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ON THERMAL EQUATION FOR FLOW IN POROUS MEDIA

H.I.ENE
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Abstract. We establish the form of the energy equation
for the flow in porous media. We show that the dissipative term
as well as corrective convection terms must be taken into consi-
deration. For the natural convection we prove that the dissipative

term: desapears.

1. INTRODUCTION

Jalis Generalities

In the general framework ofvthek"homogeneization method"
(see Bensoussan, Lions, Papaﬁicolaou [}], or Sarchez-Palencia fZ],
as general references) we consider the motion of a viscous fluid
through a porous medium. The periodic geometric structure of the
"pores" is associated with the small parameter £ It is known
that the asymptotic process and the limit equaticns may have very
different structure if several "small parameters" such as the

osity coefficient are involved in the problem. In a previous
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are small, but in all these cases the obtained energy equation
was the conduction one.

In this paper we consider cases where the energy equation
involves the convective and dissipative terms also. The exact
physical meaning of the news terms which apears in the enexrgy
equation for flow in porous media is given by the non-dimensional

numbers.

1.2. General equations

,«We .consider .a parallelivipedic period Y of the s?ace
of the variables vy (i=1,2,3) formed by a fluid and a selid

part ¥, and X with smooth boundary F . We also denote by

£

Y. ‘Cresph YS) the union of the Yf (resp. YS) ﬁarts of all

£
periods, and assume that Yf (resp. YS) is connected. If &L is
the "porous body" in the space of the variables X, . we introduce

the small parameter ¢ and the fluid domain glf (resp. the solid

£
domain f).is) defined by

Q£f= ix; xeql, erYf]( ' Qts=llx; xe St XGEYSK

(3
If ¢ pE sl and zi denote the density, pressure,
temperature and velocity of the incompressible flow, they must
satisfy the equations of conservation of momentum, mass and

energy

€ £
¢ e @ Pt ”)E.k
o, = = = = +,)Xl 5 gff, (Gl )
4 Xy Xy k &
v
'BY¢ =0 (1.2)



f I3 Vj f
in Slif s and
3
= i o (1.4)

invSZfS , where fi are the components of the exterior body force
! (3 :
by unit mass, z;ik are the components of the viscous stress

tensor:

¢ LAy v P vé
Tix = (,)x + ,)Xi) | (1.5)

The: boundary ceonditions on [ are:

: :

Vi 0 | (1.6)
¢ &

£ If=T Is S (1.7)

(1.8)

S ¢
A %T-Ifz)\' L

B I n S =Gy s
In order to study the asympfotic process £ ¥ 0 we
consider the classical expansions:
€ +1
V. (x)= £nu9(x,y)+ gn V%(X,y)+... (1.9)
al i 1
pi(X)=pO(x,y)4-Eﬁpi(x,y)+... (1.100
€ - © 4
W= e, )t T (=, y) s (1.8
where y=§ and all functions are considered to be Y pericdic with
respectic to the variable y and n is a positive parameter to be

defined . dater (depending on.the data). The two-scale asymptotic



expansion is obtained by considering that the dependence in x is
obtained directly and through the variable y. The derivatives

must be considered as:

da P
dxi g DX

-

133 .2Darey s law

If we suppose that the viscosity is of the form r*’=r~£m
where M is constant (independent of £ ), it is well known
(see Sanchez-Palencia [2], Ene and Sanchez-Palencia F41]) that,

for n+m=2, the asymptotic proces lead to the Darcy’s law:

NO it ’D o :
Veme =tl B = p ) s 9
3 [ D% )
j
div _v°O=0 ; divyy_’_o=0 (1.13)

where po=po(x) and ~ is the mean operator:

A f 5
) e .d (1-14)
I¥] ;-
Y

The matrix Kij , named "permeability tensor", is defined by:

1 g 3 ‘
s 15 135
s Y ¥ Wiy : ( )
(@] i
She o Bp 4
v ,}Xi)y (1.16)

where w' denotes the Y-periodic flow corresponding to a mean
pressure gradient equal to the unit vector in the direction of

s Asee Ene and Sanchez 4] for details) and depend on the geome-

g ey

3 vy et



tric structure of the period.

2. ENERGY EQUATION

In order to obtain the "macroscopic equation" for the
K q

energy, we consider the caseswhere A’=‘X£p with constant A

in the twb phases.

First, ussing (1.11) in (1.2) and (1.3) we have the

boundary conditions:

7o '=T°,. (2.1)
i s ;
T R
= [S (2.2)
L g O p° (2.3)
/\fni 2y | E e 2y s
D70 ook Ap° Dok
Afniwi faT) = 1(7)2 33) s (2:0)
i Y; Vg i i
i 2 Qab NP
Afni(fa;Tc 2T) A i(’az‘ ’)T) s L2.a)
i Yi If i Yy
and: frem. (1.3) and (1.4):
n Lo > 0 Ar® = o ord 4 9r°
?fo g Sl vk,}yk + vk’)xk vquk + vy s
o o i
- N i &
=p €7 Zileen? 10 27 + e el e + el :
Jky vy Jky 9% jky Vv
Ayt A )
O g ey ' =2 oy
e".'kX‘r/\ Yk % Jky f\\,‘}":> T 4 i € dl\fy( A‘fg]:"'“;iy‘L )4



5 {nltgivx( AfgradyT°)+divy(,AfgradXTo)+divy( quradyTl)] +
; : 1 ; 1
+d1vx(,ngradXTo)+d1vX(,AfgradyT )+d1vy(,&fqradXT ) +
; 2
+d1vyf,\fgradyT Vb E (2,69

-

AP =2 e} el o o
0= ¢ dlvy(fasgradyT )+ ¢ ldlvx(,ksgradyT Nk

: : o) 1 oiEEE o
+d1vy(/\sqrade )+d1vy(A SgradyT‘)]+ £ |div, (A jgrad T )

: 1 : 1 . 2 }
+d1vX(A sgradyT )+d1vy(,\sgradXT )+d1vy(,\sgradyT el A

s 7)

where:
. % vé.‘ =9 vé’ 0 Ve.‘ @) vé
e4 = o+ L eq = J X
e - R e e

We shall see that, as it usually hapbens in homogeneization
problems, T° does not depend on y . From (2.6) it is clear that
the convective terms are significants if p=n. Moreover from the

Darcy’s law we have nt+m=2, and equations (2.6) and (2.7) ‘give

at order En—2=

2 D 7°

)=0 5 (2.8)

in YS and Yo respectively.

S
Moreover, from {2.1) and (2.3} this equation holds in the hole



obtain TO=TO(x).

Now, in the same way at order En_l we obtain:

2 [/\ij(y) Gt |y

(2.9)
VY /)x] r)Yj
or
2 ek Q0 LA
- (A D))= ~ (2.97)
v Y J ¥ 5 Pxy VY

This is the classical equation in homogeneization theory

(see Bensoussan, Lions, Papanicolau |1], Sanchez-Palencia

I 2])
and they give us:
s 5 4 ~ A O
Ry = i 7 ] _yh o WE
[ Gl - o) Neios (2.10)
j J 3
- v S ~
h_ X ]
/\i'jr \)\l](y)—*—xlk(y)”b yk ] (2{11)
3 (@]
T (x,y) = 93(y>2§ + c(x) (2.12)
, j
where 93 is the solution of the problem:
Find GjéH;ar(Y) with B3=0 satisfying
: (2.13)
f G vy -y

3
N e A A d r (%) € H (Y)
i ik 9 Yk ’)Yi - Y ik )Yk : &P per



At order £, the equations (2.6) and (2.7) with the

boundary conditions (2.4) and (2.5) and the Y-periodicity give:

ID !a /9 Vo 7
o 1 o a o 3]

& + o
?f f krb k quk r jky /byk

(2.14)

") " f) =
e i /\ b

in Y,where we admit that v](z take the value 0 on Yf . If we take
the mean value of the equation (2.14) we have succesively

(eguations “(F T2y 2 (PIT3) , (1, 16} o (LaLT) ando (2. 12) rare sused s

0 Yk Doy p e 1%
YS DY; V\ (y)%x S Q)y,.)Jayia;{( i) Ay (v\(,bX Jj)}ds:o

N

’() o) n 1 ? ) mO
{?)x. f’\ij‘y”faz.*q;)] T (x?] ’az)
i ] 3 il
o')TO"J__ - 5 ’;_o O

(f)ffk’bxk ‘fff o O

J
( rb';["‘ ® 1) ""’o o
\ffka\.y = P iy sis'axj
; J o~
o, .=(wl———§——) @2515)
1] k O
of)u*(.)(v p SKQ\)’ODVO : %v](z 1° ‘l
(!"‘e Tz o .J) e o N\« dV ok ZEX o "7] =
bOIRY Y 5| 7 0¥k 9k S =
Y
P VO V?'. ] V? rn 2 v(_,? 1
v Vi E '\vJ D3 5 3 S Sy =
)‘I . ("k gjk ; a_{j 13Y1 _’

e S o e TR A bR
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DY Ay, q k vy
o o
_.E{_‘ S ’ij /)V] e 2% o
= y= rA(K Yo
il vy fbyk ’byk Ji 1 3
 Then, the'macroscopic energy equation is:
-1 Yo TS =1, Clols
ffcf{gsj+r°{ij(K )si]Vs’bx.—r(K ) eyt oa
J : (2.16)
@) 0 7°
et g e
’)xi i3 ’)xj

Remark 2..1, {The first term ih the right hand side of

he equaiion (2.16) is the viscous dissipation. In the problem
of thermal combustion in porous media C.Marle {5] gives a similar

term in the energy equation.

Remark 2.2. The corrective term °(ij (2.15) in the

convective coefficient seems new. This term gives the influence
of the difference of thermal conductivity ’\f#‘As - LE ‘Af= As
the homogeneization of the temperature is trivial and we have

T1=0, §9=0 and consequently c(ij=0.

3. NATURAL CONVECTION

3.1. barey’'s law

In order to obtain the Darcy’s law used in the studyv
of natural convectlion in porous media,

of motion cf a slightly compressible viscous fluid in the form:



Vi
A o
’bxi( e vi)=0 (81
'DVE 3 2 v,
€ Ot ) D ; sl ¢ X2

. xhE, ¢ TRCEN (e oo Ji3 (3.2)
¢ e
¥ = p gt ), SRR (3.3)

Lt f%T éi 4 Q? ,oT
s fk”)x T QE VB jk’a‘ f)xk ffaxk) e

where PE is the pressure and pE is the difference between P£
and the Archimede’s pressure for the reference temperature.

WE G e e

Moreover, the coefticients are I* = ;

= e (Derel) .

Remark 3.1. The state equation (3.3)l shows that

temperature, but not pressure, is taken inte acecount for
density. In addition, the compresibility is small. Equations
@2y, (3.3) andil0xr<dl ameuntcs te the Boussines{s approximation.
We now consider expansions (1.9), (1.11) for the
velocity and the temperature; obpositely, according to the
Boussinesqg's approx1matlon, we tabe for pressure (¢nstead

of (1.10)):
12 . 16 O] Yl i
p (x)= ¢ po(x,y)+ 3 (S Vs (35.5)

From (3.3) we have:

0= ¢ (1- g T - Tl R e “(3.6)




As in the section 1.3, we are obliged to take nt+m-2=r

and from (3.1) (3.2) we have the Darcy’s law:

~o In°
__3_ D o

Vi I "bx e et g §i3> (3.7)
~ :

div v°=0 (3.8)

3.2. The energy equation

In the eguation (3.4) the uﬁtrivial convective terms
are obtained for n=p. Then at order gnrz and ¢%71 we obtain
7°=7° (x) and (2.12) with the homogeneized coefficient (2.11).
But (the terms of viscbsity and compressibility are of order

n+t

¢ Y and are negligible with respect to convective terms

(order g’n). Consequenstly, instead of (2.16), we obtain:

i< : cl § Coane A e
gfcfl asj+ [ "Zij(K )si] 'Ys’)xj =X, (A¢j’)xj)

(359

where the coefficients djj are given by (2.15).

Remark 3.2. The system (3.7)-(3..9) 1is the classical

system of equations for natural convection in porous media (see

Ene and Gogonea f6]).

4, NON-DIMENSIONAL NUMBERS

In order to obtain the phycical meaning of t

terms which apears in equation (2.1€) we take a characteristic



lenght ¢ of the pores, a characteristic length L of the

domain &L and a characteristic velocity Q of the filtration
(\J

velocity XO. Now, the small parameter is i=i

If we introduce the Reynolds number R . , the Prandtl

number P and a new non-dimensional number Si defined by:

i : :
B _____%__ (4.1)
(e
P=—P§i (4e.2)
02
Mm@
S£ S (4. 3)

where T is the difference between the temperature and the

reference temperature, eguation (2.16) makes sense for:

PR¢ ~ ,g'lsE (4.4)

If P ~ 0(1) (like for usual fluids), (4.4) show that:

Af)QZT

e 0(1) (4.5)
ML

This is the condition for taking into accunt the
dissipative term in (2.16).8n the other hand, the corrective
term in (i'ij is always of the some order than the classical

~

convective term (see, nevertheless, Remark A

4.2. Natural convection

In this case it is necessary to take also into acount

the Grashof number G g and the Rayleigh number Ra £ defined

by :

..,w. o
S SR N SRRSO SERE e

T A AR I



G = = ; (4.6)
Ra_ =€, °P ' (4.7)

Then from (3.7) we have:
and frem (3.9):

Ra_ ~ ¢ | _ (4.9)

Remark 4.1. The Rayleigh number (4.7) is defined at

the microscopic level (with 43). In the study of natural ceon=
vection in porous media the usual Ravleigh number is defined.
with two-scales ( QzL instead of QB):
2 .
Pl ¢ TL A

X = (4.1¢

R H
a ’_A% - gc

From (4.10) and (4.9) it is clear that this number is
of order 1. This fact is in good concordance withvexperimental

data.

5. COMPLEMENTS

5.1. Non-steady flow

All considerations concerning the Darcy’'s law holds for

e~
=

(1)

1))

: : n
- case, using a slow scale of ktime TG =& t.

In equations (2.16) or (3.5) it apears a new term of



e
Il
~ |3

0

or

- f)To

\lm ?fo+(l—m) ?scs] o
| Y
where m is the porosity of the medium defined by m=|Y\

5.2. Diffusion of miscible fluids

It is known that the concentration € of a mixture of

miscible fluids satisfies the equation:

Qci < (BCFE" g (}Ci

e =
3 ¢ . OXy DXy X

where D is the diffusion coefficient. The equation (5.1) coincides .

s 0 = = \ ,= .
with (1.3) if we take r =0, ?fcf—l and A g P.: Tt is also clear
thelif the mixture flows in a solid porous body:, thils 'one is

impenious and consequently thevappropiate boundary condition
2 cf
on
coefficient in the solid is zero. The homogeneized equation takes

at ' dis

= 0. This also amounts to say that the diffusion

a form analogous to (2.16). It is to be noticed that in this
case the diffusion coefficient takes necessarly different values
in YS and Yg (becam%?Ds=0) and consequently the coefficients
analogous to Q(ij are in general different from zero (see

Remark 2.2).

(D--=5-) Gl
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