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ON THE APOSTERIORI ERROR ESTIMATES FOR

NEWTON’S METHOD

by

’Florian—Alexandru POTRA

Abstrac t. New sharp aposteriori error estimates
for Newton’s method are giveh under the hypothesges of Kantorovich’s
theorem. One shows that they ‘are more:advantageous than the known
-ones from the point of view of the accuracy and of ‘the cost of

the informatidn used.

1 Introduction -

Let us consider the equation:

e e o e o SR

FELY. f(x)=0,

where f is'a nonlinear operator defined on a subset..ﬂf gf :d
Banach space X and taking values into a Banach space Y. We.are
given  an initial: point X6Eéaf and we want to produce a sequence

; : .
(xﬁ)n7-o of points of ;Df converging to.a root x..6f the equation

(i). To this effect we attach to the pair (f,xo) a mapping

F:ébFC:X —> X and consider the follcwing récurrent scheme:

(2) xn+l=F(xn)‘ ’ a0, 25 s



Genéraiiy, ;DF is included into . éaf. For example if one takes
(3) Fi{x)=x=£"{x)] "£(x)
theh~;BF is composed of those points x of JDf for which the

Fréchet derivative £’ (x) exists and is invertible.

If x_ belongs to QEF then we may.obtain by (2) a point

xle e ot %y also belongs‘to i}F then we may obtain a new point
xzéix. We are interested in the case where xn€<2% for n=0[172,...”

Definition 1. Consider a mapping F :2E53X~9X and define
recurrently

ﬁozﬁF i 02\ ::‘{'XC—,,? H F(X)éogn}, ; n=0,1,2,...

The set.;3==f\ ;Drlis called the set of admissiblé starting points
nz0 ’ :
for B. If xoe;5

) then the pair (F,xo) is called a well defined

iterative algorithm.H

Thus, if (F,xo) is a well defined iterative algorithm)

then we may obtain by (2) a segquence (xn) of points of &bf. Under

adequate hypothéses this sequence will converge to a root X of
the equation (1). This wéy of solving equations is usually called
iterative procedure. In what follows we give this notion a precise
-‘meaning._ »
Let us consider a qlass 6> of\(Banach) spaces and let
us denote by M the class of all mappings ¢ :cﬁ?czx-——+ Y

where X,Y €{3} . Let £ be the class of all pairs (F,xo),where




»F:‘%-F Xy igan: ellement of /’l and X belongs. to an such

that (F,xo) is a well defined iterative algorithm.

Definition 2. Let € be a class of pairs (f,xo).where
Af:_q@fCX-—’fY is an element of .4 and xoeoZ"f; A mapping
n e A r AL Y (B )

L be called a convergent iterative procedure for the class @

if for each (f,xo)é @ - the iterative algorithm'_(F,xo)= '?‘(f,xo)
préduces. a sequence (xn) having the properties

(4) : X e‘:?f ; 'n=0,l,2,....; lim xn=xx; fﬁ(xx)=0 .8

n->o.
Let kO and r, be two positive numbers and let us denote
by @(ko,ro) the class of all pairs (f,xo) zatisfying the following

conditions:

\

| -—:rw—v~~~w--w«-—(-c\:i)x;f is a (nonlinear) onerator defined on a subset

i ﬁf' of a Banach space X and with values in a Banach space Y, and

x, is a point of Zf

~

('(02) The operator f is Fréchet differentiable in the

open ball U={xex; ”x—xon<s} and continuous on the elosure 0 of

this ball.
(03) The linear operator Do=f’ (xo) is' invertible and

for all x,y€¢ U we have

g I Dt (£ () - £ NN SR



(c4) The following inequalities hold:

(6) e fic s
(7) : ZkOrosl 7
b oan e T2k s,

We note that ih.the above definition of %ﬂko,ro) the
spaces X énd Y are not flxed v

In fact the condltlons deflnlnq the class Q?(k 1Ty )
- represent an "affine invariant" version of th hypOLhBSlb (5
Kantorovich’s theorem (see D]) We may defﬂne a convergent ite-
rative orocedure for the class %ﬂk rTo ) bv associating with each
(f,xo)é%ﬂko,ro) the iterative algorithm (F,xo), with F given
by (3) . The recurrent scheme (2) becomes in this case

-1

(9) X =xn—f’(xn) f(xn) : =0, 2 s

n+1l
This iterative procedure will be called Newton’s method for the

class %%ko,ro) and will be denoted by AN

Let us return now to our general discussion and suppose
3 . 2 G g
that we are given a convergent iterative procedure o : E’—a‘ﬁé.
In this case we can associate with each pair (f,xo)GQ?,_a sequence
(xn) which converges to g oot x* of the equation f(x)=0. In order

to emphasize the fact that this sequence is attached by the ite=

rative procedure 52 to the pair (£, X ¥ owe shall write .
Q7 A




(10} o= Fer,x ) Tk - oA e

We want_to find estimates of the distances len-xx[], n=0;l,2,..

which should be valid for all pairs (f,xo)é s One way of doing

this, is to determine a function u’:Z+_?[R+ such that

fa) ' \|xn-xi‘E {(< ot (n)

foraall néﬂ;,and for all (f,x )e €.

'].:f

ok lim o (n)=0
n-yoo

then (11) gives us the p0331b111ty of comoutlng in advance the

number of steps required to obtain any de51red precision . How-
ever the error bounds given by (11) are in most cases very

pessimistic. One could obtain better error bounds trying to find

a sequence of functions X‘ Rn(n+l)/2 — m+ such that

S e g o

(13) I = ~x u Bt gl il x,=%, 1 11
for all positive integers n and all (f,xo)eff. Corresponding to

(12)‘we require that

(14) llm)"(llx—x o W= x o freeer fix =%} )=0
ns>o ‘ :

foF all (f,xo)é%?
Let us noteé that the rlght ~hand side of #13) can be

computed only after obtaining the points RyreeorX, via the itera-



tive procedure. That’s why (13) are called aposteriori error

pounds in contrast with (11) which afe called apriori error’bounds.
It is conceivable to obtain'aposteriori error bounds using other
fianrmétion" than thg relative distances “Xi—xs\" 0€i<jgn.

In what follows we shall give an exémple where it is
impossible to find a function & verifying (11) ‘and (12), but

where we can obtain aposteriori error bounds using an adequate

information. We consider the class

E={(f,x,)5£:00,1]>®R, x,e]0,1], £(0)g 0, £(x;)> 0, £ is twice

differentiable on [0,1}, £" is increaging arid £" is non-

decreasing on 10,1( }.

It is easy to see that Newton’s method represents a convergent
iterative procedurg fox thiS'class._if m is an integer greater
than one, then the pair (fm,l), where fm(t)=tm, obviously'belongs

to %2V For this pair the recurrent scheme (9) reduces to

z — :
I(TlT.?l.zmm Xr(lm) ’ ) n=011121 e oo

It follows that xém)=(gil)n for ne0; 1,2, nia
Let « :Z#-—*B+ be a funcﬁion satisfying 3(11) for all
(f,xo) € ?o' For each n € Z, we have

& (n) > sup Hxn—xX” > sup(milfn

(f,xo)ézg ; my2
and so (12) cannot be satisfied.
Now, let (f,xo) be a pair of ‘gg, The recurrent scheme
(9) yields a sequence (xn)' decreasingly convergent to a root

x¥ of the equation f(x)=0. Applying the mean theorem we have




f(xn)=f’(§) (xn-xf‘) * x*<§‘<xﬁ. Writing

g‘((f—t) EUE ) de >,$k(f’ (8)-£' (t))dt= §( (£ (t)-£' (5))dt >/f (t=%)£" (5)at

- we deduce that §>(x +x* )/2 X /? Hence we deduce the following-

k denote

aposteriori error bounds for Newton’s method in the class %i)

; () . :
(15) (2 < 4 w017
f (Xn/?)
: It is easy to prove that
55 : , f(xn) ,
{155 lim ———— =

nyco f’(xn/Z)

for all (f,x )€ @O. e :

The estimate (15) uses the "information" represented by the

values f(xn) and f’(xn/2). In what follows we shall define in
a general way the notion of information attached to an iterative

procedure and the notion of error estimate for a given convergent

‘iterative procedure and a given 1nformatlon. Let G -be the set

T e vt

of all sequences of real numbers converging to zero and let us

-~

§)={(a ) eo i an=0 for allr17n&, J L_)jo

m n' ny0
7 m,/

Definition 3. Let : €— JEobe .o convergent iterative

procedure for the class ©.. R mapplnq I: 2 ><%?~95)1s called: an
1nformat10n ~attached to the 1terat1ve procedure f‘ if for each

n(EZ# there exists a mne Z@ such that



‘;n:={l'(n, (f”fb) VP x e ‘Eﬁc- %n
For every n the mapping
1:@ > G, I (E,x)=In, (£,x))

is called the information at the n’th step.®

Definition 4. Let F.¢->A be a convergent. iterative

procedure and let I:Z X € — §2 be an information attached to

it. Let ¥ be the range of the information e g =) fﬁQ.
: : : n»O0 i
A mapping /3: f? =7 R+ is called an error estimate for the ite-

rative procedure-?’which uses the informationvllif we have

-

(16) I~ 1S B Ex)) . g
.and
(17) el otim (T (f,3 ))=0

. § n-ém[& n_< (@]

e e e R LT

for dl1 (f,x)€ ¢ .®

The set of ali error estimates for the iterative pro-
cedure 7 which use the same information I,will be denoted‘by
(7 D). Accordinq to the above introduced terminology, a
function o« :Z —> R, satisfying (11) and (12) is an error esti-
mate for the iterative procédure ?Txﬂﬂch uses the information

(1) given®by - S e

o ' (M (£,x,)=n




We have seen that such an error esfimate does not exist_in
case of Newton’s method for thé class %2f On the other hand
(15) and (15’) show that tﬁe function /SO(é,t);s/t is an error
estimate for Newton’s method in the ciass"fo whibh uses thé
(0)

informtion I , where !

L (0)
n

= r A
(B )= (Bl ) £ 0 f3))
Now let us give some examples of information which
will be used to obtain sharp error estimates for Newton's method
_in the class‘@(ko,ro). At the n’th step these-informations can

be written as follows:

. T ey :
QOp. )(flxo)zllxn-xn—l s
43
(20) e e L),
4 °

(21) e g e == 4 11D

; T
(22) Iés)(f,xo)=([{xn—xo‘[,l(DO f(xn)” ) 5

' Ol E & T - o)) |
(6) ~ 2 o " n-=J :

(23) In’ (f,xo)—(kn_l ,j\xn-xn_lll)f‘kn_l— sup - _ -

%, w0 . il x-v |}

In the above formulae (xn) represents, of course, the
sequence obtained from (f,xo) via the recurrent scheme (9).
(i.e. X, = E47f,xo)]k ). We see that the first three informations

are formulated only in terms of the relative distances [lxi—xj\\.

The general form of this type of information is



= X0 =
(247 - In(f,xo)=(n,][xl—x0{|,.” xz—kol],...,‘{xn—xn_lﬂ I
Iés)(f,xo) depends also upon the,quaﬁtity I{Dglf(xn)ﬂ . If we

use-Newton’é method to solve a given equation then at the n’th

step, that is at the moment when we have computed the points

xl,xz,...,xn;the value f(Xn)doa;notr@edtp}gcomputed Yét. SEwe. = 1

AN RN

don’t want to go further (i.e. to cémpute Xn+l) we don’t have.

i
H
i
t

to compute f(xn).at all. In fhis case for obtaining the informa-

tion (22) we have to do some little extra work. Concerning the

quantity k_ appearing in (23),.1et us remark that at the .

-1
n’th step f’(xn_i) has already been computed. However with the

exéeption of the scalar case, where we can take kq;1=‘

— 7 7 o e . 3
7k JE e L /E (x,_;)l the cost of obtaining k _, might be very
high.

After these comments let us present some error esti-

mates for Newton’s method in the class %Wko,ro)/which use the

informations described above. ; 4?

We denotevwith'g(k) the range of the information I(k).

To:simplify the formulae we introduce the constants

e : e |
(25) e -
: (0] o 6

(26) b= 7
korO |
and the sequence
: on o7 et
2iab = fll=bT" ) if a0
(27) S.= it _ .
, k: 0 if a=0 .

o



With the above notation we define the funetions =

(28) ﬂl:_ﬁ(l)—fm;r, ﬁl(n>=gn

(29) | [32.:?(2)—1» R pz(r)=(a2fr2).l/.2.—a

- I AR

Gu. A am, e e )

(32) B n ﬂ4(q‘,r)=k;1fq'—[(k;l-q5 e |
63 e f T w0 e [0 B ] 2
(34) : g (36(k;r)zk'ltl-kr—(l_—zkr)1/?] ,

'In Section 3 we shall érove that the above defined
fuﬂctions are error estimates for Newton’s method in the class
%Qko’ro) in the sense of Definition 4, i.e.

- (35) : ﬁjéf(u#',’i(j)), ST {5?6’5(%1‘”) -

’ With the exception of ﬁ4 and /35 all. . thesother erron
estimates are known (eventually under a different formulation).
Thus (3, and ﬁ§ have been obtained by Gragg and Tapia [2]';

ﬁ3 is due to Miel a5l 3, to Potra and Ptdk {10] and:

ﬁ6 to Kornstaedt [3]. We note that another form of ﬁl had_been
found, under somewhat different conditions, by Ostrowski([81,19]). "
All these error estimaﬁes are sharp in the sense of the following .

definition:



Deflnltlon 5 Let;f be a convergent 1terat1ve proce .

dure for a class ¢ and I an information attached to 1t An

error estimate ﬁ«s%(&f,I) is called sharp if there exists a pair

'(f,xo)éqf such that @ (I, (£,x.))=l x ~x* || for all n.g

In the next definition we give a natural criterium
for‘comparing two different estimates of a given iterative pro-

_cedure.

Definition 6. Let:grbe a convergent iterative procedu-

re for a class. ¢ and'let I,I5§ be two informations attached to
it. Consider two error estimates /36'5(?31) and ,3*¢2“€(J§I*).
We say that /3 is more accurate than'/3X and denote this by

" writing /5"(/5X
: B = : x ﬁ
(36) /3(In(fyxo))S /3 (In(f,Xo))

for all QOsitive integers n and all (f,xo) from-ﬁf K- |

e et e e R LR

[ : i
I " Tn Section 3 we shall prove that between the error
!

estlﬁates for Newton’s method in the class %ﬂko,ro) there

~

exist the following relations

By
- A .
(=0 "‘/53>‘ﬁ2"f33>"¢4 !

e

We see that ﬁ4 is the most accurate among the error estimates
using an information of type (24). This fact strongly recommends

its usefulness in numerical applications.




2. Nondiscrete induction

In the proof of the main theorem from the next seetion
.we shall use the method of nondiscrete mathematical induction of .
V.Ptdk. For the motivation and the general_prineiples of this -
- method see.Pték Fl1d:and [13]. The method of nondiecrete induc-
| tion is based on the notion of rate of converqence, or small

,functlon.

Definition T diet T denote either the set of all posi-

tlve real numbers or a half open interval of the form ]O 1 ]
A function wel ->T is called a rate of convergence (or small

function) on T if the series

(35) ttw (t) +w(w(t) )+ ...

o

is. convergent. for all t€T .m

Eor the sake of sdmplicity it will be convenient to

e e e A mnsnata

| denote by w' the n’th iterate of w in the sense of usual ‘funection

] ) et .

‘composition (i.e. wo(t)=t; w
| g , 5
us denote by s(t) the sum of the series (38). The functions w

and s are obviously connected by the following functional relation
(399 s(t)=t+s(w(t)) ,
It turns out that this relation caraclerizes in some sense the

rates of convergence.



proposition 1., If w:T —T and h:T—44R+ are two func-

tions sétisfyinq the relation
h(t)=t+h(w(t))

for all;te’r, then w is a rate of convergence on T;

Moreover, if the Timit ho=lim h(t) exists then we
t40 :

fos sfo=) w (ty=h(t)-h_.
nz0

proof. For eaéh te T and each positive integer n we

have

b ()4, L P BV SR (E)-h W ()T ()

Using -the above proposition it is eésy to check that,

For “an riveir constant a the function
D

2

(40) w(t)= 172

5 (£2+a°)

is a rate of convergence On the semi-axis T={t;t> 0} and the

otm of its iterates is
(41) : s(t)=t—a+(t2+a2)1/2 :

Let us state now the induction theorem.

Proposition 2. Let (x,d) be a complete metric space

and let @F,be a subset of X. Consider a mapping F: QF'~>X and a

point XoéaDF. If we can attach to the jeiclbe (F,xo) a rate of




S B
convergence w on an interwal T and a fémily af subéets Z(tk:;DF -

t€7T, such that

(i) xoe‘Z(rO) for some roe'T, .
(ii) -FP(x) e Z(w(t)) and ‘d(F(x),x) < £t for all te T and

Xezlt);

“thens

®)

1 (F,xo) is a well}defined iterative algorithm and

the sequence'(xn) produced by it converges to a point xxeczF;

e the following relations are satiéfied for all ne Z
(42) : % € z(w'n-(rq)),'
(43) il o VG “
i Ay ) € s (x) L

‘The proof of the above proposition is very simple and it will

?béhiéizmggwgﬁﬁéxercise. The interested reader could econsult;:

fof example, [10].

The inequalities (44) give the poséibility of obtaining
apriori error estimates for iterative procedures. These.estimétes
have the following property: if they are attained at a ceriaih
step then they will be attained for all subsequent steps. More

precisely we have

Proposition 3. Under the hypotheses of Rreposition 2,

suppose that equality. is attained in (44) for a certain n,. Then

equality will be attained in (43) and (44) for all nyng e



: k
Proof. Because d(xk+l,xk)g,w (ro), for all k>0, we

can write

: n ' Sy .
5 B @ y=slm Z(r ))=dlx SEE T e e K e )
o (6} n k+1'7k o
‘k)no o k»m) k}no

' = - - 3
It follows that.d(xk+l,xk)—w'(ro) fér all k» ng- The proof 1is

complete.@

3. Error bouﬁds for Newton's method

In‘this'section we shall study the convergence of

Newton’s method in the class"f(ko,ro). We shall use the following

two lemmas:

Lemma 1. If (f,xokﬁf(ko,ro) then the following inequa-

1ity holds for 211 X,y € of
(45) M D‘l[f<x)—fkv)-f'(y)(x—v)]n < Lk ==y 112 ,
o - = SR 2 o) .

Proof. Use the integral represéntation_
. 1
(46) £(x) £ (y)= ~§, £7 (y+t (x-y)) (x-y)dt

 and then apply condition (5). (sée also 7, 3.2.12]). ™

Lemma 2. Let ko and r, be two positive numbers satis-
fying inequality (7) and consider the constant a from (25). LT

(sn) is the sequence given in (27) and w,s the functions defined

9l 3 R R0



e

7 oo o

- in (40), (41),then the following relations hold for n=0,1,2

(47) so= ;1—a, sn+lis§/(2sn+2a)
. .

(48) w (ro)=sn—sn+l

(49) sz ))=s_

Proof. (47) can be verified directly while (48) and

(49). can easily be proved by induction.m
Now we may state

' Theorém 1; IE (f,xo)e 8Yko,ro) then the iterative

: algorifhm (9) is well aefined, the sequence (xh) produced by it
converges to'‘a root x* of the equation f(x)=0 and the following
-inequaiities are satisfieg for niQ,1,2 ’

7 o o0 °

(50} ”xn—xn+1l($'sn_sn+l e

(51) i =] xn—xx I\ <5,

where (sn5 is the sequence given by 27 .

Proof. We shall use.Proposition 2 with w and s given
by (40) and (41)..first let us obse;&e that with the constahtaa
given by (25) we have s(ro)=so. Hence the closed ball with center
X, and radius s(r)) is included in U (see (8)). Let & _ be the 3

set of those x€ U for which the linear operator £'(x) isdnver=



S

tiblg;and'let us consider the mapping F:Z)F~¢>Y given by (3).

For any r> 0 let us define

(52): Z(r)={géx; nx—xonss(ro)—s(r), £r{x) is invertible,r\\f’(x);lf(x)[\s r‘j.

We have obviously Z(ro)={xo} so that hypothesis (i) of'Propositioﬁ

- 2 is satisfied. éuppése now X & Z(x) and denote y=F(x). It follows

immediately that:
. ('5'3> ‘ Ny-xi'= 1€ ek s,

Using (39) we_obtain

(54) |1ybxoiL5(1y-x§l+g(x-xoﬂgxﬂs(rb)—s(r)=s(ro)?shﬂhﬂ).

In particular this shows that y € U. Applyina (5) we have

-1 : B e
|~ o £ W&kl Y”XoUSko[kol—a—s(w(r) )]=1-—ko(a2+r2 1/2

According to Banach's Lemma it follows that the linear operator

£7(y) is invertible and that

“(D(—)lf'(y))—l“ék;l(r2+a2)_l/2 ;

y=F (%) implies F(x)+E" (%) (y=-x)=0; hence, using Lemma 1, we obtain

2

o e ) ] = lI7H () -6 (9 (=]l € 27 ]y HE¢2 ik

=



From the last inedualities it follews:that

(55) Me" @ e el 07 e 90) 0 e )l € 27 L2 (2 0a?) "1/, g,

‘Now (53)-(55) show that hypothesis (ii) of Proposition 2 is also
satisfied, and by virtue of Lemma 2 the proof of the theorem is

-_complete . &

From the above theofem it follows, using the terminolo-
gy introduced in Section 1, that Newton’s method (A") is a conver-
gent 1terat1ve procedure for the class %%ko,ro - It also follows
that the.function /31 defined by (28) is an error estimate for

- this process (IGlG‘vafiI(l))){ In the following.proposition we
shall prove tﬁat this estimate is sharp in the sense of Definitiop

5'

Proposition 4. For any pair of positive numbers ko’ro

satisfying the inequality (7) there exists a function f:R— R
'and—a-point: x€ R having the propertv that (£, X Y€ Q?U{ 1Ty ). .and

ifor which the estimates (50) and (51) are attained for all n.
| g | o 2. ol -
Proof., Take f(x)=2 "k (x"-a”) and x =k )where the
= il o) OB o .
constant a is giVen by (25). We have obviously (f,xo)é;gﬁko,ré)

and xo—a=so. The rest follows from Proposition -3 with no=0.ﬁ

Using Theorem 1 we can prove that the functlon ﬂ% given
by (34) is also an error estimate for Newton s method in the

class %(ko,ro). (/36975(@/[/’,1(.6))),



Proposition 5. Under the hypotheses of Theorem 1 the

following inequality holds for n=1,2,3,

o : “X % \ n l\.l—kn l“X Xn—l“ —(l—an—l“ Xn_i"xn—i “ )1/2 ]

where

e Gy e G- oD

‘kn-— l,= sup :
x,yeU I x-v il

proof. Consider a pair (f,xoﬂsgﬁko,ro) and sdeneote:

. “ £ %45 )—lf (xn_l)ll,We want to prove that (f,xn_l)g-: ff(kn_l,rn_l)‘.

n-1

This reduces to the demonstration of the relation

; e ¢
(57) o D R L

w ~ N 1 = - -— ;
From Theorem 1 it follows r _,={ %, % qll€8,2178, 559 that we

have:

o 3 n-2
\lDo - (}‘o)“f (Xn--l»”s konX —1—Xo‘l € kO 2:5“X3+1 e l{<:ko(so n= 1) Z

".According to Banach’s lemma this implies that

loster (e THl€ K ks, )
 Hence

o f e o7 e P (BRIES! G Y

n-d yyeu xyi

1V&U

$llies i, l))'li[ sup —“——T(i b ke’ ) - <v>>{{ +s__)




Using Lemma 2 we obtain

s -s wn_l(r )
: e s e e} 3
2k, _qr, %222 o Ciee =
At ats (w {z 1)
wn_l(r )
sy 5o

<
wn_l(r0)+[3wn—1(ro))2+a2] 1/2 3

1/2

Denote now an_l=k;il(l—2k ..Applying Theorem 1 to the - |

n- lrn—l)

3

pair (f,xn_l)égxkp_i,rn_l) we Qeduce the iﬁequality

llxn"xxlfsyk

=1

n—l_an-—l--r

n-1

which is exactly the error bound (56) =&

In the next proposition we shall prove that

B € \g(i/;/.:I(S)).

Proposition 6. Under the hypotheses of Theorem 1 the

following inequality helids feirin=0,1,2, ...

k. -1 -1, 2 =1 =1 1/2
28 Ml sl IR s i il e

Proof. First let us remark that
> 3 g * * *

A o = 7 v =

(59)  £(x,)=F (x_)~-£ (x¥) (§f (x4t (2 ~x™) ) at) (x_-x¥) .
g * *
We want to prove that the linear operator Azj'f’(x +t(xnvx J)dt
: )

is invertible. To this effect we note that according to (5) we

have:



o5 (e )0 < S (] %l + 1 11)'g (2 IR +H‘xn->_3E &0
From Theorem 1 it follows that
'_2ﬂ§;§m+uﬁfﬁm<uuﬁfﬁﬂ+uﬁfﬁm)sa%szgl.

By .virtue of Banach’g lemma)A is invertible ang the fol~loWing

norm estimation holds

3.

(60) fLor 2=t s [1<%ko<2 nxn—xO;|+(;xn~x*11)] -1 3
Finally from (59) and (50) e deduce that

Wi =1 0 fj= 11 071y~

~ the classg %’(k wE ) s oWe recall the fact"bthat fqr eaéh k=1,2,...,6

.ﬂk uses the information 7 (k) and B? uses the information 1 (3)

. -
‘Theorem 2. The functionsg "31" {32, /53, /33, /34, /35 apd
,/3_6 defined by the relations (28) - (34) are sharp error estimates
for Newton’s method in the class ?f(ko,ro) and the relation ea

introduced in Definition ¢ orders them ag shown in diagram (37).

: Proof. We have already proved that /3j = "f(«{/’,I(J)) for

SR

Y S g

e e o s e



jfl,S;G (see Theorem 1, Proposition'S and Proposition 6) . Moreover
Qe have shown that theée error estimate ﬂi is sharp (see Proposi-
tion 4), It follows that the proof ef our theorem would be
complete if we could demoﬁstrate the validity of the relations
"indicated in diagram (37). ‘ |

Let us.consider a pair (f,xo)é %ﬁko,ro). We denote by
.(xn) the sequence generated by Newton’s method applied to this
palr and by x* its llmlt For proving the relatlon ﬁ% >~/% we
have to evaluate the quantity

£ (e, ) H (e (00 =7 (y1) |

k .= sup — .
= X,yeU [ x-y {

Using the identity

£/ (x

=1 ', —[rer =1 =1 =1 S -
o) P E =R = ) T DT el o)

and condition (5) it is easy to prove that

k < ko/(l—kO” xn_l—xolf) :

n-1 ™

N .
Denoting by kn_1 the right hand side of the above inequality

we have

Rooprr 1 1€ Aele 0 Wxmx ) DS % ]
. = 2 = 1/2

_|‘thl— OH = [}kol_(Ithxhrlll- I n—l ‘l “anxhrl ” J



The relation p4 o BS réduces to the inequality

2 Yo te el € T |l .

which can be obtained noticing that f(xn)=f(xn)—f(xn_1)—
ey o oY . s
f~(x,n__l)(xn Xn—l) and applying Lemma 1.
B Grder ko prove the relation o/ we have to

show that

» e Gl 2 391/2
. “Xn—xb“+‘}ko = HXn_xoH )_‘Ixn_xn-l.“.J 2 Sn+2a
Using {50) we get

SN P ool PR e XY

1/2

14

=1 -1 LD =2
%z kg f(so—sn)+{}ko fso+sn) ale, %)

The rlght hand side of the above inequality equals sn+2a because,

according to Lemma 2, we have s —k —a and (s +a)2—(s -S )2=a2.
o) n n n—1

The r?lation, ﬁz -, can be proved immediately observing that -

1/2_a=‘\}z{n—xn-ﬂlli

(= (}2+a2)

n n-1 a+(u x ~X__) ” 2+a2)l/2
' 2 Fo

%5 %00 I % 2,251 I

a+[(sn—l_sn)2+a2:1;/2 : sn+2a :

Using the fact that the functlon(f(+ t/[§+(t ﬂaz)l/ is

increasing in t we can prove in a simple way,the relation

ﬁ§>~ﬁ2; indeed we have

cov by




. = ‘

'f‘xn—xn-l‘[ = < *n-1"%n :
N

2)1/2

: 2
a+[(sn~1-sn) +a

a+ (|| e I 21 2_-] 1‘/2 ﬂ Xn‘xn.&”

)
n

=I_———_m_;—"Xn“xn--l”"

n-1 "n

—-S L

_ B o ;
; o : : -
The relation B> A5 is obvious because [lx -x _,|l€ s _;-s.

~ " The proof is complete.g

Let us test now the error estimates preéented above on a
.very simple exampie brOposed in 10 and used also in 6 . Namely
‘.we consider the scalaf cgubic f(x)=%(x3—l), Taking xo=1.3.we have
f(xo)/f’(xo) =#O=O.2360946745. With s=2ro we obtain k =
=2.0972655019. It can easily be checked that (f,x_) (hoj )
We haye performed féur.steps of the iﬁerative algorithm

(9) in double precision on a CDC-3500.

In the following table we give the results within a pre-

cisién of %10_10.
ne 1 = 2 3 2 - 4

| . 1.0639053254 |1.0037617275 |1.0000140800 |1.0000000002

i (3 |0-1937717784 |0.0779910691 |0.0243428971 |0.0041562278

' B, | 0.1937717784 |0.0293510766 |0.0001493512 |0.0000000021
fi | 0.1937717784 |0.0210451135 |0.0001187900 |0.0000000020
3% |0.1937717784 | 0.0405133423 [0.0017004978 [0.0000028989
f3; | 0.1937717784 |0.0103103864 [0.0000397184 (0.0000000006
fc | 0.1009636891 |0.0059993187 |0.0000224673 |0.0000000003
A | 0-1937717784 | 0.0070741048-|0,0000250351 |0.0000000004
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