRIX CONTRACTIONS

by

Gr. ARSENE and A. GHEONDEA

(Preliminary version)

The aim of this note is to give a labelling of all solutions to the following problem:

Let $H=H_1 \oplus H_2$, $K=K_1 \oplus K_2$ be Hilbert spaces and $A \in L(H_1, K_1)$, $B \in L(H_2, K_1)$, $C \in L(H_1, K_2)$ be such that $A_{\ell}=(A,B)$ and $A_{c}=(A,B)$ are contractions. How many operators $X \in L(H_2, K_2)$ exist such that A=(A,B) be a contraction?

Some applications of this labelling to dual pairs of subspaces in a Krein space and to dual pairs of accretive operators are given.

1. MAIN THEOREM

We consider complex Hilbert spaces and we denote by L(H,K) the set of all (linear bounded) operators from the Hilbert space H to the Hilbert space K. For $T \in L_1(H,K)$ (i.e. T is a contraction, that is $\|T\| \le 1$) let $D_T = (I - T * T)^{1/2}$ and $D_T = \overline{D_T(H)}$ be the defect operator, respectively the defect space of T. We shall use the following result, which is proved in this form in [3], Lemma 1.1.2.

LEMMA 1.1. Let H and K be Hilbert spaces, HCH a closed subspace of H, and $T_0 \in L_1(H_0,K)$. The formula

$$T = (T_{O}, D_{T_{O}^{*}})$$

establishes a one-to-one correspondence between all $T \in L_1(H,K)$ such that $T \mid H_0 = T_0$ and all $\Gamma \in L_1(H \ominus H_0, \mathcal{D}_{T_0^*})$. Moreover the operators

$$(1.2) \quad \mathbb{Z}(\mathbb{T}_{0};\mathbb{T}) = \mathbb{Z}: \mathcal{D}_{\mathbb{T}_{0}} \oplus \mathcal{D}_{\mathbb{F}_{1}} \longrightarrow \mathcal{D}_{\mathbb{T}_{1}}, \quad \mathbb{Z}(\mathbb{D}_{\mathbb{T}_{0}} \oplus \mathbb{D}_{\mathbb{F}_{1}}) = \left(\mathbb{D}_{\mathbb{T}_{1}} |_{\mathbb{H}_{0}}\right) \oplus \left(\mathbb{D}_{\mathbb{T}_{1}} \oplus \mathbb{D}_{\mathbb{T}_{1}} |_{\mathbb{H}_{0}}\right) \oplus \left(\mathbb{D}_{\mathbb{T}_{1}} \oplus \mathbb{D}_{\mathbb{T}_{1}}\right) \oplus \left(\mathbb{D}_{\mathbb{T}_{1}} \oplus \mathbb{D}_{\mathbb{D}_{\mathbb{T}_{1}}\right) \oplus \left(\mathbb{D}_{\mathbb{D}_{\mathbb{T}_{1}} \oplus \mathbb{D}_{\mathbb{D}_{\mathbb{D}_{1}}\right) \oplus \left(\mathbb{D}_$$

$$(1.3) \quad \mathbf{Z}_* (\mathbf{T}_{\mathbf{O}}; \mathbf{T}) = \mathbf{Z}_* : \mathcal{D}_{\mathbf{\Gamma}^*} \longrightarrow \mathcal{D}_{\mathbf{T}^*} , \quad \mathbf{Z}_* \mathbf{D}_{\mathbf{\Gamma}^*} = \mathbf{D}_{\mathbf{T}^*}$$

are unitaries.

(For $H_0 \subset H$, P_H^H denotes the orthogonal projection of H on H_0).

The proof of (1.1) uses a well known result on the factorization (see for example [4],); the fact that Z and Z_* are unitaries is proved by direct computations. Lemma 1.1 has a natural variant for the "column" T^* instead of "line" T.

Coming back to our problem, we have from Lemma 1.1 that

(1.4)
$$B=D_{A^*} \Gamma_1 , \text{ where } \Gamma_1 \in L_1(H_2, \mathcal{D}_{A^*}) ,$$
 and

(1.5)
$$C = \Gamma_2 D_A$$
, where $\Gamma_2 \in L_1(\mathcal{D}_A, K_2)$.

Moreover the unitaries $Z_{\ell} = Z(A; A_{\ell})$, $Z_{*\ell} = Z_{*}(A; A_{\ell})$, $Z_{c} = Z(A^{*}; A_{c}^{*})$, $Z_{*c} = Z_{*}(A^{*}; A_{c}^{*})$ give the possibility of identifying the spaces

 $\mathcal{D}_{A} \oplus \mathcal{D}_{\Gamma_{1}}$ and $\mathcal{D}_{A_{\ell}}$, $\mathcal{D}_{\Gamma_{1}^{*}}$ and $\mathcal{D}_{A_{\ell}^{*}}$, $\mathcal{D}_{A^{*}} \oplus \mathcal{D}_{\Gamma_{2}^{*}}$ and $\mathcal{D}_{A_{C}^{*}}$, $\mathcal{D}_{\Gamma_{2}}$ and $\mathcal{D}_{A_{C}^{*}}$, respectively.

In this situation we have the following

LEMMA 1.2. The operator $D_{A_C^{*Z}C}:\mathcal{D}_{A^*}\oplus\mathcal{D}_{\Gamma_2^*}\longrightarrow K_1\oplus K_2$ has the matrix

$$\begin{pmatrix} D_{A^*} & 0 \\ - \Gamma_2^* A^* & D_{\Gamma^*} \end{pmatrix}$$

Proof. First we have

$$D_{A_{C}^{*}Z_{C}}D_{A^{*}} = D_{A_{C}^{*}}^{2} \mid K_{1} = \begin{pmatrix} D_{A^{*}}^{2} \\ - \Gamma_{2}D_{A^{A}} \end{pmatrix} = \begin{pmatrix} D_{A}^{2} \\ - \Gamma_{2}A^{*}D_{A^{*}} \end{pmatrix} = \begin{pmatrix} D_{A^{*}} \\ - \Gamma_{2}A^{*}D_{A^{*}} \end{pmatrix} D_{A^{*}},$$

which gives the first column of the desired matrix. (We use here the well-known relation $D_A A^* = A^* D_{A^*}$; see [7], Ch.I, (3.4*).) Denote now by $Q = P \mathcal{D}_{A^*} C \ominus \overline{D_{A^*}(K_1)}$; then

for any $k_1' \in K_1$ and k_2 , $k_2' \in K_2$. This gives that $D_{A_{\mathbf{C}}^{*}} \mathbf{C}^{D} \Gamma_{2}^{*} \mathbf{C}^{D} \Gamma_{2}^{*}$ which finishes the proof of the lemma.

Our main result is the following,

THEOREM 1.3. The answer to the problem (*) is that the formula

$$(1.6) \qquad X = -\Gamma_2 A^* \Gamma_1 + D_{\Gamma_2^*} \Gamma_D \Gamma_1$$

establishes a one-to-one correspondence between all the operators $\mathbf{X} \in L(\mathbf{H}_2,\mathbf{K}_2)$ such that $\widetilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A} & \mathbf{D}_{\mathbf{A}} * \mathbf{\Gamma}_1 \\ \mathbf{\Gamma}_2 \mathbf{D}_{\mathbf{A}} & \mathbf{X} \end{pmatrix}$ is a contraction, and all $\mathbf{\Gamma} \in L_1(\mathbf{D}_{\mathbf{\Gamma}_1},\mathbf{D}_{\mathbf{\Gamma}_2}^*)$. Moreover, $\mathbf{D}_{\widetilde{\mathbf{A}}}$ can be identified with $\mathbf{D}_{\mathbf{\Gamma}_2} \oplus \mathbf{D}_{\mathbf{\Gamma}}$ and $\mathbf{D}_{\widetilde{\mathbf{A}}}^*$ with $\mathbf{D}_{\mathbf{\Gamma}_1}^* \oplus \mathbf{D}_{\mathbf{\Gamma}^*}$.

Proof. We can apply Lemma 1.1 for $\rm H_0=H_1$, $\rm H=H_1\oplus H_2$, $\rm K=K_1\oplus K_2$, and $\rm T_0=({A\atop 1}^D_2)=A_c$. Thus there exists a one-to-one

correspondence between the contractions $\widetilde{A} \in L(H_1 \oplus H_2, K_1 \oplus K_2)$ with $\widetilde{A}|_{H_1=A_c}$ and the contractions $C_c \in L(H_2, \mathcal{D}_{A_c^*})$ given by

$$\tilde{A} = (A_{C}, D_{A_{C}^{*}} \Gamma_{C}).$$

Moreover $Z^*(A_C; \widetilde{A})$ and $Z^*_*(A_C; \widetilde{A})$ are unitaries between $\mathcal{D}_{\widetilde{A}}$ and $\mathcal{D}_{A_C} \oplus \mathcal{D}_{C}$, respectively between $\mathcal{D}_{\widetilde{A}^*}$ and $\mathcal{D}_{\Gamma^*_2}$. We have the supplementary condition

$$D_{\mathbf{A}} + \Gamma_{\mathbf{1}} = P_{\mathbf{K}_{\mathbf{1}}}^{\mathbf{K}_{\mathbf{1}}} \oplus K_{\mathbf{C}}^{\mathbf{K}_{\mathbf{C}}} - \mathbf{E}_{\mathbf{C}}^{\mathbf{K}_{\mathbf{C}}} + \mathbf{E}_$$

Using the definition of ${\bf Z}_{\bf c}$ we have that

$$(Z_c | \mathcal{D}_{A^*}) D_{A^*} = D_{A_c^*} | K_1$$
.

which means that there exists a one-to-one correspondence

between the solutions \widetilde{A} for the problem (*) and the contractions $\Gamma'_{\mathbf{C}} \in L(H_2, \mathcal{D}_{A^*} \oplus \mathcal{D}_{\Gamma^*_{\mathbf{C}}})$ which verifies that $\Gamma'_{\mathbf{C}} \circ \mathcal{D}_{A^*} = \Gamma^*_{\mathbf{1}}$. In this correspondence the spaces $\mathcal{D}_{\widetilde{A}}$ and $\mathcal{D}_{\Gamma_{\mathbf{C}}} \oplus \mathcal{D}_{\Gamma'_{\mathbf{C}}}$ (resp. $\mathcal{D}_{\widetilde{A}^*}$ and $\mathcal{D}_{\Gamma'_{\mathbf{C}}} \circ \mathcal{D}_{\widetilde{A}^*}$ and $\mathcal{D}_{\Gamma'_{\mathbf{C}}} \circ \mathcal{D}_{\widetilde{A}^*}$ are identified by the unitary $(Z^*_*(A^*;A^*_{\mathbf{C}}) \oplus I)Z^*(A_{\mathbf{C}};\widetilde{A})$ (resp. by $Z^*_{\mathbf{C}}Z^*_*(A_{\mathbf{C}};\widetilde{A})$. The above correspondence is given by

$$(1.7)' \qquad \widetilde{A} = (A_C, D_{A_C^*}^Z, \Gamma_C') .$$

It remains to describe all the contractions $\Gamma'_{c}\in L(H_{2}, \mathcal{D}_{A}*\oplus \mathcal{D}_{\Gamma_{2}^{*}})$ which verifies that $\Gamma'_{c}*|\mathcal{D}_{A}*=\Gamma_{1}^{*}$; this can be done again by Lemma 1.1. We obtain then a one-to-one correspondence between such contractions Γ'_{c} and the contractions $\Gamma^{*}\in L(\mathcal{D}_{\Gamma_{2}^{*}},\mathcal{D}_{\Gamma_{1}^{*}})$, given by

$$\Gamma_{\mathbf{C}}^{\prime *} = (\Gamma_{\mathbf{1}}^{*}, \mathsf{D}_{\Gamma_{\mathbf{1}}}\Gamma^{*}) .$$

The operator $Z(\Gamma_1^*;\Gamma_C^{\prime*})$ (resp. $Z_*(\Gamma_1^*,\Gamma_C^{\prime*})$) is unitary between $\mathcal{D}_{\Gamma_C^{\prime*}}$ and $\mathcal{D}_{\Gamma_1^*} \oplus \mathcal{D}_{\Gamma^*}$ (resp. between $\mathcal{D}_{\Gamma_C^{\prime}}$ and $\mathcal{D}_{\Gamma_C^{\prime}}$). Combining (1.7)' and (1.9), it results a one-to-one correspondence between the solutions \tilde{A} of (*) and the contractions \tilde{I} in $L(\mathcal{D}_{\Gamma_1^{\prime}},\mathcal{D}_{\Gamma_2^*})$ given by

$$\tilde{A} = (A_{C}, D_{A_{C}^{*Z}C}\begin{pmatrix} r_{1} \\ r_{D_{r_{1}}} \end{pmatrix})$$
.

Using Lemma 1.2 we obtain that

(1.10)
$$\tilde{A} = \begin{pmatrix} A & D_{A} * \Gamma_{1} \\ \Gamma_{2} D_{A} & -\Gamma_{2} A^{*} \Gamma_{1} + D_{\Gamma_{2}} * \Gamma_{1} \end{pmatrix}.$$

Finally note that the operators

$$(1.11) \qquad (Z_{*_{\mathbf{C}}}^{*} \oplus Z_{*}(\Gamma_{1}^{*}; \Gamma_{\mathbf{C}}^{'*})) Z^{*}(A_{\mathbf{C}}; \widetilde{A}) : \mathcal{D}_{\widetilde{\mathbf{A}}} \longrightarrow \mathcal{D}_{\Gamma_{2}} \oplus \mathcal{D}_{\Gamma}$$

and

$$(1.12) \qquad Z(\Gamma_1^*; \Gamma_C^{\prime *}) Z_C^* Z_*^* (A_C; \widetilde{A}) : D_{\widetilde{A}^*} \longrightarrow D_{\Gamma_1^*} \oplus D_{\Gamma_1^*}$$

are unitaries, which finishes the proof.

REMARKS.

- (1) From the identifications made above results that the solutions of problem (*) can be indexed by the contractions between $\mathcal{D}_{A_{\rho}} \ominus \overline{\mathcal{D}_{A_{\rho}}(H_{1})}$ and $\mathcal{D}_{A_{\rho}}^{*} \ominus \overline{\mathcal{D}_{A_{\rho}}(K_{1})}$.
- (2) In the above theorem exactly the same correspondence results if one start the completion of A from A_ℓ (and not from $A_{\mathbf{c}}$). This implies some relations between the unitaries (1.11), (1.12) and the analogue ones for A_{ℓ} .
 - (3) For $A \in L_1(H_1, K_1)$, take $H_2 = D_A^*$, $K_2 = D_A$, $\Gamma_1 = I_{D_A^*}$

and $\Gamma_2 = I_{\mathcal{D}_{\lambda}}$. Theorem 1.3 implies then the known fact that the operator

$$J(A) = \begin{pmatrix} A & D_{A^*} \\ D_{A} & -A^* \end{pmatrix} : H_1 \oplus \mathcal{D}_{A^*} \longrightarrow K_1 \oplus \mathcal{D}_{A}$$

is unitary.

(4) With the notations of Theorem 1.3, denote by

$$\hat{\Gamma}_{1} = \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \mathbf{\Gamma}_{1} \end{pmatrix} : \mathbf{H}_{1} \oplus \mathbf{H}_{2} \longrightarrow \mathbf{H}_{1} \oplus \mathbf{D}_{A} *$$

$$\hat{\Gamma}_{2} = \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \mathbf{\Gamma}_{2} \end{pmatrix} : \mathbf{K}_{1} \oplus \mathbf{D}_{A} \longrightarrow \mathbf{K}_{1} \oplus \mathbf{K}_{2}$$

$$\hat{\Gamma} = \begin{pmatrix} 0 & 0 \\ 0 & \Gamma \end{pmatrix} : H_1 \oplus \mathcal{D}_{\Gamma_1} \longrightarrow K_1 \oplus \mathcal{D}_{\Gamma_2^*}.$$

Then (1.10) shows that the solutions of the problem (*) are

(1.10)'
$$\tilde{A} = \hat{\Gamma}_2 J(A) \hat{\Gamma}_1 + D \hat{\Gamma}_2^* \hat{\Gamma}^D \hat{\Gamma}_1$$

2. MAXIMAL DUAL PAIRS OF SUBSPACES

Let K be a Krein space with the fundamental symmetry J, that is K is a Hilbert space and J is a selfadjoint unitary operator on K. Denote by (.,.) the Hilbert space scalar product, and by $\langle .,. \rangle$ the (generally indefinite) inner product given by $\langle x,y \rangle = (Jx,y)$ for $x,y \in K$. The notation and the terminology concerning Krein spaces is that of [2]. In particular if $J=J^+-J^-$ is the Jordan decomposition of J, then $K^+=J^+K$ and $K^-=J^-K$ are the positive (resp. negative) part of K. A set $A \subset K$ is positive (negative, neutral) if $\langle x,x \rangle \gg 0$ (resp. $\langle 0, =0 \rangle$) for every $x \in A$.

The J-orthogonal of A is $A^{\langle \perp \rangle} = \{x \in K; \langle x,y \rangle = 0 \ \forall \ y \in A\}$.

A <u>dual pair</u> of subspaces of K is a pair $\{M,N\}$ of closed subspaces of K such that M is positive, N is negative and $M \langle \perp \rangle N$ (i.e. $\langle x,y \rangle = 0$ for $x \in M$ and $y \in N$). Consider the following problem:

(**) For a given dual pair $\{M,N\}$ find all the maximal dual pairs $\{\widetilde{M},\widetilde{N}\}$ which contain $\{M,N\}$.

(A dual pair $\{M,N\}$ is maximal if M is maximal positive and N is maximal negative). The existence part of problem (**) was proved in [5] (see also [1]). We will give here a labelling of all solutions to this problem. The proof of the existence uses

the notion of <u>angular operator</u> introduced by R.S.Phillips. For a positive subspace M, the operator $T:M^+=J^+M\longrightarrow K^-$ defined by $T(J^+x)=J^-x$, $x\in M$ is a contraction; T is called the angular operator of M and we have that M is exactly the graph of T. Conversely if T is a contraction from $M^+\subset K^+$ into K^- , then the graph of T is a positive subspace with the angular operator T. The angular operator for a negative subspace is defined analogously. In this correspondence the objects associated to T can be also described "geometrically". For example if M is a positive subspace with the angular operator T, then the negative subspace associated to T^* is the only maximal negative subspace N, J-orthogonal to M, and with $J^+N\subset M^+$. Moreover $\ker D_T=J^+(M^\circ)$, where $M^\circ=M\cap M^{<1>}$ and $\mathcal{D}_T=J^+(M\ominus M^\circ)$.

Coming back to problem (**), let $\{M,N\}$ be a dual pair with angular operators T, resp.S. The condition that M < L > N means $(x \oplus Tx, Sy \oplus y) = 0$ for every $x \in M^+$ and $y \in N^-$. This gives

(2.1)
$$\langle \text{Tx,y} \rangle = \langle \text{x,Sy} \rangle$$
 for $\text{x} \in M^+$, $\text{y} \in N^-$.

Write $T = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$ and $S = \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$ with respect to the decompositions $K = N^- \oplus (K^- \ominus N^-)$, respectively $K^+ = M^+ \oplus (K^+ \ominus M^+)$. The relation (2.1) means that

$$(2.2)$$
 $T_1 = S_1^*$.

From these considerations follows that in order to describe all the maximal positive subspaces $\widetilde{\mathbb{M}}$ which contain \mathbb{M} and are

J-orthogonal on N one has to find all the contraction completions of the matrix

$$\begin{pmatrix} \mathbf{T}_1 & \mathbf{S}_2^* \\ \mathbf{T}_2 & \mathbf{?} \end{pmatrix}$$

This is also the solution to the problem (**), because \widetilde{N} is exactly $\widetilde{M}^{\langle \perp \rangle}$ (from the maximality). Using Theorem 1.3 we obtain

COROLLARY 2.1. There exists a one-to-one correspondence between all the solutions of problem (**) and all the contractions from $\mathcal{D}_{S^*} \oplus \overline{\mathcal{D}_{S^*}(M^+)}$ into $\mathcal{D}_{T^*} \oplus \overline{\mathcal{D}_{T^*}(N^-)}$.

A "geometrical" variant of this corollary can be given. Similar results are obtained for maximal uniform (resp. maximal strict uniform) dual pairs.

3. MAXIMAL DUAL PAIRS OF ACCRETIVE OPERATORS

A densely defined closed operator A:D(A) --> H is

called accretive if

Re $(Ah,h) \geqslant 0$ for every $h \in H$.

A pair of accretive operators {A,B} is called a <u>dual pair</u> if

$$(Ah,k)=(h,Bk)$$
 for $h \in \mathcal{D}(A)$ and $k \in \mathcal{D}(B)$.

A maximal dual pair of accretive operators is a selfexplained expression. In [7], Ch.IV, Proposition 4.2 it is proved that every dual pair of accretive operators can be extended to a

maximal dual pair. The proof used Phillips idea [6] of Cayley transform. Using this method and Theorem 3.1 we give a labelling for all maximal dual pairs of accretive operators extending a given dual pair of accretive operators.

For an accretive operator A denote by T its Cayley transform, i.e. T is the contraction

$$(3.1) \qquad T = (A-I)(A+I)^{-1}: (A+I)\mathcal{D}(A) \xrightarrow{} (A-I)\mathcal{D}(A) .$$

We have that

(3.2)
$$A = (I+T)(I-T)^{-1}$$

In this correspondence any accretive extension of A corresponds to a contractive extension of T and conversely. In particular A is maximal accretive iff $(A+I)\mathcal{D}(A)=H$.

If A is maximal accretive, then A^* is maximal accretive, so any maximal dual pair of accretive operators is of the form $\{A,A^*\}$.

(For all this see [7], Ch.IV, Sec.4).

Let now $\{A,B\}$ be a dual pair of accretive operators with Cayley transforms T and S. Then we have

COROLLARY 3.1. There exists a one-to-one correspondence between all maximal dual pairs of accretive operators extending $\{A,B\}$ and all the contractions from $\mathcal{D}_{T^*} \ominus \overline{\mathcal{D}_{T^*}(\mathcal{D}(S))}$ into $\mathcal{D}_{S^*} \ominus \overline{\mathcal{D}_{S^*}(\mathcal{D}(T))}$.

Similar results can be stated for <u>dissipative</u> operators.

Phillips noted also the connections between dual pairs of subspaces in a Krein spaces and dual pairs of accretive operators;

this explains the analogy between Sections 2 and 3. Consequences of our main theorem to Krein theory of selfadjoint extensions will be presented elsewhere.

REFERENCES

- 1. ANDO, T., Linear operators on Krein spaces, Sapporo, 1979.
- 2. BOGNAR, J., Indefinite inner product spaces, Springer--Verlag, 1974.
- 3. CEAUSESCU, Z., Operatorial extrapolation (Romanian), Thesis, Bucharest, 1980.
- 4. DOUGLAS, R.G., On majorization, factorization, and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
- 5. PHILLIPS, R.S., The extension of dual subspaces invariant under an algebra, Proc. Internat. Symp. Linear Algebra, Acadmeic Press, 1961.
- 6. PHILLIPS, R.S., Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc., 90 (1959), 192-254.
- 7. SZ.-NAGY, B.; FOIAS, C., Harmonic analysis of operators on Hilbert spaces, Amsterdam-Budapest, 1970.