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ON A LINEAR THEORY OF
RECURSIVE-ENUMERABLE SETS

SORIN ISTRAIL

Using'rational-like'operationé (e, UV, %) with matrices,'we

say that a 0-1 matrix M=(e )W P B0 le fisurationgl «ifs it
. : > )

w,w'
belongs to the rational closure of a finite set of Q=1 matrices.

We show that a language L € K is recursive-enumerable (r.e.)

16 el lomilay 1S its -characteristic vector 4 = (d(w)) K-aé-is a

We
component of the minimal splution of a linear-rational system of

equations, i.e. of the form

B

ixig Myg X+ eee ¥ Xy + X5y, 1gigt

with al},Mij rational apd Xi(o,

y With finitely many 1’5.

A similar result holds for the family of cohtext~sensitive

e

setis o[ CS.) in connéxion with systems defined in terms of non-
singular rational matrices, .
Normal form theorems (two equatioﬁs in_two unknowns suffice )
for r.e. and CS sets are prgsented together ﬁith scue pictorial.'
representations of_rationai matrices (expoﬁential band, block
diagonal). .
‘As an;application~of the.above characteriiations, the families

of r,e. and CS sets are organized ss algebraic theories (similar

B - \ & 3 \
with the ADJ (1976) eonstruction®férvcontext-frecssetsls



0, NOTATIONS -

In the paper we work with matrices and vectors (columns) Wigh
elemént from.{o,l} . For a column 4, dT standé for its transpose,
We use + (or zc)zmsfolluws: a) when epplied to- vectors or
matriceq it has the usual meaning of addltlon, b) when used on i
the set {})]ﬁ} it has the disjunctive mesning, i.e. 1+l = 1+ 0 =

= o+1=21,0+0= 0,
" 2" stands for multiplication of numbers oOT matrices.

We refer the book (Salomaa (1973)) for all unexplained

notations and results in formal languages theory.

1. LINEAR-RATIONAL SYS1sMs OF EQUATIONS

*‘

Let V be an alphabét, and for any LcV we define its

characteristic vector as an infinite V - inﬂexed o~1 column Ghiarw

=g u)y e
(L) = (d( ))ueV* defined as usual by

V ,.d(u) _ 1 ) uéL
: a5 ug L

il
}

The inverse function Lang, associates to a.V*: indexed o-1
column d = (d(u))ué:v*’ the language whose charascteristic vector
Teiid, d.e.

' me(d):{w‘dw)zi}.
0of course, for any d and L as above, We have:
Charv'(;ang (@) = 4
Lang (Charv (L)) = L.
We shall denote DY 8 the-vector Charv{ ), where Qs is the‘

S o . @
empty set. For a o=l finite column C, we shell denote C~ 1ts




= o
o-completion .to infinity, fiaee Af € =-(C(A>;..., C(u?)T,

e A).,...,C_(u),o,o,...

then

)"I‘_' ' s

Let us consider a collection of finite o-1 matrices, all

having t+1 column:
‘m‘j = (¢03'5-°"’?tj)_ 9o l$jspo
We shall associate to the .set ml,..;;mp. a collection of
infinite o-1 matrices, all indexed by K ;(1£ where Ka.{ ,..,,n.
is an slphabet. ' N :

This collection will be called the rational closure of
Mysesesty denoted'ﬂ({fml,...,mé}, o s
* . v o £ -
Let be 9{ the Temily of K x Kei—lnaexed 0-1"matrices. An

element M oflﬁf is given by its "column form" as foliows:

(u)

(A) e
e, > ’”‘MGK*-

= (a.)

WWG-K*’ pese,yd

where 4
: W T

: = : L ‘ : " .
for any. M (dW)WéK;(- € R, let us consider the set of "places
of non-zero columns: E = iw ‘ W& K* % dw # 6} =

Because we are interested in the occurences of non-zero
columns, we shall write sometimes ME instead of M.
. We define the "rational" operations.on§2':

preduct " " Sundon M \J " andsStar " 2 "

- i L ] Y. Y 3 :
Let be My = (Qw)wek* . M E.n(a W')W'GR* belonging to?{ .

We define: : .

M M' = M
E $ B' = B!



where: 4
T M uzzw,aw. d'w')ueK*’ where
i, d'w', (dv(f‘ ),...-,dév),....)T.(dgv,(h),...;‘d;v.(v'),,..)T
il d‘iyl_)v. d%$y2) e
NG - ‘ yeK“

r s ; A ] e
- We remerk that 4 = B or dr - © is equivalent to dw’dv'v' = 8.

Therefore, Z dW ° d';w' # 6 iff ueER’', : ' |
- u=ww' & -

An equivalent definition for dw.d%p'is

dy e 0 = Charv(Tang(d_)Lang(d’ e

T ey 39 o5 » £ |
IT. Mpgyp = e ! QW)WEK*’ where - . : i

Also, equivalent, we have:

SR S A ST ol BN T

e
a, +d; = Qharv(Lang(dIW) v Lang(d‘:v) e

I, Whes by W o 5 WItH WP e (G5B as) and

ns o = N
7 |
for” a1l s o, M;;n = Mpo (Mpe voo (M)aen)e
W—________’./
DEFINITION 1 n

The rational closure of a finite set of (t+l)-columns o-1

matrices, My,..e,M,, denoted 'ﬂ{{ ml,...,mn-} is defined as follows:

(] £ e = ‘..‘; . (3 I3 n e-0 a -\q ] 2 f > L e € i
(J.)‘ if md (L'ng 10y 5 —C‘t,])‘ igigw thleri for all 1,3,
. . i
,1,$1.§t, _L.{(J\Yp we have = : §

o et



<52

3% . A OA .
MSA\; (C;;j » 8 Qs GZI{ {ml,.._;,mp} and.

.).7 .z- ~ A 0O a v i
M{a‘:}' (9,7..,9, Cij,e,'.,.)em{ml,...,mp} :

: -4 ’
< +*
(2) 4f Mg, M. eu{{ml,.,..,mp})E, B'e K4, _K\z{a‘l,“.,q,‘t,} :

Mge MY, Mp O Mg, (ME')*em{ml,...,mp}.

DEFINITION 2.
| A matrix M is celled rational if there exist two positive
integers t and p such that M is a fo K*.- indexed o~1 matrix
belonging to ﬂ{{xml,,o;,mPE for some (t+l)-columns, Tinite o<l
'matric;s ml,.;.,mp. ‘A w
A coluﬁn_d is called rationsl if d =.Q? for some finite o~1

vector C.

e —

We shall introduce a class of systems of "linear" equations
which use rational mstrices and columns,

DEFINTITION 3

A linear-rational system of equations is given by

=

{Xi = M Xl + o o 8 + Pv’[ Xt + Xi(o) )
‘ l\<1st
where for some ml""’mp and all 1i,j], lSi»jst ; M(U)éiﬁ{mi,--

..,mp}, and Ki(o) is rational,

We shall call a linear sum as the above right sides, i.e.

t
'ﬁ: M(lJ) Tl L, e, 8 rational polynomisl.
£ $=1 J i(O) -

Before to use the linear-rational systems for the charac-
terization of the characteristic veciors of ' T,er sets, WO

remarks are in order.



REMARK 1. Each linear-rational system of equations has a unilque

; MIN _ (MIN: -y MiN, oits
minimal solut ™ G
ninimal solu ?,on "given as usual bv X = (X, "'")X-(: )wkerc scbr

l<tat:

A ) g™ e R i)
1’1)0 3

and for all ﬁ)l '

v ; (

W 5 i il
xin = D s S & )l

t

If we do not 1impose restrictipns on matrices in systems of
equations, the characteristic vector of any subset of Kaecan

appear as minimasl solution of a system.

REMARK 2. Any dgCV(K* }¥4s *111n1mal solution of an equatlon
X = MX + cnar'v(K"'),
where M is given by: M = (XW’W, )W,w'eK* with

’ i o ' il
i ' =:gl , w=w' and d = 1

Then we have:

2. A CHARACLMRIZATTON THEOREM

In this section we discuss the relation between linesar-
rational systéms of equations and the characteristic vectors of

r.e. sets,

Let Ty ,0ee My be (t+1l)-columns, finite o-1 matrices and

K* l’oon’ 1,:%

PROPOSITION 1. - ' = e G

5 sz A4y r ) ‘
For any M e;W{iml,,..,méBJM:(dW)W‘:Kﬁy thers exists a non

deterministic Turing machine TM "computing” M, i.e. beginning
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Figure 2 The machine T(M? )*

Figure 3 . The machine M1u M2



(41
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" PROPOSITION 2

-
with weK* on the input tepe, will eventually halt with u on its

"output" tape iffj}élﬂng (dw).

" PROOF : gE e

It is clear how to construct the Turing’machines which compute
the matrices M'j and M:j for all i, j, 1€ist 'l< < 5,
PN fay s 2 “j"P
Now let us suppose that we have two matrices M4 3 MZ & -
u({nﬁ)"""3;9 and the corresponding Tl,T2~computing them.

The Figures 1, 2, 5 show the structure of the machines

s iy SRt
o SRR T gy M UM,
a

Every componenti of the minimal solution of a linear-rational

system of equations 15 the characteristic vector of a r.e. set,

" PROOF

To make the writing easier, let us consider a 2-equations.

system 7

(2

(11)
X =M X, + M L X )

; (21) (22) .- : 7
X, = M X, + M X+ Xpg)

Let be Tll’ T12’ T21 ) T22 the Turing machines given by

the Proposition 1 which "compute" the corresponding matrices.

(1)

We shall construct a nondeterministic Turing machine T

" which accepts Lang(X?iN).

It has one read-only input tape and two read-write auxilisry

tapes.

The Figure 4 shows the construction.




'au}iliary tapes

i)

S

input-tape”

(1)

Figure 4; The machine i1

When a werd of is placed dn the input tape, T(l) begin by the

initialization of the auxiliary tapes:

Initial step. Nondeterministicely selects ¢ word. from each
- 5 = = ) ‘7 R ~ s
finltg set Lang (Xl(o)) and Lang (&2(0); and writes theg res
pectively on tape 1 and tape 2.
.Next T(l) will repeatedly perform the following'Basicﬂstep,
until the machine will halt, or else the task is continued for

ever,

Basic step. Suppose that on tape 1 and tape 2 there are two

wofds wl and W2. The machine behaves as follows:

1

I. Tests if & = w,, If "YES" it accepts « and halts,
ofherwise continues by ITI, :

TI. Nondeterministicaly - it selects one member of each set

A o ke
{Tll, Tlg}and{'rgl, T,,0. ‘17 they sre Tj; and T,y then take W)

respectively W, 8s inputs and write their outputs respectively

on tape i and tape j.

0

' : 1
Let us remark that when a ‘word X is on the input-tape, T( )

simulateein perslell on tape {1 the work of the system of equations

in order to obtain the words of Lang(X?iN), for i=1,2.



e

When a word on tape 1 is obtained, it is verified iF 4%

equals o . "YES", then it accepts X .,

Therefore, ol is accepted Iff e(e MiN

a

To obtain the converse of the Proposition 2, which will be

the subject of Proposition 3, we need the notion of T ~function
and a "Translational™ Lemma for: it. l

(T -functions are introduced 1n Istrail (submitted) as e
basic step is studying primltive actions of generative dev1ces.‘
Ih'Istrail (1979) they are implicit used to obtain, generaliza-

tions of the ALGOL-like theorem).

DEFTWIWION 4.,

Let K = {al,g..,e H be an elphabet A 1Téfuncfwon overﬁ?t o
K_ K

is a pair W= (1,R), where h is a finite substitution h:
and R & regular set over K. 7

x* < ‘ g
It is a funetion w:2° —> .2 defined by T(L)=h(L NR).

: M=
We shall associate to T ‘& rational matrix M as follows.

7 o o214

w,w 'w,w' e xPhsvIere ar
{l . W‘é iw n( $¥'yNR)
e g =
s ¥, o , otherwise

: v :
That is, if M "= (dw)w‘eK* (in columns. form) then

w w
afs M w= MR

b sufon nER, . G- Charv(h(w)).

(i.e. &  # 0 iff weR), and

LEMMA 1,
’*_”T“” .
For every T -function over K, MI belongs to ¢Mﬂ;n} 5

% _
some IlnlLe { 1& + 1) - columns matrix m,




el Ee

construct a finite matrix mh such that M

T

€ My

In the finite set U § h(by) | 1g1¢ tYy, let ¥ be the word,

meximal with respect to the lexicographic order, and, suppose that

in the lexicographic enumeration (with 1 assigned.for A , 2 for
bl,‘etcf) itvis assigned'to_ﬁrthé number p.

Then we‘cohstruct e o pX(t+1) matrix:

m u'(CA_,

“A

._-oo,C'

(w),T
1w)

with

C§u‘) =.{l. » v €nib,)
o , otherwise

-We have that MTré l’l{{{mh} .

Indeed, let us.consider

'MA = (eAf.é’ Byaos), end

o it :
el o ol and for a1l i1, 1gigt, C;

Cl,...,Ct)‘,where

P e 2
1

A : o a v
NI{biS = (9,000)69 Ci,e,non) for sll i,ls 16 't.

i-1

Now, the structure of R, viewed as a regular expregsioen,

provides us with a sequence of rational operations with the above

matrices such that

4

Mo - M g M{mh} 3

* X ; i
A5 :f’:}e(——->2K is a function, we associate to it the mairix

for all WGK*.

Mg' = (dw)wék*, Where i = Charv(f(w)),

i

*.
The function f is extended to EK by £(L) = Uf{_f(w) ‘ WeL} 2

for all LC.K*. . : e

TRANSLATIONAL TLEMMA

The operationlfevvh;ﬂf provides us with the.following two

"translations":



e

(1) The composition of functions "o" translates to matrix

multiplication G TR B R

]
SR 5 aaletii )

e ) 1.

yfof az‘Mf* el

(2) £ applied to L trenslates to M multiplied by Charv{L),i.e.
Charv(f(L)) = Ml Charv(L). O

f'

; A T ; 2 - %
Ve prove only (1), Let be I = (ew,w')w,w'éf R*,M = (ew,w')w,wéK

w;w''w,w'e x*

T 1" = : " -~
We have e w,w' w% ew,w"* ew",w and e ' 1
iff there exists w'"e Kx— such that e p=l = e'n e By the de=
W,W WL,

finition of matrices 1t follows @» nzl iff we f(w") and

e'

W w = 1 1ff W“éf i

Now it is clear that

er Lv =1 iff we fof' (w ) which yields ().
i R : B

The converse of Propo¢1tlon 2 is a]so true.

PRO“OSITIGN 2

For every Turing machine M accepting the language 1 (M), there

exists a lineer-rational system of equatlons such that Charv(L(M))

{s the first component of the minimal solution of the system.

PROOF

Ve considef a Turing machine M as a revrltlnp system (Salomas
(19751)W1th @ the set of states VT the tape alphabet, Ql C Q the
final states set and F a set of rules. Let be XO, y two new sym-
vols and Q, T the "barred" version of Q and respectively V. e
VT is the boundary maiker and B is the blank symbol.

We shall simulate a two-tracks tape}with two-placed symbols.,

Namely we consider the alphabet -



e o

ol e

8 E. v o
V“SL(d)\eevT' déVTU.VT}-
We shall use the notations (VT) E 5(( g,c & Vm} end
( T) % e eVT‘lJ .
For simplicity, a finite substitution h will be specified by

a set of context-free rules givén only for the letters)for which

the substitution is not identity.

For example [f(e)‘—%'(e) t:)-+>‘(§)A', S S

a Bl

S e T8 \ 8, € €V, seQ] is the substitution ‘ho
, e e, -
nal (20 =8 00, (9], Bols) = {s,5Y

() = § )Y tor eevy, deTy

Note that [ ] .meanq h (X)

and

 <smsdin-

We shall as sociate an equa+ion to each type of rules given

by the machine,

(1) OVeI"ntint.. s a->s'b is simulated bhy:
VTﬁf

X =[’s'_., is%, (Z) = (g)] eevT]-(hO(x)n (VT) < (ET).

(2) Move-right: sac —» as'c is simulated by:

{-— L {2)s @4@1 eeVT]

() ) R o) o

(3) Move-right snd extends work-space: saj—> as'rg is simulated

by |



Lo

-5 Q) Gl>s, ()-—a(e )\eevT]

ST i g T T
b, (X ) (vf_,) g Ok

Similar equations are constructed for (4) Move-left and (5)

Move~-right and extends work space. : A e

The < -functions of Definition 4 express the right~mémbers
of the above equations. '
= ey’ o * i
CLet Ty = (b, (QUQ,U{(«L) [ eeVT,deVTUVT}) ).
Each equation (1) -~ {5) containga specific fr-function- 1ﬁ=(hi,Ri)
; e ; ;

such that equation (i) can be written

o = Tq

- To complete our construction, we need two ¥ -functions for the

AR

"initisl" and "final" steps.

Let us de—fing hinit by h, 4. (x -{ji—v!#} e (Y V) =§’(2)"T
So] a§VT~{$¥S§5=,nd hi._nit ((a)). ={(a)1] for agVyp. We put now
Minit = (hinit’ ((vr;;) U{XQ’T’})* ). =

The function T, is given by

VAS L W
T = Wogns (0] (V) e
- i cew,B’: &
where ho, (( p )) = hfings) = A for se Qfa hfin((b))=a for

sc Tp~$4,6} DTy

Let F(i) be the subset of F consisting of all rules of type
(i), for l<i<.§ . If reF{i) and the equation "implementing" the
wonk of T JdseX = W (7n;(X)), we shall write 1F§ instead of vri.

- a2l
5 3 A A
Alco denote hi ’Hi b

W=
'The following system is associated tc M, in order to

simulate its work by equations:



£ n

T o= Weyp (X |
D 5 S RLFFYRIR Y %,Xo} W

X = i W0), 15185y reF(i).

N JMAN, . o e e
1 YMlk, Xrlhl is the minimal solution of the system (w -function

MiN

are continuous) then Y = L(M).

"The function 'ﬂ;implemenfé the "nondeterministic choice of a
7position7"where airule of ¥ to be applied. It can be "separated!
to work alone. Also we use "+" defined on | -functions by: (10 477"

=M(L) 24 TTQL), in order to express the equivalent form of the

:syétem:

o

0 . L ;
P st T, 2, TEL BN
. : rellt) - :
1< iss‘ : “"“ ;
Let be K = TUQUQ u{xo,y}u Vs i.e. the totel slphabet used.
Because_ali T -functions which occur 1in éystem S' sre funciion:
from K*—to 2K*.we shall use for any +ar-function I its matrix
associated MTr as well as the Translational Lemma.
Let be Xl,Xé ranqe in CY{K*L), the characteristic vectors of

o

subsets of

In the new unknowns, a matrix system is associated to S' as

follows 1Tfin
X, = M )
S":{; 1 T e TTT
X2 = (M il’lit +M-’ro 2 2 ‘ M " )(X2) o+ XZ‘O)
reF(i) ;
1gigs
€. =

It is manifest now that S" is a linear~rational system of

equations and
q



=6 =

T,’ 7 Tr_ ) .'T - hr :
M fin, " 1n1t, MO M emg oy n’ - init, mho, o \

14145, rer(1) ) for all i, r, 141<§, TeF(i). (Note that
the finite matrices mh are given by Lemma 1).

Applying the Translational lemma we have the desired result:

PfiN o Chewv ; g

As @ consequence of Propositions 2 and 3 we obtain the
following ’ '
THEORWM ik

A language is recursive-enumerable iff +s characterlstlc

vector is a component of the minimal solutlon of a linear-rational

P

system of equations.

@

A_ratidnal matrix is called singular if there are ones

occuring in its first row. Otherwise, it is called non-singuler.

o i =tee )

1 i o s
w,w''w,w GK*,thcn M singular meens that theme

exists w e.K*'such that e , o +=A. This shows that erasure 1is
,
permitted on some letters.

A lineer-rational system is called non-singuler 1f 511 s

rational matrices are non-singular.
. Non~-singuler linear-rational systems prov1des a similar
characterization as the one in Theorem l\Yfﬁls time for context-
-sensitive sets.
THEOREM 2 ,
A language is context-sensitive iff its characteristics

vector is a component of the minimal solution of & non-singuler

linesr-rational system of equations,

COROLLARY {The normal form for (non-sinpular)linear-rational

A lancuape is recursive-enumerable {context~sensitive) iff

LI AR




w7 o - —

its characteristic vector is a component of the minimal solution

of a 2«equations (non»singular) linear-rationsl system:

et

=M, Xy +9 X

Xy 1%

1461

: ~
X2 = M2Xl + e

ORI

5. SOME PICTORIAL CONSIDERATIONS
| As in the classical theory of matrices, a pictufe showing
the areas of non-zero elements, helps-ito undérstand'the structure
of the matrix_(e.g; trianguiar,-band, block-diégonal).
Wé present such pictures for our rational matrices, Note that

hachured areas means, possible piaces ef +1 Yg,

e

1) A generic non-singular rational matrix is shown in Figure 5

It is an "exponential band"

- o Omd
- o=t o=
1

Figure 5: . Figure 6: A g‘ngubir
A non-singuler rational matrix ffational matrix

2) A generic singular matrix is shown in Figure 6. It is an
"ultimately upper curvilinear-triangular".
Let us remark also that if we use simple Turing machines

thesproof of«Proposition 3, the picture

3

Stockmeyer (1974)) i
y

of the matrix which essential simulates the work of the machine,

| Medd [FH60



- 18 ' ol

i.e. :Z: M y- 18 exactly a block—diagonal. That 1s & "normal
L lgigs -
‘ref (i)

form" for the exponential band of Figure 5.

This picture is presented in Fipure 7.

!/7/ . ' e
|7

0% e ve i

AN

Figure 7. o el

4, AM APPLICATION: THE ALGEBRAIC THEORIES OF R.E. AND CS SETS

As & benefit of the characterization presented in Theorem 1,

ermn-

the family of r.e. sets over Ki;=§al,...,at3»can'be organized as

an algebraic'theory'R.E;; in a similar way, in which the family

of contéxt—free seitst ifs orgénized in (Wright, Thatcher, Wagner,
Goeuen (1976)). .
== e shall use the notations and terminology from that paper.

In order to define the above alpebraic theory we need an
extension of the notion of rati@nal matrix,

To do that, we add in Definition 1:

() W { ml,...,még 1s closed under matrix multiplication. The

reéulting notion is called extended-rational clesure, This glves

now a sense to the extended-rational matrices,

An extended-rational polynomial is a rational one with all

ational,

=
Q)
ct
=
',_J
(@]
@
[63]
4]
>4
Gl
(@]
=
Cu
@
o
I
=

A linear-extended-rational system is a linear-rational system

will all right members extended-rationsl polynomisls.




e
It is clesr that Theorem 1 holds true when "rationsgl" is
replaced by "extended-raticnal”. o
Let be Var = {XI’X2""} a ‘'set of varisbles.
We define R.E. (n,p) as the collection of all n-tuples

Fn(Fl,...,Fn), where for all i, 1gigwm, F, is an extended-rationa:

polinomiel in p variables, ‘i.e.

Fi(XpseenX)) = ﬁ ity digy
e e )

o -

- with MiJ € S{ . extended«rgtional :and Xi'(o) rational, ls is n;
:ls js D : ' : :
Ii_._,_IQ,(n,p) 15 a striect poset with " """ idefiined as follows:

e e

¥ ' iff fon ol § end el 4.,

Fi‘dl’oco’ )Eﬁ'{dl"“’qp)

Soe e 0 hav
3y e e

How 4,0 le OVERS ). g £ a8 16f Tang (d)‘gLang @

The bottom is L o = (07,04450,), where
9 N £

0; =. ? oij Xij+ @, 1gign, and Oij*is the
i :
everywhere-g matrix,

If F = '(Fl’uon,Fn)éRan (n,p)’ G ((Xl,n-l, ) e RaJo(p q

then we define FoG = H = (Hl,...,Hn)QJLEL(n;q) by

H (Xl’ohl’X ) = I“‘k(Gl(Xl,uun’Xq.),noa’.(}p(Xl’loi’Xq.)).}

K q

1sken.
The composition "o" 1s associative.

The identity 1,€R.E. (n,n) is eiven Al 1, = (Xl""’Xn)

(=4
(wnere X; can be written as 2 0 Y Haifll + 2: [2) -_X-+@§
e 1% JER YRR

. i . TN
of course /Bii is the unity matrix, which is ratlonau/;,

Now eny morphism F=(¥;,...,F ):n —>»n can be seen 10

n

correspond to a linear-extended-rational system,



B

¥We"solve" F by finding lts least fixed-point: if Fk= HoFo...0F,
| . : -l R T

; : K
the sequence <;F o) J.n ot> ‘<>.o i{s a chain in R. B.(n o) and

LJ FX Ol is the 1east fixed-point of F,

Er x? is the 112 projection for n-tuples, we can see a linear—

extended-rational system'which defines a r.e. set,as 8 pair

o

<:x? AT _431Q> y Where x? specifies the distinpguished equation

of the system defined by F.

.

The corresponding r.e. set, which this pair defines)is x?o F

o

Similar considerations can be done for CS in connexion with
systems defined in terms of non-singular extended-rational

matrices.
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