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ON THE REGULARITY OF THE BOUNDARY MEASURES

by Silviu Teleman

The aim of this Note is to prove'some new topological

properties‘of the boundary measures; namely, roughly speaking,

ot

hat the boundary measures are inner recular (i.e.; by closed com-

pact measurable subsets, where compactpess,closedness is meant with
respect té the Choquet topology). Stronger results are obtained for
the pﬁre'states spéce of a Cﬁ; algebra. -

1, Let E be anf Hausdorff locally convex topological real
vector space and KcE aﬁy ﬁOn—empty compact convex éubset. We shall
use the notations introduced in [6) , as well as many of the resﬁlts
we have presented there. _

We recall that for any bounded function f:K-a;R the

function f:K-» R is defined by
F = inf {h; f<h, hena(R)L,

where the infimum is computed pointﬁwise; Then £ is the smallest
concave upper semicontinuous.function majorizing £ (see 6 \sapid 24
Usl, $3; 14} ch.xI, D18).

PROPOSITTON 1. For an bounded upper semi-continpuous

£y en

function f:K — R we have



E(X)=‘$hpiﬁif):paﬁaﬁqfr, “xéK.
, .

PROOF. In £his equality Fﬂ runs over the compact
convex setuﬂi(K) of all Radon probability measures le, whose‘bary?
center b () =x.
i

a) If we define
@(x)= sup {/lf!_(‘f);/u-mcfx,}' {35 o xéK,- :

then & obviously is bounded and it is easy to prove Ehiat i s
concave; on the other hand, it is easy tb prove that £ éf? ol
b) (g-is upper semi-continuous. Indeed, let us first remark that,

since the mapping

. .
f AN S ¢
(LY jo s (L),

I'4

on the set uﬁﬁ+(K) of all Radon probability measures on K, is con-

tinuous, for any fOQC(K; ®), the mapping

4
A Y S e il
(1) Lf&+kV< i f{”‘B

%y

r o . . s {
is upper semi-continuous. Let now <& R and define L =-x=K; ¥ (x)z},
. [N

Let (%,),.- be a net in L ,  and assume that x s % in K.Let £ 0
G SR o : i .

be given. Then we have

A e
CiidC




(2) '/J-LC!—)> e g ICT

-Passing to a subnet, if necessary, we can assume that 11m/ i
J\
exists in:}{JK). From (2) and from the fact that the mapping in

(L) is upper semi-continuous, we infer that

("\

Z0

3
)i od=—

(3) . /,,<

(v y=b (,u.) , from (3) we infer that /(X) o~ 4

since we have lim
{ET .
for any £ >0, and, tb efore O({x)>c . It follows, that xzL , and

i ’
) o

~d
e

this shows that L, ' is closed; i.e., is upper semi-continuous.

¢) If hA(K) and f<h, then

J il /
) € gl ) = Sl Gty '
/! /
e S ;
for any &M (K) xEW We infer that
e 7 fC BNy ere K
([Pl < £t n ; S

and, therefore, we have
o
(4) : | @iscf n

since.f is the smallest concave upper semi-continuous function ma-

jorizing f; from (4) we immediately infer that q>=f, and the Propo-

————— o

sition is proved. .

KEMARK., Proposition 1 is a siight extension of Propo-

e 1 e (=l b L e R L N R e ey
sition 3.1 fxom 5, ., wnere it 18 stated for a CoOnLinuous ‘fuanction



COROLLARY. For any bounded upper semi-continuous func-

tion f:K'— R we have
E{x)=f(x), ' . X fex K.

PROOF. This is an immediate conseguence of the preceding

Proposition and of H.Bauer’s Theorem (see[5], Proposition 1.4; [ 6],

“Bropoesition 1.3},

PROPOSITION 2. For any bounded upper semi-continuous

function f:K— R and any decreasing net «(f,)

(o

of bounded upper

o

/{;A
semi-cuntinuous functions on K, such that f | £ point-wise on K,

we have £ { £ point-wise on K.
e S AT

PROOF, It is obvious that (%l)

of .:{épa

is a decreasing net,
such that £<1lim f; . Let then £ >0 and x¢K be given;. there exists
a héA(X), such that

(1) h(x)<E(x)+ ¢ and  fly)<hly), V¥ yek.
Let Kdzéy;ix(y)~h(y)zoﬁ-, o/ & Aj $ince we have

inf ! £ (y)-h(y); «¢a} <0, V4K,

e
4

we infer that K>k Qﬁ and, therefore, we can find an A« & A, such

that K = P (because the sets K . are cempact).



We infer that fd'(y)éh(y), y¢K, and, therefore, we.hgve
P cptho = Kby | pe L),

From Proposition 1 and from (1) we infer that

(=4
o

E, (x)<h(x) < E(x)+E,
and this implies that

=

(_. Y \ —
Sein £ ifﬁ(x);cfﬁAgs:f(x), ®<K.

“The Proposition is proved.

COROLLARY. For any bounded upper semi-continuous funes

which is mazimal witg‘

: ~ R and o T N
tion f£:XK-—- R and any measure /it_JA4g¥()}

respect to the Choquet order relation, we have

e T I

p(E) '=~/,i,(f) !

PROOF. There exists a decreasing net iﬁy)@:q of contl=

nuous functions £ :K— R, such that £ | £ point-wise on K. If

ol ol

L Jﬁj {{) is maximal with respect to the Choguet order relation,

/&

:

then, we have

\ . : ] '7 \ e < £ ‘.” R Tt 2
(1) ] AAL Tdr.i — /U. et B e it

| T e e i At e o e o e
: {51 roposition 4.2.;7 ( &6, , Lemma N2

From (1) and from Proposition 2. by taking into account



._the T - continuity of the measure /A/ ; we infer that/mig)ﬁq(f),

and the Corollary is proved.

i LEMMA 1. Let X be any compact space, Pile Xien Gy_ subset

and /u a p051t1ve Radon measure on X« Then. foriany & > 0 there

exists a comnact Baire measurab]e subset DcF’, such thmt

EY - < oo

PROOF. Let F'= ?\ Gy s vhere G CX are open subsets.
) n=0 : !
Since . is regular, there exists a compact subset Dsz’, such that

/

For any n:iN we can find a continuous function fn:X;{O,ﬂ

such that

Fn(x)=l, for xéDo);nd fn(x)=0, for xafGne

o (

Let an1xéx: fn(x)=1} . Then D= /\ X is a compact

I -0
Baire measurable subset of X, such that D th\ Gn:F’, and the
£y n=0

Lemma is proved.

We shall denote by%® (X) the ©-- algebra of the Baire

measurable subsets of the topological space X, i.e., the @ - algebra

of subsets of X, which is generated by the set of all closed GE“Subr

sets of X, whereas f1(X) will stand for the O -algebra of the Borel
~measurable ubsets of X, which is generated by the set of all closed

‘subsets of X.

A = 2 SPEE G, M L = 12 .
When several topclogies are considered on ¥, a special mark

3t
'

et

=)

indicate the topology Lo which these ¢ - algebras correspond.

v -



| 2; For any function f£:K~+R we shall denote
2 (F)=fx¢x; £(x)=0) - and u(f)={x<K; £(x)=1}.

Let now FcK be a compact subset of K. Then I, is an up-
per semi-continuous function, whereas “’}':'F is a concave upper semi-

continuous function. It is easy to see that F"ZZ(TF) is, therefore,

a measure extremal GS— subset of K (see EG__\, p.26 and p.39).

LEMMA 2. u{Xp)=Co(F).
PROOF. From ?(F{"/E%F{: 1 we infer that
(@ ' F= fd(?&'F)cu('—f_.f}‘.

On the other hand, u(?‘ffF‘; is a compact convex subset of

K: therefore, from (1) we infer that
o (F)cu (p) «

: A
! e o Jig O . e
Let now x £KN\Ca(F). Since the mapping Jbi.,znw\3->/u.n,-_e,/f-« ey
. : ' ) ;
is upper semi-continuous on the compact space r.fw,%(K) , we infer that

there exists a /ME J'['C.x (V) , such that

3
s
.

l';\,L.C(F)= supé;'-,(F).: /a.a S

If we had xoéu(:ﬂ}.) ¢ then, with Propos;‘.tion 1, we would infer

that ,r"*c (F)ﬁl, and, therefore, Xo:b(,-‘-i} £ 3(F), a contradiction. Al

follows that xoi";'u(uifF) and, therefore,

——

u{¥plc Co(F) .

The Lemma is proved.
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PROPOSITION 3 . For any compact subset FcK we have

a) FhF’= # and FUF’Déx K;

b) /&CF3-+/LCF')ﬁ:ﬁH , for any Radon probability measure

/A énjﬁt¥CW<3 , which is maximal for the Choquet order relation.

PROOF. a) If x(F, then K p(x)=1, and therefore, x{F’

e

(as above, we have F’:i(ﬁF)): for any xcex K, Lf x:F, we have
;EF(X)=?%(X)=O, by;thg qudllary_to'Proposition 1oasie follows that
XER .

b) Let fxétiil(wj be a Choquet maximal Radon probability meaéure

on K. By the Corollary to Proposition 2 we have
(1) . 'fsk-(a:}p—_/.lg-zzp) :.,/”{(‘ \

and, thereiore, if we take into account Lemma 2 above and Proposi-

tion 1.10, b) from L6, we infer that

(2) : //;{:’}Tf F') -:/,:A (\,&(_7(‘:-)5 . /u, {’:_”"'xu"ir\, :) T{‘g 3 -

] \(Ct.:('\r')' e "i‘il*?{ NG e
/ ' } f/{ bt(xi:‘x} <)

& el ; A =
s ( Vel = A o (}C N
/ L (L Voo

From kl) and (2) we irifer that

/A'((i“%,lvt/;—\‘) :)_('r.‘:\}:‘:o

A ’{F}

.and this implies that pJFV)=lJﬂIF), The Propesition is proved.
i /

2. TLet now DcCK be a Raire measuraible subset and

L G vy
T WU i Il La ik

P
o3

, & sequence of affine continuons real functions o

I Y AT} S ST S



K, such that D be ghn; néN} - measurable; it fellows that
xOéD, xéK,;and.hn(x)zhnSXO), nﬂx_my xeD

(such- a sequence can always be found; see [6}, 1.5). Let fagdiﬂikﬁ

be a Chogquet maximal Radon probability measure on K. By virtue of

-
1
i

Lemma 1.2 from L6], we have
: /\u(/t\,i ) z/ﬂ(»{ia ) ; - » NEN.

We infer that, for any n¢N, there exists a sequence

(h h IrléA(K), méN, such that

nm)mGN’ n

== g2 5 7 T ;
/}ir? < ’6\4 Y& —N angd /J‘{/C"\r\, ) = /,_/v_i & i"'('\n Pt \;
Y Vv ) ; ) : ‘M(—P\I . aQ (PO
i - | N gt b 4
If we denote @, = Z‘m v nENY and | T = 7% e
- "- N e
wa, v R L @1:§;u?q . Hmn%lisa«mmﬁ&ﬂesmmetofAﬂﬂ,

and for any hK?l we can find a seguence (hﬁ) hﬁiA(K); n<N, such

neN’
that
= s : - e : 7t
A<l nen amd pll)y =ind B A AL )
) . : T { = iy
W EN
-1 g.f 7 s !
met. B L0 LeS el ) andE - F o
. < . ™\ \ 2 il (P
By induction, we can find an increasing seguence
(qh)n’ﬂ of countable subsets of A(K), such that for any hé?% there
Ry 2
ste au 7 in ¢ . hiah! ¢N, and
exis a seq ence_(hn)nem g such that <hl, n N,
73 T Vs e
M( An ’} = AnAA LA {f—:1 P oA f/n \ x
z S i B e
o P ML LN ———.
Leti S = g « Then '+ i35 = countable subset of A(R)

Wi o
such that

Lo

1) D is ¥ ~measurable:



2) for any he?there' exists a sequence (h;l)nf!N in "_i", such that ‘

h2¢h?, ne, .and
n-=

a3

(1) PN A /_J_(EE-) A,J} H"ﬁﬂlo e e
Y ' s

We shall now consider the affine continuous mapping

-
© :k-> R, given by

ZRSTs O

= T

oty = Uewr), o

<r 5 .
Since R is metrizable, we infer that'KomQ(K)' is a me-—
. S ‘:I— . x =
trizabire compact convex subset of R™. Of course, @ (D) is a Baire
measurable subset of £ (K) and D= e (G .

We shall now consider the Radon probability measure

f*or: 6;,_(;;&) on K.

A . . r ?-‘ i3 3
If we denote by py the projection in R~ (or its restrice

“tion to K ) which corresponds.to h¢¥, then we have
h::pho Q i hﬁ?:;

Since (ph')he"fis a total set of affine continuous real functions

on K_, from Corollary 1 to Propesition 1.3 from (6] we infer that
.. 7 TN S o
(2) ex KO"{YéKo: Py, (¥)=py, (¥), h&T .

From (1) we now infer that

6]
3
(2



sl L

-

- Pl = el ), LeT

W 0

From (2)and (3) we infer that
ﬁoiﬁd\(\#ﬁ‘!

and, therefore, ji, is a Choguet maximal Radon probability measure

£
on Ko
We have, therefore, the following Approximation Theorem.
' THEOREN i. Let DCK be a Baire measurable subset and
/Af 41 (W) ' a_Choguet maximal Radon nrobability measure on K.

e : N =
Then there exists a (metrizable) compact convex set K&k and an

3 such that

L S R

affine continuous surjective mapping e KO

a) € (D) is a Raire measurable subset of Ké;

c)l ELiyA) is a Choguet maximal Radon probability measure on Ko

We can now prove the following

COROLLARY. Let DcK be a Baire measurable subset . Then,

for any ¢ > 0, there exists a compact extremal Baire measurable sub-

St s s

~ 4 s fDY = ~1
setwgd:D, such that }L‘D, é%quo)u

[}

PROOF. With the notations of the preceding Theorem, by

Ulam’s Theorem (see [1;; Ch.l, Theorem 1.4), thare exists a compact

o~ s r £ 215 [ = ’ T
subset AOC ED)vex Ko’ such that 3;wp)t§?(D))_.h.g ti;;J;iﬁﬁl
=1 = 5 ;
Let D_=¢f "(A_ ). Then D €5 and D_ is a compact extremal Baire measura
(9} (9] aQ o
Lie. subset of ¥, such that
Sy O s = - 2
L L ] £ RN e e . :
e S R O G e = paln)—£



The Corollary is proved.

REMARK. The preceding Theorem bbviously holds for any
sequence XDA&nPO of Baire measurable sdbsets of K and any seguence

(%n)nzo of Choguet maximal Radon probab%lity measures.

4
= = i S
THEOREM 2, Let HcK be a G -subset and f& FL} +_§Q\

e o
a Choquet maximal Radon precbability measure on K. "‘Then, for any

£>0, there exists a compact . extremal Baire measurable subset Dy<H,

such that 'fL(tn§>fA{x{)“ e

PROOF By Lemma 1 there exictsga compact Ba+_= measura-

ble subset DcH, «such “hat

e CBY 'S iy = 5
f 2
Let K and “? correspond to D and.}L, as in the pre-

ceding Theorem. Then we have

Since ex K, is a Polish space, by Ulam'’s Theorem (see
Ll}, Ch.l, Theorem l.4) there exists a compact subset DOQ;M(D)mex K

such that

. e i .. .
If we denote Di=0 {Dh) ; then the set D- defined in this
wanner has all the reguired properties. The Theorer .is proved.



~We recall that the Choquet topélogy on ex K is that for'
 which {Fnex K Eek cbmpact, eﬁtremal'} is the set of all closed sub-
sets of the tdpologf (éee L2, Ch.II.%: [6]; B2
We shall sﬁecify by C-closed, C-open, etc., the various
topological epithets corresponding to thé Choqueﬁ topoloay.
LetfﬁO(K) bBe thesi = algegra of all Baire measurable
IS B

subsets of K andu%oiex K)=§Dhex:K; D%ﬁb{% ¢ e

For any Choguet maximal Radon prcbability measure

: - ; “/ / | s
fkéiJi41L4§ one can induce the boundary measure i A Len K 1o )
given by
L (_T.J ~ 2o WA \; =i g (Y = :Ba{h% }
ff E / : .} |
‘We have proved in [ 6} that for any C-closed subset Arexi
we have
V%, A T
A L) = Al
!
/ /
~

for any compact extremal subset FcK, such that Fnex K=A (see 61,
Proposition 1.1il).

We shall now prove the following Inner Reqularity Theorern

THEOREM 3, Let Gcex K be any C-open subset of ex K.Then

v v | 5 &
MﬂﬁﬁzsupgﬁlA); AcG,. C~closed and Aﬁﬁo(ex Kdaar &

PROOF. Let FoK be any compant extremal subset of K, such

" that G=lex KNV, We then have

~ i o E A
L e A T e AR EN S .2 RN
14, (GG \\ — A Jo ( e WA e e e

T E

/
i : /



the second equality being a cdnsequence_of Proposition 1.11 from-
(el. ,
If we denote F’=£fﬁ%), then, by Proposition 3,we have
v - | : !
FJF')=/ﬁJG)‘ Let £ »o be given. By Theorem 2, there exists a

compact extremal Baire measurable subset chF', such that

R (D Y T :

we infer that Al—Dlrex K is a C= closedw\ (ex K)-measurable subset

of G, such that . : :
\f r 3 v
/‘."‘-v ( C-t } ({ /“‘A' (.\ f’\:(j /'|‘ .‘ .J"— ki . =
!

The Theorem is proved.

in 26] we have proved that any C—Baife measurable sub-
_set of ex K (with respect to thé Chogquet topology; i.e., any set
belonging to the smallest < '- algebra of subsets of ex K, contai-

. V4 ;s . s .
ning all C-closed (C-G,)-subsets of ex K) is L - measurable (see
¢ {

3,
L4
\

fG}, Theorem 1.5). We shall now prove that the boundary measure /{

is inner regular on the T - algebra’@%(ex K; C) of all C-Baire

measurable subsets of ex K.

THEOREM 4. For any Béﬁ%(ex K;C) and any £> 0 there

exists a C- closed subget Acex K, quch that

PR ————— ot e e St 2 SIS SO ey

i ’ - M A
ACB, Aéf%xex K} and /u(B)—ékydA).

PROOP, a) Let BAcex X he any C-closed (C-G,)-subset of
s d
\/ - - 1 2
ax K, Then A and G=(ex K)\VA are - measurablie, and there exists
LY - e T’
) of CDmﬁaLt extremal’ Suu ets of Ky

an increasing sequence (F




= BE R

i i oo ! et
such that k).(Fnﬁex K)=G. Let FcK be any compact extremal subset
n=0 j
of K, such that Fnex K=A.

Let H=R~( U F ). Then H is a Gg—subset of K; by Theorem
n=0 . -
2, given ¢> 0 there exists a compact extremal -Baire measurable sub-
set chH, such that WiH)~£<yle).
On the other hand, from FAF =@, né N, we infer that

FcH and

—

TR E e e s WIR(sa e,

we obtain that

and, the;efore‘, we -have.
AA (\\_. 3 =y (\ )
/ ; /A ) 0

If we denote Alleﬁex K, then Ar:A, Al is C-closed and’
AI:AO(ex R

N
b) If Grcex K is any open (CfEr)—subset of ex K, then it is [t = mea-

/

surable by wvirtue of Theorem 1.5 from YS} and'the set AcG reguired
by the Theorem exists by virtue of Theorem 3.

<) Letfff,1 be the cet of all subsets 8.o0f ex K, such that B and

(ex K)\B have the property required by Theorem 4, Then, by a) and

b), any C-closed (C-G, j-cubset of ex K belongs to J% and, since 2

5

is easily shown .to be a 9 - algebra of subsets of ex K, we obviously

h i T TG PR T o e I}' o A N Mo My yrnassayn 5 O 7 ¥ 70 oy
avVe Tilac ..I‘;(-_)\l:.r\ vi U5 e il L4S8TCYTC AL PLIUOVEG.
3 s !

=
o
o

Dccording  to Theorem from {6 | we have



f_(ex Ki Clak _(ex K)J -
(0] 3 (@] /XL 3
where the right-hand member is the completion oflﬁb(ex,K) with res-

pecﬁ to F..

4, The preceding results can be strenathened as follows.
Let us consider the U —algebra ﬁi(ex K) of subsets of
ex K, generated by all the sets of the form Dnhex K, where DcK is

~

a compact extremal Baire measurable subset. Of course, we have

R e ﬂ%l(ex Kk@%o(ex K,
and also
(%) ?ﬁ(ex K)cR(ex K;C),

where T(ex K;C) denotes the t?-‘algebra of all the Borel measura-
ble subsets of ex K, with respect to the Chequet topolooy.

the Lebesgue completion

We shall denote by Eﬁ{ex Kfj
of the G‘-algebra'ﬁl(ex K), with respect to the restriction of ff

We have the following Regularity Theorem.

THEOREM 5. a).ﬂﬁ(ex K), =/ (ex KL
fErspan A

b) For any Afﬁ%(ex 19 and any ¢£>o there exists a C—-closed set
e

Aéﬂﬁb(ex K) , such that

PROOF. 2} Fyrm (%) we immediately cbtain that



- 17 =

(1) Ty (ex KY) che, (ex XY

S - [

Let now Afﬂ%b(ex K&E and ¢ >© be given. Then there

exists an Aé&ﬁb(ex K), such that
(2) A.cA, e /\imov—-_/‘iwm.

Let Ddfﬂb(K) be ‘a Baire measurable subset of K, such
that Doﬁex K=AO. By the Corollary to Theorem 1, there exists a com-
pact extremal Baire measurable subset DcD_, such that

/{/\C'D\.,\ -C <'/.4(’D)‘ . We then have:

N . N '
i ( AN-cx }k( DAz K \ :
/ /7

and A=Dlex K&Eﬁ(ex %)
By a standard argument we infer that there exists a set

AEB, (ex K), such that

ACA.

| S | -and }‘i{A): }1 ) ;

where we have also taken into account (2).
A similar argument, applied to [EAl, vields a set
A'é?l(ex K), such that

3 > ’ 7,
AlCA and /w(A )= ]J-(Al) 5

We infer thatJAléf% (ex Kf: and, therefore, we have

3y m ; s GE et
(3) L'To(ex K)‘, C &3 (ex K)\,.
‘ A = ;L"-
& s

Jpol \FUS



From (;1 and (3) we infer statément a)of thc Theorem.

b) For any compact‘extremallBairé measurable subset
D¢K, properﬁy b) obviously holds for the set A=Dﬂex K, with A_=A.

Let ﬁs now consider the sét (ex K)~A. We have (ex KN\ A=
=(K\D)nex K, and K~D is a Baire measurable subset of K. By the Corol-
lary to Theorem 1, there exists a ~compact extremal Baire measurable
subset Dde\D, éuch that lk(K\D)—”\(dD Y. Then we have AO=D0n(ex X)c
gﬁ(ele)\A, and_;i((ex K)\A)*5<%4AO)..The set Aolmeets the require=
ments from statement E) of the Theorem.

- Let now A’ be the set of all :subsets, Se® (ex K), of lex

K, such that for any £>0 there exists compact extremal Balre measu-
rable subsets D, chK, such that D oex KLS' ulhex K < (ex K)\S and
v v WV, : o _
}*{G)u{kﬁ%Doﬁex K }x{ﬁex K)\S)—-£<;i{ yhex K). Then 73’ obviousiy is
aG e algébfa of subsets of ex K, containing all the generators of
ﬁ%E(ex K)i, by wirtie of the preceding argument; We first infer that
E{=ﬁd(ex K) and then, by an easy argument, that property b) holds
for any AR (cx h\ s Part a) of the Theorem now concludcs the prooti,

r{

5. In this Section we shall consider the case of the

%

quasi-states space EOU@\ of an arbitrary C -algebra Qi;i.e.,

, i : /"};' :
B (@={£¥" ; £20, ufugl}
endowed with the < &) - topology. Then EO(S) is a compact
r r,“c" > P - dis 1 3 e
convex set, in (¥ ;<(% ;%)) ,andlex Eo(;)=P(gY:ﬁ0r , where P (i) de-

notes the set of all uare states of ﬁf.

Let ;uQ‘L&QCEGDE}} be a maximal orthogonal Radon pro-

bability measure, -such that W b{i)l\ =1. By Henrichs® Theorem (sce
133, p.106; and also | 6}, Theoxem 3.10 ﬁt is maximal for the Choduet

order relation, and, therefore, the foregoing Theory can be applied

e



e e shall make extensive use of l‘the resultstof 6 . Aéc§r-
ding to Proposition 3.2 from (6]} we héve /i*(lo}ﬁ—-z«o and, there-
fore, ;ﬁ( PLEYN=A o ‘

Moreover, -£ oY 'C PLEN L)-:’\ D"‘( ‘ ..is a. C-closed subset
of P(%@)viot ; hence, P(4) is a C-open sublse.t of PELLI0L .

.Acbordinq to Theorem.5.2 from{ 67 , the probability
measure }i s (P @)yvdoy )-> [0,];1 can be extended to a ?robability

measure

defined on the ¢ - algsbra Uﬂ(_l(p(r/g):ﬂio}i), generat~d by a%b(p(i,:f):).-‘:_o})

™ > : N
andhaR (R edaoliese ),

Since we have

0y - R 1
A } 7y
we infer that we also have
¢ Py t,*.‘m' 7 0y K y o
\7,\“21! PELYLA DY ) = fv.““ *"‘ﬂ)'}\ox’.’lw (e
i . e
R s A TS o %
i L w G S S G S
"/CA 3}

where we have also applied Theorem 5.

‘ / T - 5
THEOREM 6. a) J\OCP((@MJQOH/X C B IVAo% ¢ 1

-

b) For any. Ac¢ RR(LUHYLoY, ey and any £ > 0 there exists

a C-closed subset A < ey wlo) , such that

PROOF. In order to develop the proof, we have to re-

call some notations and results that we have used and obtained in



=8 2

EGj;

 Namely, let £4=1 (LL): and let "r' %-——) f(H )
be the correspondlng cycllc representatlon, according to the GNS—_
const;uction; let §t:ph, be the correspondinq cycllc vector, and
(f C, C‘rr ( (.{‘j\' the maximal abelian wvon Neumann algebra, correspon-
f ) .be the C = algebra ge-
nerated by 'n‘f (¥) and "@ , and let o((_JuL (ﬁ(ﬁ}\)he the contnal

dlnq to fA(seelGK Theorem 3.4). Let TicL (H

measure on E(l’B) ' correspondlng to the Vector state g =t ‘é’ L, C‘EQS“
o
o
Since
. A s
€. cdy and I = &
/ — 7

o/ is a maximal orthogonal measuré on ﬁ(ﬁj, representing g and,
by C;F.Skau’s Theorem, it is the gréa£est Radon probability measure
on E(®), representing g,, for the Choquet order relation (see [6_],"
Proposition 351 ; and:alse Ch@@tﬁ% )

The mapping T :E () — EO(-?;) is defined by

te)=a « T -
T‘d\ T Cc :(, pi & =(32) ; Whereas o ——\ PITRY
We have C’L?HJBJ} &Rtz v ol (see 1 61, Chapter 3),
EL (see {6 ), Lemma 3.8 and Propo-

and ﬂ:ﬁ{d-\::/& v J{ )
sition 3.10). '
i) For any compact extremal subset FQEO(Q)the set

Tfﬁ(FW}C_E;(f33 is a compact extremal subset of E(%), and we have

TR VIO = (T (FAPIL IV oY) =

—~

= iy s :
=il (T ”‘" ) A (V = C‘J*L.—L ﬁ“_:) R /34—'*-5‘;\'3’[);' ) =



w5 2=

=oe_(f‘c¥-")f\m =T EDF) - /uF)

where we denoted by F the sﬁallest compaét extremal subset of
E(?), containing suppos/, whereas supp@! —F ﬂP(ﬁ) .

. Let us now remark that property b) obv1ously holds for

any C-closed subset AcP %)LL{O} Let now G= (_POK)L)JD}X\\;

be any Cropen subset of P (Y03 O(s, where FcE (Z) is any compact
extremal subse; of EO(L)A By v1rtLe of the Inner Regularity Theorem
(see Theorem 3, above), there exiéfs a C-closed subset Aé:G, such
- that /\**CGJ}"E <:/VL(\C\ )

Oon the other hand, we have

J ! . s . ‘
P%(G\=—i-;ﬁ({?“€)d{o}§\6):rﬂ_/&ﬂﬂ_m

——

._,,._-_,“u..,.umw 2 v oY) = (&)

where we have taken into account equality (1).

1i) If we now denote by 73’ the set of all A € J5( P(YvioY, &)

/.A.
such that property b)holds for A and for (P(% )”‘0; INA, it is easy

14

to prove that JY’ is a < - algebra. Since, by virtue of i), §3' con-
tains any C-closed subset of P(fﬁ){o? ,Awe infer that
(P[C‘ijjf‘° BN c 3 ‘ and, therefore, 5%’::
AT ﬂ%(pﬁi}uh.»r CL)N : ’ sincejﬂ’ is easily shown to be complete.
In this manner, property b) in the statement of the
Theorem is proved. Part a) of the Theorém Qas already proved just
before.
BREMARK, The preceding theéry can be viewed as a non-

commutarive extension of the theory of Radon measures.
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