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COMMUTATIVE RINGS HAVING ONLY A FINITE NUMBER OF IDEALS

by

Horia POP

INTRODUCTION

This paper tries to describe all commutative unitary rings
having only a finite number of ideals, providing also an simpli-
fied proof of I.S.Cohen’s Structure Theorems for artinian local
rings.

The condition to have only a finite number of ideals for a
local artinian ring is that either the ring is finite or else
his maxiﬁal ideal is principal.

If both conditions are satisfied and the characteristic of
the residual field is unramified, then, in some way the ring
looks like finite fields.

Since in ann artinianAlocal ring (A,m), its n-adic topology
is discrete we can get an easy proof of I.S.Cohen’s Structure
Theorems. :

The ideas and technigues leading to structure'theorems for
complete discrete valuation rings belong F.kK.Schniidt; HiHasse!,
E.Witt and 0. Teichmuller.

The new problems which appeared for an arbitrary loeal ring
were overcomed by I.S.Cohen in{3]}.

For artinian rings some simplification are available.

In the equal characteristic case (i.e. char (A)= char (A/m))
we use an elementary polynomial trick instead of Hensel’s lemma.

One semiplifiss also A.Geddes' arqgument (see’7} ehiap. 7, iz
i ) i ’ 2 vy r
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which didn’t use p-bases) by finding the field of representati-

ves not using projective limits, but simpiy using Zorn's lemma.
In unequal characteristic case (1.e. char (A)=pn with n>1,

and char (A/m)=p) the proof use Teichmiller technigques to find

a multiplicative system of representatives for a perfect residual

field. If the residual field is not perfect, the remark that Teich-

. n
miller process works for a subfield kP of k make the problem ea-

sier in the sense that we need not to embed the ring in a larger'

one with perfect residue field (as [31 and[S]).

PRELIMINARIES

1,a¢ ‘A be an artinian ring. Then A is noetherian, every pri-
me ideal of A is maximal, and the number of maximal ideals is
finite.

By the structure theorem for artinian rings one can write
A as a finite direct product of artinian local rings (see 2]
chap.8). This is the reason for considering from now on only
local artinian rings.

Denote by m the maximal ideal in an artinian local ring 2.
As the prime radical cf A is m one can write §=(xl,...xn) with

ny
xi%=b for suitable ni)O. ‘ :

Tf A has a unique ncntrivial ideal one has m=(x) for every
xXEm; moreover x2=0 because m=§2¢0 implies by Nakayama'’s lemma
m=0.

Assuming that the characteristic of A is n#0 and writing

oh

& ; : : :
n=pl‘...pk(§§ with p; prime it follows that there is an i such

that pyeEm and py rust be nilpotent.

h

Therefore char (A) is of one of the following forms C,

T .
p or p with p prime.



PROPOSITION 1. Let (A,m) be a local ring with a finite num—

ber of ideals. Then either the residual field A/m is finite and

in this case A is itselifsfinitey) orvitsenaximalvideal is prinei-

pal, in which case all ideals of A are powers of m.

PROOF. Using Nakayama'’s lemma one can choose a minimal sys-—
tem of generators (Xl’x2""'xn) for m (which is a basis of
g/mzover A/m).

If A/m is finite then A is finitel

If A/m is infinite and m is not principal, consider the
ideals oflﬁhe form (Xl+ax2)+£€ where a runs over an infinite set
of representatives for the residual fields. Their images in
m/mz are distinct beqause ortherwise we obtain a.dependence re-
lation .of Xy and Xy in g/gz over A/m, a contradiction.

If m is principal all the ideals are powers of - (see f2]

¢

chap. 8)
Now we give a polynomial version of Hensel’s lemma.

LEMMA 1. Let P(X) be an irreducible serarable polynomial

over a field k. Then for every n3yl ‘there is a polynomial ¥h (X)

such that
P (X) /P (,(X))

PROOF. Because P(X) and B’ (X) are relatively prime each other
one can find Q(X), R(X) €k|X] such that Q(X)P(X)+R(X)P’ (X)=1.
et U(X)=R(X)P(X) and *rﬁ’(x}-—“x-U(X):X—R(X)B(X).

Then by Tavler expansion .
ol 155



P (X)) =P (X)-U () (X) 402 (X)Py (X) =
=P (X) (1P’ (X)R(X))+P% (X) R* (X) Py (X)=

=p? (x) (0 (X)+RE (X) P, (X)) =P (X)V(X).
Repea#ing this argument with %NX) instead of X '« We get
P (y(p(x)))=2? (p OV (p (X))
and iterating n-times one gets

2n n-i

: 2
P(yn(x)-—.P (X)V (X)...V(fn_l(X))

wnere

sty

e QQE.D.

COROLLARY. For any irreducible separable polynomial P (X) over

a field k we have an isomorohism

k(x]/ @™ ))=x{r]/ (™)

where K=k (z) with z a root of P (X).

PROOF. Using the above lemma set z=}ﬂX) such that Pn(X)/P(ﬁ%ﬂ
then 'z i8"a root of P(xX) in'k[x] /(PP(x)) ‘and k(2] is a £ield.

If K=k(z) and y=P(X) then y"=0 and

kix]/ (%)) = xlyj= k¥ ]/ ™)




LEMMA 2. If the prime number p is in m and a=b (mod m),

n: & n
then aP =pP  (mod 2n+l)'

PROOF. For n=0 there is nothing to prove. If azb (mod mk),

a=b+x with xegk and one has

aP=pP+ 22 (P) kP LopPupxy

where px§§k+l
so that a%;bp {(mod gk+l).

Iterating this several times one gets the lemma.

RESULTS

For our purposes it is necessary to find "good" representa-
tives for the residual field A/m of A, '

The answer is given by the following two theorems, due to
H.Hasse, F.K.Schmidt, E.Witt, O.Teichmiller in complete discre—
te valuation rings and to I.S.Cohen for complete local rings.
If A is artinian we give direct and simplified proofs of these

two results.

THEOREM 1. Let A be an artinian ring of characteristic 0 or

p for a prime p. Then A contains a field of representatives for

the residual field k which is isomorphic to k via the restric-

tion of the canonical homomorphism A-»A/m.




.-6_.

Dl

If the characteristic of A is p and ml=0, A" is a subring

in A and actually is a field because any element of A not inver-
tible is in m and mpl=0.

By Zorn’s lemma one can find a maximal. field K in A contai-
‘ ning @ if char(a)=0 else containing Apl if char(Ad)=p.

Denote by X the image of x€A in A/m.

1f E#k take x a representative for an element.iek—ﬁ.

If ¥ is transcendental over K then x.is transcendental over
K 'S0 that Kek({x) and this cdntradicts the maximality of K.

If %X is algebraic over K then for some irreducible O#P(X)&k[@
one has P(%)=0, it follows P(:)ém and then Pl(x)=0. :

If the characteristic of.A is 0, P(X) is separable and by
Corcllary to lemma 1 one can find airoot 'y of PET) in A Then
KCKLyJCR and this contradicts tiae maximality of K.

1f tie characteristic of A is p there is a minimal e such

: BE o
that x* e X (because KOAY ).

Let«a(:xpe then;{%Kp and Xpiaiée?{{)(] is irreducible.

Again the inclusion KeK(x) contradicts the maximality of K.

Therefore K is a system of representative for k and K=k.

OnE <Dt

Recall that a v-basis in a field k of characteristic p is

a set of elements M such that

1 {kp(xl,...,xn):kp]=pn for any distinet
Xl,- o0 an&M

2. k=kPm).

By Zorn’s lemma a p~basis always exists.

n
Moreover K=k (M)
2

The ring A is said to be unramified if pem-m~ for p=char (A/m)

i - AT $ 5 -
Now we shall use Teichmruller erbedding process (sevﬁéﬁchdn.G)

e




to deal with the unequal-characteristic case.

THEOREM 2. Let A be an unramified artinian local ring with

maximal ideal m and residual field A/m=k. Denote by n the smallest

n+1l

natural number such that m =0.

a) For K=k there'is a unigue multiplicative system of re-
n
presentatives in AP . If the characteristic of A distp . then this

system is a subfield of A.

b) If the residual field is merfect we know by a) that there

is a unigue multiplicative system of representatives for k. Mo-

reover if the characteristic of A is pr (r>1) the ring generated

by this system over Z/p*Z. is isomorphic to the ring of truncated

Witt vectors Wr(k) and this is a minimalesubring.eof A conhitai=

ning a system of revresentatives for k.

). If the residual f£ield k is not perfect a system of repres

sentatives for the residual field mav be obtained in the follo-

wing way:consider a set M of reoresentatives for a p- ba31s of

k and the multiplicative system of representatives f(kp ) for
n
kP given by a). The ring generated by f(kp UM over éyp<z,99§;

tains a system of representatives for k (i.e. a coefficient ring

for k which we shall denote again by Wr(k)).

=1
PROOF. For ackP® take & a representative fox a® e k and
n n
construct f:kP —» A by f(a)=wp s

This does not depéend on the representative chosen because

=N
1f/51s another replesentatlve for a’

lemma 2 ap bp (mod E ) and mn+l=0.

we have oc"é/ﬂ;;(mod m) - sos by

Denoting by - the natural homomorphism A—»A/m one has

and



n n n
£la) E(b)=& @ =@§ﬁ)p =f (ab)

n
Thus f(kp ) is a multiplicative system of representatives
: n
for kP .
n n n
Remark that f(kp )CAP , and 2P is not necessarily a

subring of A.

L}

n
iE g:kp-~>A is another multiplicative system of representa-

: n n
tive for k¥ in AP using lemma 2 we get

n n n
g(a)=ﬁp “bccauce £(xP )eaP

n RiPOL et Z
and f(a)=0gp so g(a)=f(a) implies
T 0 b et B S
pp =, in k SO f5 =5t then
non
pitp n+l o
pEL (mod m ) and nm 0%

It follows f(a)=g(a) such that the system is unique.

if the characteristic of A is p»0 we have

n n n
£(a)+f(b)=oL +@P =(x+3)P =£(atb)
Dn :
so that f£(k* ) is actually a field.
n
Assume now that k is perfect. Then k=kp=ka so by a) we have
a multiplicative system of representatives for ks

Considering now the set of elements of type

ey
i 3 i 7z
X = 2; f(xi)p - xf.k.

AL

We shall prove by an inductive argument (examining addition

N

tha

o+

and multiplication they form a ring whose structure is

i)

i SN e R Oy aait g i 3 T
unicuely determined by k and the characteristi

Q
3

Tn hoth cases of addition and multiplication it would be
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necessary to know who is f(a)+f(b) (namely to find for it an
r={

~expansion 2: f(xi)pi).

« =0

We have

ne b APENaRL o it
SEEE R B 2 (. B

M=t (5 ek wyd=a, &
=f(ath)- ) p Y "p%-fépej-ac"f‘khéﬁ“)
E= Chipr=t 7T

because

n 2 n
pn/(g ) if (s,p)=1 and pn t/(p t) if (h,p)=t. Note also

hp
that pr/pn+l and set '
v on -~
it R e o -/
Sem e 0 ) G 4.
p
Then
-n A‘,‘PF n =

f(a)+f(b):f(a+b)+zz—pn_§2?% hf(ap ke =hip "
e ]

&
= f(a+b)4-2f.pn—t4L%
¢

where : =
ws L ahnn , memat

Now iterafe thils rule feompsnaddition inside thessum represen—
ting Uy and remark fhat we need a fewer number of coefficients
(because we have factors pn"t and pn+l=0). After at most n
steps we get the expansion for f(a)+f(b).

Since f(a).f(b)=f(ab) using the rule above the multiplica-
tion can be obtained also inductively. Therefore the element of
the type Ei f(xi)fﬁh form a subring of A of characteristic pr

and this 1is the ring generated by

‘ = Y — 3 < S y i = 7 s 2
f(k) over £ /v Z . Sugh 2 ringécould be obtainedsalsods the



Witt vegtor Wr(k) so we may suppose .
W, (k)eA (by the isomorphism Z/}*ZE/MU”‘ W) ). |

If k is not perfect take ﬁ-a p-basis for k and M any set
of representatives for M in A.

Denote by B=Z/p€2[f(kpn)UM]CA..

First we show that this subring is concordant with A aLERS
B m=p.B
Take
x=§i§f(an)xfi e xZﬂ& mnB
n

P i P i n_
aiC-k r X3EM, U € Zf.‘//)' Z. and n;gp -1
Then in A/m we have

= e —#y g TN :
e Ll R s and

, because M is a

p-basis “n=0 and thereforedeTpZ/pQK and Xx£pB.

Next any element xek has a representative of the type

) T i n ;
Zjuuf%m)xfﬁ.-K;L with aiékp ; (6 M because k=kP (M) so that
this subring:is in fact a ring of coefficients.
O 1051015
This subring actually has Witt vectors addition and multi-
D-—«w el p_ n

nlication bheing a subring of_Vr(k* ) were kP =y k! is the per-

fect closure of k.

Now we give the structure theorem.

THEOREM 3, If (A,m) is an artinian leecal ring eoficharacteris:

tic 0 or p, with residual field k there A is isemorphic teo . a fac-

tor rinag .of

=

K 7 Bl 3

Sl T s B s
ATre = L
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I1f A has eharacteristic pr and is unramified then A is

iéomorphic toasfactor ring of

% b
ST O SRR i (xl’,...,x oy

S

PROOF. By theorems 1 and 2 one may suppose that k¢A (in the

equal-characteristic case) or Wn(k)cA (in'the unequal - charac-—
teristic case).

Take m=(xl,...,xs) we know that there are ni>0 with kfh’=0

and the proof is obvious.

@RE. 0

COROLLARY. Let A be a ring with a unigue nontrivial ideal

and residual field k. Then:

a) A is isomorphic to kLX]/(Xz) if char(A)=0 or p

pe—

b) A is isomorphic to W, (k) it char(a)=p .

1f ithe residual field is finiteE) then ‘A &= Z‘Z/,:,Zz(‘g)

for~§ a@g=1 prinitive wvook of 1 over ZZ<%GZZ.

PROOE. Indeed p is unramified_because m2=0 so Theorem 3
works. If /';%: /Ej(%) with% a ‘g1 primitive reot of.1 selectg a
representative for ? and replace it by ?*P?r if necessary

Q.E.Do

Consider from now on A a commutative ring having only a fi-

nite number of ideals, by the structure theorem of artinian rings

we can restrict ourselves to the case were A is local.

The characteristic of A is 0, p or pn (for a prime p).

We have seen (proposition 1) that A is eiter finite or else
the maximal ideal of A is principal m=(x) and all the ideal of

A are:

n
AdDMDs o« DI =0
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From now on asum that m=(x) is principal.
In this special case if m=(p), A is unramifiedJelse (p)=(xé;
with e>1 and e is called the ramification index of p.
The residual field k, char(d), the number of ideals, and the
: ramification index e are in general not enough to determine the

ring A as shows the following example:

a= Z/52 71 /5, X=3)
A= Z/520x1/ x*,x—¢)
Ali.A2 because 3(&2-\'3, but 3 ¢ A::

il

THEOREM. 4., Let (A,m) be a local rina of residual, field

k=A/m . Assume that m=(x) is principal. Then:

a) If the eharscteristic of A is 0 or™p {prprine) A is iso-

morphic to k[x1/(x")

b) If the characteristic of A j_._*_s_pn with#>1, p prime

then A is isomorphic to W, (kKY*1f o i unramifiledvend towan

Eisenstein extension of type

T : e e-1
v () [x]/ (x%4pa__ X% "+...4pa ) acko (modm)

if o is ramified. .

PROOF. In case a) by theorem 1, keA. Since m=(x), x"=0 any

element ve2 can be written as

L ol ; :
n-1% with aiek

y=a +a X+...+a
s K s oDy
so A=kl X]/(X).

n »
I£ .char (A)Y=p “one may assume ‘Z'Jp (k)<h.



== .

If p is not ramified m=(p)and for any element VR

=i
y=aoalp+...+an_lpn 5 afewn(k)

so that A=Wn(k).
e
167 (p)=(xe) we have x=xp, « invertible in A. Because any
V&A can be written as

n-1

y=a ta;x+...+a = in particular

n=1
= n=1 :. ; : ol Sies
= ~v<o+><lx+...+afn§ with K Fe(mod m) because «K is invertible.
Substituting now the expansion of & in the relation'xe=pﬂ.
and replacing the power of x greater than e by the same relation
xe=pd. we get

e e-1 e=2
5 +paem2x +...+pao

s0 x is a root of an Eisenstein polyvnomial.

Q.E.D.

COROLLARY, If (A,m) is an unramified local artinian ring

with m=(x) and finite residual field ﬁ%_(bv the previous theorem

isomorphic to Wn(Ea)) one has

Bace 7 e d (?)

with f a g-1 primitive root of 1 over ;Z<f3122 s

Sl = e
take a representative of T . The orderwfgwust be divisible by

Q
it
fd

» thus replacing eventually‘§ by one of its powers we may

suppose aig=larocteof 1,



BITEILIOGRAPHS

E.Artin - Algebraic Numbers and Algebraic Functions,
Gordon and’Breach, 1967.

M.Atiyvah, I.Mc.Donald - Introduction to Commutative Algebra,
Addison-Wesley, 1969.

I.S.Cohen - On the structure and ideal thebry of complete
local rings, Trans.Amer.Math.Soc.59, (1946), pPP.54-106.

M.Greenberg-Lectures on formsin many variables, W.A.Benjamin,
1963

S.MacLane -~ Subfields and automorphism groups cof p-adic
fields, Ann.of Math.vol.40({1939), pPr.423-442,

J.P.Serre - Corps locaux, Hermann, 1962.

0.Zariski, P.Samuel - Commutative algebra, 'D.van Nostrand,

1958.




