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O Intrpduetion

Wa'propose étudying the so-called asymptotioc dosing problenm
for first-order abstrac% differential equat*ons of monotone
type in Hilbert spaces. A

The idea of writing of this paper originates from a paper

of Turinici [6] » Who considered the asymptotic dosing problnm

for. the finite - dimensional case. However, both our assumptlons
and the methods we use heres are completsely different from those
of [6] .

The main result we state in this paper,vTheorem 1 below,
relies on the well-knoﬁn Opial's‘lemma and on a technique
aifindd ne 5o b developed by Baillon'and Haraux [1] .

' The last part of the paper (Section 2) is devoted to the
study of existence of solutions to abstract evolution equations
which inciude a mesure as an inhomogenebus term., This subject

is eclosely related %o the dosing ptoblem.



1. Asymptotic dosing

Let H be a real Hilbert space with the 1nner produot and
the associated norm denoted by (.,.) and ﬂ i » respectively.
Let A be a maximal monotone oﬁeratdr from H into itself, whose
domain end range are denoted as uqual by D(A) and R(A),

respectively. Consider the sequenoe of Cauchy problems (P )

- (P.)

5 0Lt T
u (o) =x
[ “au_ ;
) ) —i(4) +hn ()3 0(t), aTLeL{nel)T
(B! Ey '
l un(n‘l‘) = uﬂ-l_(n'f) * dn)

f@r = 1'2,ceo,

where T >0 is fixed; x&D(A) (the closure of Dl ; (d,n) is

a given sequence in Hj
Ay fGLlOG(o o0 ; H) end £ is T-periodic. By ”d/dt" NEWEIE ol

the ordinery derivatlve with respect to t.

As a Tirst remerk, the sequence (P ) is woll- defined only
i1f each of the initial data of problems (Pn)_belongs te D(A).
The assumption V | o
(4) 5{&T = H
guaranbees this faet.

If in addition A is-the- subdifferential of a functlon
(0 —= 1 -c0 +Cf5 propsr convex and lower-semlicontinuous

J
{one AsHokusis D& ), Bihen lsee, eagei) 2, p.189} Jeach of the
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~problems (P ) has a unique strong solution u é}C([nT (n+l)T] H)
ﬂ Wl"‘(n'l‘+g nT+T: I-I), for every ge ]o T[, and tédu /dt =

L (nT,nT+T;H) We suppose the familiarity of the reader with

the notation and the usual topologies of the function spaces
we are 1ntroduoing as wéll as with the cancépts and fundamental
‘results in the convex analysis and the theory of nonlinear
‘monotone operators and evolution equations of monotone type
developed 1n Hilbert spaces.,‘

' Let us define the function u : [o, +00[7——a-H by

- >, if {:.;o | '
(1.1) u(t):{ '

-

u e SRR Ineg fuTet il oy PGl
Obviously u satisfies the problem
du
(t)+mﬂﬂ9fﬁﬂ, a.e. t>o
(xe2)

uf{o) = x;'u(nT )mu(nT )+ dﬁ, n=21,2,000

Suppose further that

D :
() there exists dEH, such that Zig a_-aff <+eo
N= : =
and

(A#) there exists at least onc solution of the two-point
boundary value problem
(t)+Aw(t)9f(t), a.e, t€&lo,T[

(1 3)
(0) =wu')+

The asymptqﬁ}c dosing problem is that'qf finding of

suﬁiéieut sonditions in order that the sequencse of functions

'{yh : Lp,Tl‘m;y'H : yn(t) = u(t+nT{} converges, in a certain
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sense, to a solution of (1. 3) The convergence theorem below
is the main result in this direotion we prove in what rollows.
In fact, as a more general question we investigate here the
dosing effect combined with the periodic "continuous foroing
effect (see (Al)). However, the result of Baillon and Haraux

[l] on periodie "forcing” "for such kind of equations oannot :

'berderived in 1ts general form, as a particular case of Theorem

Ly

THEOREM 1., Let Amzzp and assume fhat (Al)-(AA) hold. Then,

(1.4) sup Jult)] < +co,
t2 o ' :

e : :
and there exists a solution & of (1.3) such that
- | = _
{1.5) ¥, (t) = u(t+n?) —> & (¢}, a3

n—>0 , ¥t € Jo,T], weaxly in H,

.and

dv

Fol t5/4 =l — t3/“ QEL_ , 8s n—>C0 , strongly

at at
S~
in L5 (o, THH)

In sddition

(1;7) 95(Yn(t)) ~—%ij(y(t)),‘gg n—»C0, uniformly on

e 2l fOJ...?.‘L‘.’.EXEG]" T[
Proor. The proof makes use of Opial's lemma and. the technique

of Baillon and Haraux [1] . Let us denote by F the set of

solutton\\fi %), Then, for every @WEF, we have

(1.8) | v (0] - w(3) “ | 7,0%) - @ (@l
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L vyg(0") = cto)]] + [ ag-al]

for every té]o T] nal 3Cyeae -

so that, by virtue of (AB)’ (1 4) is satisfiad. Moreover, (1.8)
'implies that, for each t é]o T] the sequence {ﬂy (t)- t)\\
3 z kdi-—du} 1s noninereasing. Therefore, for each’ GWEF,

there exists a constant Cos N (1ndependent of t), such that

ek u yn(t) SO e b My e ]o,ﬂ ik

| v,00M) -cq(o)\\ —> G,

In particular

(1.10) “yn'-—uu > T%Cw, '.“di‘wéxu

L (o T,H)

"By a standard reasoning (see [2 D 1921) we deduce

aid m fhin L am,
(1.11) ¢ (002 at & [T B0

o

O &3

. T ; .
(v, (0" )-af + jum)ueat)?—, for some qED(A),
8 <3 0 '. hd PR g

Let (y ) be an arbitrary subsaquence of (y ) such that
e

ynk BT y, as k-—>@@ , weak-star in L (o T H).

Then, it is obvious by (1.11) that

3,32) t% .3 té —gl, weakly in L2(0,T;H).
_ at s at _ s s
Moreover

{1"15) y?’l (g) m,___,:;... y(“{;), weekly 5.?'1 H Vté “O T]

becsuse
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SAURN) [o 2 (o) + vo(o)] as, YeeTout],
L |

In what follows we intend to show that yEF. To this purpose
let us remember a simple lemma due to Baillon and Haraux [1]

which we need here for the particular case of subdifferential.

"Lemma 1. Lot '\{/ t H —>» ] -0 , +Oo:| be 8 proper convex and

lovmr semicontinuous functionJ where H is a real Hilbert 8pace.

lﬁhkég'f/(zk) geg')v v), by -——rh weakly, 2z, _->z

weakly, and 1lim (b -8, 2 -v)=0, then h € 2'a\fJ(v) and
. : k—=>00

g€ ?y(z).
Let us now define (iIJ :Lg(O,T:H) 4——9-3400,(29 by

TS ¢ TR s
o {5 Sy Sgimess

+0p, otherwise

It is easy to show that ﬁg is proper convex and lower semi-

continuous and we have

(1) wE ng(z)» & witre thazit), ea.e. t€jo,T[

The following calculation

T

oé- S (yn‘—w,té ;.a_f,td dt) at
: e w ¥ ‘

: T .
. L

) . s
m,%'r% “y(’T‘ ()“2+1/4§ y# “%““’"2

Lo [} ¥, 10 o 2 -y, - @] ?},-’v‘wef



and (1.8) imply that -
P R : ;
2 dy = 7
(1.15) 1lim S (yp-@ t%(f- ) -t (2- 20)) at=0 ,
: n—->ao 0. - il 3

Therefore Lemma 1 is applicable in the space 1.2 (o TH)
dy
with YZ% ’ k s‘t%.(f --—-a—-{l(-—-), Zp = ynk g =

= tﬁ(f - ), and v aCO . So we conclude that

el it gl—e Aw and f- .9-5& € Ay.

Using (l 16) and the Well—known formula for the computetion

of —=— dt y’(y) {see €. [2 D 185]) we may write

7 e
(1 17) T?ﬁ/a G ly(r)) - 3/2 ég y) - § 202 &, G

S B
;_ S e [(f’dt \\ I dt )] e
S | v

e TR

Since we have

T ay,, | | :
’ t%(f - £ o0y ) atec €G0S @ )
at o Tny n,

T | ' il
§ ¥ (s - 2, y-w)at éé(y) = (F(CO)

it follows that

and

S fa.38) S thr - 42, Py, 15 2 S o e
; A ¢ Hoyek -0 : '
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i et £ gﬁm : cﬁ(yn .

From (3415), (1.18) and the lower-semicontinuity of éﬁ we

. obtain
(1.19) 1im ,“’nk’; QP(y),
On the other hend
- (ioéﬁ)' T5/2 So(y i 3/2 i)(yn =
dyn dyn

_3/2 k k
greg] {:
Substracting (l.éo)_from (1.17) =nd using (among other things)

(1.19) we conclude that

T o dy 2 e
T i n
linm S t3/2 ﬁ dtk - qa’ n at =
k->00 o : £ at

.__,'m ,;,3/2 [ (jf(y.(T)) = 50(.ynk('r.))] 2 q. |

o S k =3 co
Therefore
' dyn z . : ;
(1.21) t5/4 x 3 515 ddt , strongly in_Lg(o,T;H)
_ ' at kaw' , s
“and
(1-22) (y (T) (y(T))
50 n : k= OO 50

Since dy/dt = dw /at (see (1. 12) and (1. 21)) 1t f llows that
yeF. This along with 1.10) 1mplies, by virtue of Opial 8
lemma {see, €.8 Ll, pgloj]) applied in the space LE(O,T;ﬂ),

that there exists @ € F such that {see also (1.2))

v
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i G : @
¥y, ——> &, weak-star in L, Lo, T-H),
T :
Now, all the assertions of the theorem follow from the facts
already proved abova. We remark only that-(i.22) can be
analogously derived for every 't e;]o,T] , and by Arzela-Ascoli

Criterion one obtains (1.7). The proof is now complete.

.Remark l. Let A : H—>H be é maximal monotone 6pera§or such

- that A - al 1is 'still monéﬁone for some a§>o; Assume in addition
that (Al) - (A3) hold. ﬁypothesis (A4)'is'npw automaticallf
satisfied. Indeed 1f.we_denoﬁerby ué(t;x) the solution of

problem (P ) then the operato:”Tj :H ~—> H, defined by |'x =

uo(zj)+d,-is a contraction (with the constant o 2 )

« By
_Banach‘é fixed point theorem there exists a unique fixed point
6f.r\, therefore problem‘(i.B) admits a unique solution Cd*}A'

Performing a simple calculatibn one obtéins

(1.23) |y (t) - (01 Lo v,y (8- e)] + la-af ),
M-t G]O,T} :
from which it follows thét

(1.24) 1m | g (t) - &7 (0) s SC € ]

We remark that if dn;d S oy then .
(2280 52 o wdtde iUt & 077%8 L u (81- 6 100])

Mt é:]o,T] .
It should be noticed that, except’fbr this particular case
4n which A is strong monotone, we failed in the attempt to

find some reasohable conditions assuring the existence in
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the boundary value problem (1.3).
Exampl
Let ) denote an open and bounded subset of RN whose
boundarY 2f) is smooth enough. Let :}3 be a maximal monotone
graph in RxR such that o éf(o) and D(jg )==R. Therefore there

xists a continuous convex funetien-J : R -> R suoh that

:ﬁ 9 j., We consider the following problem (see L? o.20é] )

| n ]c>;00[::x.fl

o)

;%%“'f‘CXU : §'(ﬁ) J-a
o) L aieay AT W 4 Soagee R ?_Q
uf{o,x) = uo(x) " on _(l.

; . . _ -
We remember that the function 50: L2(_Q. ) -—9] -, +00

defined by \ 5 £5 |
a d ‘."g j{u)ax, 1t
<ff“_), - wen(Q) ena j(u)e LM (L)
ey o , otherwise, |

is oonvex‘and lower-semicontinuous on Lz(jl); The operator
A =-—(Jjo: 12(Q) —> La(_(l) e erthiiangl -
Au - -A u + ﬁ(“')
and the closure of D(4) in L (fl) is the whole of L (Il)
because D(j%) m R (éee [2, D 89]
' Probioo ki;Bé) can be uoderstood as the-followiog Cauchy

problenm
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"%76 u(t,.) +'Au(t,.)’s'o. t>o, in LZ(«DJ
(1.27) '

u(o,.)'z Up. e

It is well-known that, if a "forcing" does not exist, ul(t,.)
converges expohentially 15 L2([l as t-aco; to o, the uni&ue
stationary solution of the problem. . »

' Let us 1magine a dosing process with some Tf}o and
dtgl,(_QL), a £ o. Then, accordlng to. Remark 1 (whose assumptions'
are obviously satisfied) u{t+n T,.) approaches | a>(t,.),
'tejo,T] , 88 n-»co , Where d#ﬁjsAthe ﬁnique sblution of thev

problen

L]

4 —g_—:c' @ (t,.) + A‘co'(t,,)ao_, 0<tLT, in LE(Q)
(1.28) 3 : ; s
CO(O,.) = CO(T,‘) + d ( )y

and oertainly GJ# o &

This example may be of physical interest. Indeed, if
1, 26) is interpreted as the hesat equa*ion,‘then a dosing
process as described above can assure the preserving of a
nonzero temperature u, when the time t tends to GO . In
other words, a dosing process generated by.an impulsi#e
distributed heat source - can achieve an effect which 1s
spmehow similar to that aéhieved by a periodic “éontinuous"

heat injection.
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2, Evolution equations wifh,a measure as an inhomogeneous term

It is easy to see that the function u given by (l.1),
restficted to some interval [p,b}, 1s of bounded vaeriation
(ueBV(o,b;H)) and satisfies the'follqwing Cauchy problem

A du + Au’ -9 fb ; in M(o,b;H),

(2.3.) :
u(o) =X

where M(o,b;H) represents the dual space of C([b b] ;1)

/L-—z dg, with i e

alt) = g (8] + S £(s)as,

g1 belng & simple function (glz o on [p f] g1~d onj]T Zil

gl=d2 on ]2 5 Bf] and s0 omn, such that the interval [b ﬁ] .
to be eompletelv covered); for some vEBV(o,b; ;H) we denote
by d4v the measure 5eqeraued vy Vv by means of the Stieltjes

integral associated to it, that is
—eed2.2]) dv(h) = § (n{t),av(t)), ¥ nec( [o,v];H).

¥We also recall that for every‘/uéim(o,b;ﬁ) there is a function
veBV(o b;H) such that /u,a av (see (2. 2l). :
It should be noticed that *n the general . case When//kzdg
is arbitrary in M(o,b;H) it is fairly difficult to investigate
the existence of solutions to (2. l) The rest of the paper is

intended for presentlng of some facts relating to this problem,

B
@
A
et
=
]
f'?'
(41]
¢}
o
o
=
®
¢

i

u-g Eq. {2.1) formaly reduces to a
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we obtain by (2.7) and (2.9) thet

(2.10)7 n 2t et (1+,ka)“1'(z>\ +g)“ e H) CX

Thr_oughout the tex’fs C repreéents a generall pdsifive constant,.

Next, by (2.7) and (2.10) it follows that there is gL (o,b;H)

such that;(onhsoﬁe éubsequences) iy

(2.'11) 'Z>\——-;:£>Z » as \—>» ‘o,. veak-star ‘in_ Loo(o,lb;H)

and .

(2.12)  (1+ X A7 (2, ve) —> zte, a8 Ao,
e weakly in L (0,b; H)

Eq. '(2.6) (where z=z>\) can be written in the equivalent form

; | o
(2.13) 3+ ~B,(-—-—~)a.e.onob

>\ g € .?)’ E ’ 3 I
where S& is the conjugate function ESSG(‘i&vG‘d tc y)l Using
the definition of subdifferential we have, in virtue of (2 12y,

| az e oax
G- g0 - nra 2 e,

8,684 télq,b'\: , and ¥y € H,

Which.implies

(2.14) S (JO)., ) o i

Oon the other hand, the definition of conjugate function [2,

dz)\

EY

Po 52] leads us to

e dre -  azp
(2.15) 39)/_( s D +JFW3\ ’ }\. .)”

.7‘50")(W+ W> ))



= )6 -

where W, € Int D JD) and w )\ is the function defined as follows

az /dt az -
A : Fadt
d \\dz-;\ /ati| _
: paE dz. - -
0 y it T =0,

As ff is continuous at wo, by (2. 15) combined with (2. 14), where

S)> o is chosen to be small enough, it follows that
dz}\ : ;
% } is bounded in L (o b} H)

The‘refére there exists a measure Dz d24 in M(o,b;H),

'1:4'6 BV'(o,b;H), such that, on some‘subsequenée,

Qg Bpe _ :
(2.16) di" >'\> -, a8 '}n—‘yo, wesk~-star in ‘.’i\c b H)

Let p€H such that (some subqequence of) &2 (b)} oonverges

weakly to D, ‘as W —> 0, Passing to the limit in the equality
b on | |
5 ( s *l)dt e A(b) n{v)) = (Eo,h(o)')

- - &0 (2, —%’%)dt, 8 newi(o,b;H)

one obtains |
3 ) - o - (zo',n(o.)) - go (Z;%—%)dt,
é&-hew_l’l (o;lb;.ﬂ).
e e étner hand FHEi “

(%, ﬁi)dt

oty

Y(m) = (2 (5], B(d))- (2 (01m(o))-

A@Lnew (obr{)
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From the last two relations it follows that %, 1is a function
from the equivalence Qlass %2 (with respect to the equality a.e.

onA[o,ﬁl), and
%l(b')‘ = P‘r‘ %l(o) = %0
Summarising, we have

; Z(o) = %, Y =ag , and
(2.07) , .
2 %A(b)———e>l(b), as A—>0, woakly in H, on some

subsequence,

where % was identified with zl."
Now passzng to the limit in (2.8), after this 1nequality
was integrated from o tc b, we pbtain exactly (2.5) by means '

of (2.12), (2.16) and (2.17). Thus the proof is complete.

Remark 3. In general, the solUtion off (2.3) in the sense of
Prépositioﬁ 2 is not unique, as the following simple example

shows

; dz +BIK(z+g)90, gl 29 .,
(2.28) %
: ?;(O) = 0
where K is the real interval [; +a{ I is the associated

indicator function (1. e., I (y)=0, for yEK, and I (y)= +c© ;

: for y € e 2 1 ontee [o,p,] e o, +oo[ s defined

: l 1 £ o
glt) = &
e 0 if

- Then, for instance, the following functions belong to the sst

by

bl 1

I

M

4
t<

|
i~

Mol 1TASY
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of solutions'to (2.18)4in the sense bf'PrOposition 2:
e e

2t "{ o

e 5, 12 - 14tL2,

for every E_é_[l, 2.

We conclude by noticing that in certain particular'éases the

solutions of (2 %) can be mors regular.

and. A is bounded on bounded sets then, starting with the

approximate problems (2. 6), it is easy to see that (2. 5) has

a unioue strong solution z—é W (o,b;ﬁ), S0 (2.1) has the

unique socluticn u = 2 + 8o
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