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Abstract, :
A generallsatlon to the case of arbitrary (equal) defl-
ciency indices of a formula . of Krein [7] which glves the '

resolvent of an arbitrary self-adjoint symmetric operator A,

in terms of a fixed self-adjoint extension A, and of self-

adjoint operators (abstract boundary conditions operators)
gcting in the deficiency subspace of(%jio) for some %.€ §(Ao)
is proved (Theorem 1). i
Combined with a distinguished property of the Friédriché,»
extension (Theorem 25) the resolvent formula gives almost
immediétely the basic results of the Krein-Vishik-Birman
theory [4—5] of the self-adjoint éxtensions of positive
symmetric operators,as well as new results saying that the
Friedricbs extension is the limit,in some sense,of sequences

of self-adjoint extensions which are not bounded from below,






1. Introductlon. ,
Let T be the closure in L (E’aﬁ) of- 094& defined
on C «oﬁw)),To has deficiency indices (1,1) and its self-

adjoint extentions T, are indexed by the boundary conditions

- é_f(O)' y e ]

x=0

i) J ;

The Friedrichs extention Ty of T cbrresponds to the bouhdary '

condition f(¢)=0 ,which,at the formal level is obtained
by taking the limit «—< in (1.1).Indeed,one can-verify

that
k . -1 -4
(1.2) “{z'm:-cﬂ(fpﬂ)'—(ﬁﬂ) I
Again at the formal level,one can see that TF is also obtained

by taking the limit &—>-o0 in (1,1) and indeed, again one

can verify with some work that

(1.3) ;(&—’:n}oo [ (7;+-1)_‘- (7;+1)"n £

Now for « <@ ,U’(E).—.{;ldgu[o,oo) : where &m ﬂf-oo ewD il Lle

of—p- 00
sense of (1.3) Tp is the limit of self-adjoint extentions

of To,which are not(uniformly) bounded from below,
The same phenomenon has been observed recently,in the
study of regularisations of the one-dimentinnal Schrodinger

dperator [2,3] .The initial motivation of this paper was to



see whether this. phenomenon (the fact that the Friederichs
extension of a semi-bounded symmétric operator is in some
sense,the limit of some sequences of self-adjoint extensions
: Whioh are not uniformly bounded from below) is a generic
one or is related to the concrete structure of the above
examples The fact that thls is a generic phenomenon is the
content of our Theorems 6 and 7.

Since the classical Krein-Birman theory oo tlies
self-adjoint extentions of semi-bounded symmetric operators
~is concerned mainly with se1f~adjoint extensions bounded
from below,it is more or less clear that the above problem
cannot be éasily settled in the framework ot this thcory
and new too’s are nedeed.Our main tool is a generallsat¢on
'to the case of arbltrary (equal) uef101ency indices of a
formula of Krein [7,8] which gives the resolvent of an ar-
bitrary self-adjoint extension of a symmetric operator A,
_in_tefmd of the resolvent of a fixed self-adjoint extension
of A and of self-adjoint operators(abstract bouﬁdary condi-
tions ’opefrat@r«s.)»ae.ting in the deficiency.s'pace of (A-a,,) fom
someﬂ@eg(Ao).The point of this formula is that it almost
Vimmedi%tely gives the 8pectral prope?ties of a self-adjoint
extension in terms of the spectral properties of the corres-
pdnding boundary conditions 6perator and viceversa.As alfeady
said,for fiﬁite deficiency indices,this fbrmula has been
proved by Krein [7,8] .Moreoyer,a formula with essentially
thé same structure has beenm announcean[9] for sem?-boundéd

e 1 g
oint extentions of sem¥bounded symmetric operators,



In full generality the result seems to be new(althoﬁgh we
© cannot excludé the.fact thaf‘it is known as folk;lore'within
the Krein's school).Finaly,we would like to pbinf out that
although we shall prove below the formula only'for self—
adjoint extensions of symmetric operatdrs,one can along the
sameAlines give the formula for genefalised resolvents. of an
érbitrary symmetric operator.ie hope to come back to these
.questibns in a future publication. .

Our.next resuit,haVing again preparatory character,but
we believe,ihtéresting in itself,gives a diétinguished pPro-
. perty of the'Friedrichs'extension and is contained in Theo-
rem 2,1t concerns the behaviour of the resolvent of the '
Friederichs exténsion as the érgument is goihg to -,

The basic results of the Krein-Vishik-Birman theory
(see Theorems3,4,5) as well as our new results in the.theory
of self=adjoint extensions of seminbounded,symmetric opera-
tors (see Theorems 6,7,C) are éasy conséquences of Theorems

1 and 2.

2.A generalised Krein resolvent formula.

In this seétion we shall prove the following theorem:

Theorem 1. Let A be a closed éymmétric operator ih a :
separa»ble Hilbert space % ,with domain P(A) and equal(finite
or infinite) deficiency indices.Let Ao be é fixed self-ad-
joint extension of A, X.€¢ §(A,) ,and P(},) be the orthoghnal
projection on®OA-2,)D(A) ,Then denoting S

(1) E(R,20) = (A Aa)(AmR) 5 by B € §(A)




(252 il el ey NDE Rer ) Ban B

the following assertions hold:

i.The formula

4 , SHg
| - 3 3 Q)Aa 5\,,
dER) . Ry=(A}) - E(K%)Q[”l QF( )aJ QE(A%)

gives a one to-one_corresﬁondence-between all the séif-ad-

joint extensions of A and all the pairs (@, n )~wheré. a

is an orthogonal projection smaller than P(A,) and 7 is a

‘self-adjoint operator in Q¥ . ' '
11.Suppose Ao 3 € $(A:) and let (a mn ) (Q n)repre—»

sentlng the same. self-ad301nt extension of A,via the’ formulav,

(2.3) wrltten in ﬁo and 20 respectively.Then
(2.4) Qe = £(2 , 1, )a%
(2.5) n'= Q'E(%,%)[n «Re AF(%,,1,)8] £%(2,; 1. )@’

During the proof of Theorem 1,we shall use the following
elementary fact.Let P be an orthogonal projec ion in ¥ , *
- In the orthogonal sum representation of?ﬂ, o= P_G’C@(“P)%

all bounded operators,B, have a matrix representation

&M 4_12 |
B - ( - :



" and for a operator B: w$— "  we shall demte'&;— J;‘:PK-,PR
Lemna 1. Let B:¥— ¥ , d: P —P¥ ol o

operators in. & and P}C respectlvely.’l‘he operators 1+BD

e

/+ DB have bounded 1nverse im (¥ Hffandoonlyedifvg+ 5‘ 0/
1+ o/gp respectively,have bounded inverse.in P #  .Moreover
_ 28 - 5o L
a’(“gpa/) g : <1+.a/\4?) d 0
-4 : -4 ,
D(1+BD) = A : ; (1*DB) D = -
_ ) :

0 o

Proof. Verify that

(1+ L) el

‘.(I.+,BD) = -.421‘0/(’*40/)“1 0

A -4
and the similar formula for (/+ DB)

Proof of Theorem 1. We shall consider first nonreal 2, .
Let A, ,A, be self-adjoint extensions of Loand 3,2,€ 84NN £(A,)

Denoting
. : - = -.4
(2.6) Cd(i)z(Ao-})‘, (a,-2)

arid using the resolvent equation one obtains

@2.7)  Ca(M[t-(A-2e (e %) - Cl0)] =

= [1e(3-30)(A- i Te)




Let X be the ebtlictton of A, and A, on z(Ao)nz(AQ .Then A

is a closed symmetrlc extensmn of A »SO that 1f P() and 61(9\)
are the orthogonal projections on ¥©(A- Q)Q(A) and KO (A-1)2(A)
then Q4(A)¢P(}) .From the fact that A_ and A, are self-ad-

joint extensions of A it follows that [8 Ch.VIIT $106]

| (2.8) C’,‘(J\) = () €, (2) ()

Moreover,from the definition of X it follows that C(3)is

‘injective on ()% .The next observation is the fact that
for 2«, A € ‘iCA") . |

(2.9) (1- Qd(i“))E(?\4)22)Qd\(§2)"___0

wherefrom it follows that E(ﬁ‘,’&) maps bicontinuously &d(i—e)?f

onto (3)¥¢.Due to the fact that

(2010) - (3-20) (A AT G (8) = (AN (AR

the 1.h.8, of equatIon (2.10) is invertible and one can
rewri%ce (271 as
(2.11) cd(A)=£(ﬂ,2o)_C;(Ao)[4+(ﬂ-ﬁo)E(.ﬁ,i\o)C:((ﬁa)JﬁE@»“o)

Denote vy d : Q%) K~ Q, (%)% the ‘operator

(_é,jg) g = £(d, %) Cy (9&)16Z ¢ s
. A



S

and by . Dy :¥ —¥
D, = (%, ,X.) C (%)

Then‘o/d is injective and the matrix representation of Dy

(according to the decomposition ¥= 6,(.)%® (1- 4, (3.) € is

.

0 [

'Dd o

Using Lemma 1 one can rewrite (2.11) as follows

()=

g v & -4 -
(2.13) 4@,%)@(%)4[1*?@‘&") ea&(a,‘)o){] &4(40)5(&&0)

Since 0!( ig injective one can define (N by

-1

(o). M= T S e

Starting from C (%)= C (%) and using (2.11) for C;(’lo) one

_can verify that

—

. -4 i A
(2.45) D; = D (()‘6‘°>D°‘] = Dy - 2)(Aur o) £(%,%)

~

wherefrom it follows that .0/: is also injective and then
(q{)i(glog*)_l\ .Combining (2.14) and (2.15) one sees tiﬁat ’1*
is self-adjoint.Combining (2.2),(2.13) and (2.14) one

obtains (2.3). Con\ferselj,suppqse R’,\. be defined by (2.3 X

One can verify directly e R e

(2.16) p(:\,aa)zé'[m‘a,),s@\,io) s (A-%6)E(2,%)]




wherefrom
(2.17) Jm F(WN)= 55 (FOL)- £ ) =(3) LERA)

: : e _
It follows that Dﬂ*#%(ﬂ ﬂ)] exists (at least)for nom-
real A .Deflm.ng o ¥ — Q}C by

a/ (‘f(-f-LJm’La)

and taklng into account (2.3) and Lemma 1 one obtains

(2. 18) Ra‘- (A- &) - E(%, 9 )D[4+(a A )E(M YOI = f,\)~
= (A.- ‘1) -E(’,\ Q)[H(s\ ) DE(:\ Bl Dg(a 2,)

(remind that Iﬁ=dc/Q is viewed as an operatoriin €. . ).

Using (2.18) one can verify that R, satisfy the equations
(20-}9) Ra" Rﬁo:’ (a‘ao)'RAPAa = .(Q-o\°>’RAo7§Q

The next observation is that

(2.20) ; 2(a) N P(A)%€ = {93

Indeed,!supijOSG that AeD(A)NP(A)H .For all Ae D(A)
(£, (Rom X )R ). = (Ao Ak A )
e. (A,-9)f=0 which implies #A=0. WNow (2-3)5 (e 9)
and (2:20) cmplees
(2.21) ber Ry = {0}

"N\ ——-

From (2,16) it follows that F7(%,%)= F(3,%,) wherefrom



-
(2.22)se R, = Ry

The properties (2.19),(2.21),(2.22) are sufficient to imply
that there exists a self-adjoint operator T such that for

nonreal 2 [8,CAhap ¥ §75 ; /0, CRap v §4]

- : -4
(2i23iket ReRepozaffz )
Fiqéaly,faking into account that (see (2.9))

P(3,) £(3, %) (1-P(M) =0
it follows from (2.3) ‘and (2.23) that

- ey
(.T' . \(A-:\WA) e b "9“”")
whe{;efrom
(2.24) - T DA

which finishes the proof of i.for nonreal A,.

{ 3
Let now A, € §(A,) be arbitrary (real or nonreal),Let A,

: /
be a self-adjoint extension of A and Q& be the orthogonal

pI‘OJeCtan on HE(A- )( (A.) N2 (As) .Then(see (2e9))

Qif(ﬂo,ao)(‘)g E(ﬂ' ,)‘)QJ\

It

(2.25)

a, (%, %)a = %E(,%)

A simple,but a little bit te_dious calculation,using the

definition and the properties’ofFYa”%Aand (2.25),shows that

if'n;v ig given by (2.5) then for nonreal A
s ' = -4 N
E(Q,‘,\O)Qd[ﬂ + cz&;:(a,-,\o)ad] c.'sz(ﬂ, 4=

C () +a F (M )mfz (4, %)




»

which proves (2.3) for arbitrary 1,€ 9(A,) and at the same

time,the second point of the thoerem.

3. Applications to the theory of self-adjoint extensions

of semi-bounded symmetric operators.

v We shall start by listing a few observations of technl-
cally preparatory character.

1. Let #& be a finite-dimensional Hilbert space, Dc C
be the domain contalnlngz [a,¢]cR and F(A): H—->H an operator
valued functlon satisfying

ae F(2) is analytic in D -

b. £Y3)= FR) for QeI

c.é%r>0 on: 7
Then, all the eigenvalues of F(ﬁ) are contlnuous and stricly
increasing functions of X on g

g Tet 1 be a semi-bounded self-adjoint operator, A(i)a
bounded self-adjoint operators valued function continuous
for 2 el R .Then emy 5"(/‘/* ER) L8 a continuous
functlon E)*fm»?,\*‘m”(;nﬁmf .

3. Let A, be a sequence of bounded self-adjoint

~

operators satlsfylng the condltlons:

al= 0 s Aﬁ#ﬂ\ $ A'ﬂ-
ii. s-bm A= _
ML~y OO
iii, There exist  dm 20, bm In=d
m-eee

such tiat the essential spectium of"Ah is contained in IO-J’,..L].

Then ; % e

divm ph Hoed

AL —pp O

~
W

Cy
-t
~



(3.5) (g ) A,ﬂ“ %)3, Q‘ (1-8"?_{%./;"2) f—(J\*f ) “P’ﬂ.‘aﬂu =

S

?roof. Suppose
(3.2)  &m RAxl= Lm (sup C(A) > -
~n —» o — OO :

Then for arbitrary-£>0 there exist %, p< o  such that
for M7z 7, A, has precisely P eigenval'ues(cbunting multipli-
cities) in [d+&, oo ) .Let P, be the spectral projection

‘of. A, corresponding to [J,*ﬁ;‘x*) and ‘/2) ¥ =1 an eige:n—

vector of,An« corresponding.to its largest eigenvalue,ﬂ1.

It is not hard to see that for n > My

(3.3) - Bt ”‘33 1/2

S
|

Indeed,suppose (3.3) is not tfue for some 7,2 %4 ,Then

writing

- (= P’QW :

>

Gty Vg s B,

and using i. one can verify that

2

(gt (B 8RN N3) 5 (Fre) 13’

On. the other hand ;from i. for all fe 7?:2'1 #

(.6 G At s (A ) > (J'+g)u?/'11




From (3.4-6) and the min-max ‘principlesl it follows that
An has at least p+1 eigenvalues in [f+5, “’) which
L L s

1s a contradiction.From (3.3) and (3.4)

which contradicts ii. and the Lemmsa is proved.
" From now on A will be a closed symmetric operator

satisfying

(3.8) . m(A)= Jn g (f,Ax;)/uu =1
.ieQCA) :

In what follow
-[ri]age

and & an orthogonal projection smaller than P.

@

A, denotes the Friedrichs extension of A

e

QJ 2

3
o

teg the orthogonal projection on ¥O AD(A)
Consider the analytic valued function fa(ﬁ):_ Q¥ — /&K

'—‘zaaAF(AF-,})-“ ; 2 Mie e@Az)

(3.9) 1()= 8 F(ﬂ,a)f
QAH

A¥
For ﬁé(ﬂb,i)’ fa(i) is self-adjoint and
50 5 5 4] £ DB A]

Moreover, on 600,1),ﬁé@)is gtrictly increasing

Ji- > «1 {1 #-1)
G 7 () 2 Vi 3
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From (3.10) it follows that foij de (oo,0)U(0:1), fz(’l)
exists and (3.11) implies [11] that it is a monotonically
decreasing function of A . -

Qur next theorem describes a dis%inguished property

of the Friedrichs extension.

Theorem 2, For all Ads P
S L 3y '
el T T L )

aull e i Sineaddidtion A-: is compact then -

—p -

(3.13) A a’ﬂnm !lf;:(ﬁ)ll =0

Proof, d. 1f 6'/,_ ig-the sp_sctral messure of A, ,then
: ~ oo 8 Sl oL
L N g SN
and the monotone convergence theorem implies that

dim (8, @A (e E) <

. 1/2
is eéquivalent with the fact that _feﬁ(Ap ) .On the other
hand [1‘!] _:D(A;’z)n?ze = {0} wherefrcm,for _fe Q¥

(3.14) é&}m (£, @A (Arra) ') = o0

The first point of the theorem follows from (3.14) by

. -4 s
standard arguments.Indeed,since for A<0, fa(A) is decreasing
and negativé, it follows that it has a weak limit ag *—=-°°

and then [ i a strong one.Denote

‘ - .
(3.15) B s g (9

- 2 Dmesoe
Since B €0 ,for ail €29, A< 0 Lr‘l".i




Suppose now B?‘-O .Then it ex1sts 36&3(; such that
L (4,6B8+£) "8 )24 <00 ,mmen

2.—"0

: i =4 =4 .
(3.17) €2 2 (3. (a M) 3)=-(3.8a1 1)

Taking the limit A—-eo in (3.17) one contradicts (3.14)
80 that B=0 o '

ii.If (A ‘)) is compact, it follows that
Fa )~ 1 =4 &(A -1) rax is compact and then % - _fQ g
o -fa (:ﬁd o) f})/g : is compact.In other words, the .
essential spectrum of - _‘fa(&) is contalne,o. in [0 —-] and
(3.13) follows from 32 .

TaklngA A,2,20 the fdr“lul-a (2.3 ;'01‘ cn arbitrary

.self-ad,]ouit extension A  of A writes as
- <4 -4 : : 3
(3.18) (A %) = (A1) - E(2) 4 [ + fai(”] 4,E(%0)

Let md(&):QJf*" Q¥ pe defined by
. EmAY= 0o fq,(*)
Th? following is a direct consequence of Theorem 1.,
\ Theorem 3. Let A,&€§(A:) .Then A€ §(AL) if and only if
o€ § (Ma(3)) :
- The following two theorems are a;mong the basic results of
_the Krein-Vishik-Birman theory [4-6,12] . ‘
Theorem 4.,

i. C(AL) c [%y,%°) " if and only if

(3.19) (%) €0
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L

ii. 162 A_‘ is compact then A, is bounded :f‘rom below

- I andsondy if - N, is bounded from- below.

Proof. i.Suppose ", (A)<0 .Then from (3. 11) for all

} 9’1 g (A) < S em il) "/(/-t)ej/’t
so that due to Theorem 3, de g,

. % -
Suppose now 6°(AL)C[4,00). Then [11] for a11 )d‘)(A,.--L\) s(ah)
- Which implies via Theorem 1 that wm (g0 which together

with 2° finishes the proof of i.:

ii. Suppose -ﬂd‘ is senii—bdunded.From Theorem 2ii

i.e. ﬁeg(Ad) : Converselw e iE 852 ) e b stine

~first point of the theorem 7 +_f (‘U<0 and the pro-o'f is

finisghed,

Suppose now F(”a)CB o) so that m, has a bounded
inverse.Define Cyi PH>PH as the orthogonal sum
of %' on ¢ # and zero on (P-Q) ¢ . The following
is a direct consequence of Theorem 4. ‘

Theorem 5. Let

FoETigd T P

Q-1

“Then G (As)C[1,%) if ang only if

©.on) 2L e w0

In particular, A has a unique self-adjoint extension with
’ =1

the -8puctrum included 111[4 o) if ‘and ondy . i ﬁP =

Tne ‘next three theorems are,besides Theorems 1 and 2

the main new results of our paper.
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Theorem 6. Let Ay Dbe a sequence of gelf-adjoint

extengions of A satisfying:

C.20) 9y ) c g4 L Qg =of

g+ 2
¢ A
(3,280 ong’ SeAg N
Then

i ot
R T

1i.If one of the following is true

Qe di.ﬂ"l P < o@

biet AL Td compact

them

5 ek = 5 -4
(3.25) é’&m [{AF = g k=

Proof. Without loss of generality we can take (.?Zf-P .
Indeed i:t“Q2<2° one cen consider Xg_ such that -

ATt - A" = (AL - A') + 7N (P-%g)
- From (3.22) it follows that 7y has a bounded inverse and

(3,23) implies '11270_ . From (3.22) and Theorem 3, for all

16(—422)0)

G U (e BVl
which is equivalent to

(3.27) O € 8(”3%1* f;(“) ) a Bl - ’Ql.é Cap, 0)



<1

‘ : el -4 =4 ~ i
Since for A<0, [Al sufficiently small ¢'(7g + %, ®)< Eo=0)

from (3,26 ) and 27

(g '+ £ C z))C(""")

i.e.

ap 0% ""zi < "fP‘(‘ aZ)
Taking inbo account that 7?;= AL A.ZA Iesgenis. and (5,80
the proof is finished. | ‘ '

Theorem 7 _. Suppose hkm PH=0m<00 gng Ap be a sequence.
" of self-adjoint extensions of A with the propertj that -
there exists {QZZS 251 fc::o &z=‘°0 | such that. Az
has m clgenValues (counting mulflplchtles Join GJ” dz)
Then -

= - o
GonpE) Lo AL o l=0
Lowe

Proof. Since /qf,can have at most m eigenvalues in
(o= ,¢) [8] it follows that 0€g(Ap) From 12°,(3.11)
and the fact that Ay must have m eigenvalues in (oo~ 2p)
it follows that Qﬁ::?’ and fﬂ2>'0 .Then one can apply -
Theofem Gt _

Let now Q¢ (—0")“) and AK(Q) be the gelf-adjoint exten-
sion of A corresponding to the‘pairGP;nﬁga)).It is easy
to see that A Gﬂ)is nothing but the "sgoft" extension of
Krein [4] corres ponding to the p01nt 8, le€e AKGQ)is
minimal among the self-adjoint extensions of A having - .
gpectrum in.ﬁ%°0) .The following is a direct consequence

of Theorems~4 and Z.

i 2

el FHRS
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o Corrolary.
/ : i - e A, V. pgsiliasy 0
(3.29)  d. s (A - Ax@) =
ii. If one of the ;ollow1ng 1s_true
8. %i: is compact
b. dim P £ 22

Then
= 52 s : .
(3.30) .&m | AL Ay | =0

S

We shall end up noting the follOwing'rélations between the
“gpectral properties of 'A.*_‘ and "y . :
2 Theorem ‘8. -
i.Suppése n, has discrete spectrum ( i.e.:has bnly
finitely degenerated eigenvalues having no finite points
of accumulation).Then the spectrum of Ay included in

[a,¢]CQ(Ar) is discrete.

ii.Suppose 'A_Fq is ‘compact and suppose [a,£]C (AN g(—

Then the spectrum of A, included in [2, ] is. discrete.
Proof . '
i,There exists J\GR such that ("‘l&+ J)M exists and

: is bounded.Then ' .

n +_fg (3)=" (/ﬂd+é‘)[1+(ﬂ’l +J‘) (ﬁd(i\) J\)J

Since (ﬂ&+<9) is compact and i&(ﬁ) is aX bounded opera-

tors valued analytic function in C‘\G(AF)the first point

of the theorem follows from Theorem 3, and the analytic

Fredholm alternative [ 1]

i3.Tet Ne[a, €] Then ("\)

LSS NCEON ‘mw)[«w (”‘uﬂ CAGONNS
= Q¥ Q%
and again one can apply the analytic Fredholm alternative.

7).

PR L TS T

I TS
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